A Hybrid Evolutionary Approach for Solving Constrained Optimization Problems over Finite Domains

Alvaro Ruiz-Andino, Lourdes Araujo, Fernando Sáenz, and José Ruz

Abstract—A novel approach for the integration of evolution programs and constraint-solving techniques over finite domains is presented. This integration provides a problem-independent optimization strategy for large-scale constrained optimization problems over finite domains. In this approach, genetic operators are based on an arc-consistency algorithm, and chromosomes are arc-consistent portions of the search space of the problem. The paper describes the main issues arising in this integration: chromosome representation and evaluation, selection and replacement strategies, and the design of genetic operators. We also present a parallel execution model for a distributed memory architecture of the previous integration. We have adopted a global parallelization approach that preserves the properties, behavior, and fundamentals of the sequential algorithm. Linear speedup is achieved since genetic operators are coarse grained as they perform a search in a discrete space carrying out arc consistency. The implementation has been tested on a CRAY T3E multiprocessor using a complex constrained optimization problem.

Index Terms—Arc consistency, constrained combinatorial optimization problems, evolution programs.

I. INTRODUCTION

Evolution programs [1] arise from genetic algorithms [2] (also see [3]), but they consider a richer set of data structures for chromosome representation, together with an expanded set of genetic operators. However, handling constraints in evolution programs introduces an additional complexity in the design of the genetic operators. In constrained problems, a minimal change to a feasible solution may be very likely to generate an infeasible one, but infeasible solutions cannot simply be dropped from the search space because doing so would increase the difficulty of generating good solutions. Roughly speaking, constraint-handling methods in evolutionary computation can be divided into two categories: those aimed at solving constraint satisfaction problems, and those aimed at solving constrained optimization problems.

In recent years, there have been several evolutionary approaches to the constraint satisfaction problem, especially for the MAXSAT (maximum satisfiability) problem. These approaches can be divided into three groups:

- techniques based on exploiting heuristic information of the constraint network [4]–[6].
- techniques that use a fitness function which is adapted during search [7]–[9].
- hybrid techniques [10].

The work presented in this paper belongs to the second category, that is, it is focused on solving optimization problems. Several methods have been proposed for this class of constrained problems. These methods can be classified into the following groups:

- specialized operators that transform feasible individuals into new feasible individuals [1]
- penalty functions that reduce the fitness of infeasible solutions [11], [12]
- repairing infeasible individuals [13], [14]
- problem-specific representation and genetic operators [15], [16].

However, all of these approaches require problem-specific programming. The approach presented in this paper is problem independent, as long as the problem is suited to be modeled in a constraint programming language over finite domains.

Constraint programming over finite domains [CP(FD)] has been one of the most important developments in programming languages in recent years [17], [18]. Constraint satisfaction is the core of many complex optimization problems arising in artificial intelligence [19], including temporal reasoning, resource allocation, scheduling, and hardware design, to name a few. Constraint programming languages [20]–[23] provide support for specifying relationships, or constraints, among programmer-defined entities. These languages are becoming the method of choice for modeling many types of optimization problems, in particular, those involving heterogeneous constraints and combinatorial search. These languages can be used to model constraint satisfaction problems over finite domains [CP(FD)], in which the goal is to find values for a set of variables that satisfy a given set of constraints.

The core of a constraint programming languages are constraint-solving methods, such as arc consistency, an efficient and general technique that eliminates inconsistent values from the domains of the variables, reducing the size of the search space both before and while searching. Most constraint programming languages include some kind of enumeration technique, as well as a branch-and-bound (B&B) [24], [17] procedure for optimization problems in order to perform the search. However, for real-sized applications, the search space is too large to be exhaustively enumerated, even using B&B. Thus,
hybridization with stochastic techniques such as evolution programs is a promising approach.

According to the previous considerations, evolution programs and constraint programming languages complement each other to solve large-scale constrained optimization problems over finite domains efficiently. The input to the evolution program is a constraint graph generated by a program written in a constraint programming language. Evolution programs are an adequate optimization technique for large search spaces, but they do not offer a problem-independent way to handle constraints. However, constraint-solving techniques are adequate for any discrete combinatorial problem.

This paper presents a novel approach that integrates constraint programming languages and evolution programs. In this approach, genetic operators are based on constraint-solving techniques, which provide a problem-independent optimization strategy to efficiently tackle constrained optimization problems over finite domains with a large search space. The paper describes the main issues arising in this integration: representation and evaluation, selection and replacement strategies, and the design of genetic operators. This approach has been implemented from scratch, but it can also be implemented taking advantage of existing constraint programming languages such as CHIP [20] or ILOG [25].

The integration of constraint-solving techniques over finite domains and genetic algorithms was first proposed by Paredis in [26], where a genetic algorithm was enhanced with forward checking to create chromosomes with unknown valued genes. However, our method makes use of a general constraint solver based on arc consistency, and differs substantially in the representation and evaluation of chromosomes.

The rest of the paper is organized as follows. Section II reviews the main concepts of constraint solving over finite domains. Section III presents the main points of the integration of constraint solving and evolution programs. Section IV briefly reviews the main approaches to parallelize an evolution program, and describes our parallel execution model. Section V discusses the empirical results obtained for a complex constrained optimization problem, as the set of points (tuples) \(\mathcal{D}(v_i) \times \ldots \times \mathcal{D}(v_n) \), where \(\times \) denotes the Cartesian product.

Definition 1—Finite Domain: A finite domain \(\mathcal{D} \) is a finite set of values \(\{c_1, \ldots, c_k\} \). A finite integer domain is a finite set of integers.

Definition 2—Constraint Satisfaction Problem Over Finite Domains (CSP(FD)): A constraint satisfaction problem over finite domains is stated as a tuple \((\mathcal{V}, \mathcal{C}, \mathcal{D}) \), where the following hold:

- \(\mathcal{V} \equiv \{v_1, \ldots, v_n\} \) is a set of variables. They are called domain variables as they are constrained to take a value from a finite domain.
- \(\mathcal{C} \equiv \{c_1, \ldots, c_m\} \) is a set of constraints among the variables in \(\mathcal{V} \), restricting the values that variables can simultaneously take.
- \(\mathcal{D} : \mathcal{V} \to \mathcal{F} \mathcal{D} \) is a mapping that assigns an initial finite domain to each variable in \(\mathcal{V} \). \(\mathcal{D} \) defines the search space of the problem, as the set of points (tuples) \(\mathcal{D}(v_i) \times \ldots \times \mathcal{D}(v_n) \), where \(\times \) denotes the Cartesian product.

Definition 3—Constraint: A constraint \(c \equiv (V_c, R_c) \) is defined by a subset of variables \(V_c \subseteq \mathcal{V} \), and a set of allowed tuples of values \(R_c \), subset of the Cartesian product of the domains of the involved variables \(V_c \). That is, \(R_c \subseteq \bigotimes_{v_i \in v_c} \mathcal{D}(v_i) \), where \(\bigotimes \) denotes the Cartesian product.

An assignment \(A = (a_1, \ldots, a_n) \) of values to the variables in \(\mathcal{V} \) satisfies a constraint \(c \equiv (V_c, R_c) \) if and only if \(A|_{V_c} \subseteq R_c \), where \(A|_{V_c} \) denotes the projection of \(A \) over the subset of variables \(V_c \). That is, \(R_c \) defines the points of the search space that satisfy the constraint. However, it is quite usual to define a constraint by means of a functional relation instead of an extensional one. Arithmetic constraints are a typical example of this situation.

The goal in a constraint satisfaction problem is to find an assignment of a value from each \(\mathcal{D}(v_i) \) to each variable \(v_i \in \mathcal{V} \) which satisfies every constraint \(c_i \in \mathcal{C} \).

As an example of CSP(FD), let us consider an arithmetic problem involving two variables, that is, \(\mathcal{V} =\{X, Y\} \), related by three arithmetic constraints: \(C = \{X + Y \geq 6, X \neq Y, [X - Y] \neq 1\} \), and where the initial domain for both variables is the finite interval of integer numbers from 1 to 5, that is, \(\mathcal{D}(X) = \{1 \ldots 5\} \) and \(\mathcal{D}(Y) = \{1 \ldots 5\} \). The assignment \(\langle X = 4, Y = 2 \rangle \) is one of the four solutions to this constraint satisfaction problem.

A. Arc Consistency

The basis for finite-domain constraint solvers is an arc-consistency algorithm [27], [28] that eliminates unsupported (inconsistent) values from the domains of the variables.

Definition 4—Supported Value: Given a CSP \((\mathcal{V}, C, D) \), and a constraint \(c \in C, c \equiv (V_c, R_c) \), a value \(a \in \mathcal{D}(v_i) \), \(v_i \in V_c \), is supported with respect to the constraint \(c \) if and only if, for all \(v_j \in V_c - \{v_i\} \), there exists a value \(b_j \in \mathcal{D}(v_j) \) such that the tuple \((b_1, \ldots, b_{i-1}, a, b_{i+1}, \ldots, b_k) \in R_c \).

For example, consider the set of variables \(\{X, Y\} \), the constraint \(X + Y \geq 6 \), and the domains \(\mathcal{D}(X) = \{1,2\} \) and \(\mathcal{D}(Y) = \{1 \ldots 5\} \). Value 1 in the domain of \(X \) is supported by value 5 in the domain of \(Y \) since \(1 + 5 \geq 6 \). Similarly, value 2 is supported by values 4 and 5. Consequently, values 4 and 5 in the domain of \(Y \) are supported, whereas 1–3 are not supported values.

Definition 5—Arc Consistency: Given a CSP \((\mathcal{V}, C, D) \), a constraint \(c \in C, c \equiv (V_c, R_c) \), \(V_c \equiv \{v_1, \ldots, v_k\} \), is arc consistent with respect to a search space \(D \) if and only if, for all \(v_i \in V_c \), for all \(a_j \in \mathcal{D}(v_i) \), \(a_j \) is supported. A CSP \((\mathcal{V}, C, D) \) is arc consistent if and only if all \(c_i \in C \) are arc consistent with respect to \(D \).

Convention 1—\(\subseteq \subseteq \): Given two search spaces \(D_1 \) and \(D_2 \), we will write \(D_1 \subseteq D_2 \) if and only if \(\forall v_i \in \mathcal{V}: D_1(v_i) \subseteq D_2(v_i) \). Similarly, \(D_1 \subseteq D_2 \) will denote that \(D_1 \subseteq D_2 \), and
that there exists at least one variable \(v_i \in V \) such that \(D_2(v_i) \subseteq D_2(v_i) \).

Definition 6—Largest Arc-Consistent Search Subspace: Given a CSP \(\mathcal{P} \equiv (\mathcal{V}, \mathcal{C}, \mathcal{D}), \mathcal{D}^* \) is the largest arc-consistent search space for \(\mathcal{P} \) if and only if \(\mathcal{D}^* \subseteq \mathcal{D}, \langle \mathcal{V}, \mathcal{C}, \mathcal{D}^* \rangle \) is arc consistent, and there is no other \(\mathcal{D}' \) such that \(\langle \mathcal{V}, \mathcal{C}, \mathcal{D}' \rangle \) is arc consistent and \(\mathcal{D}^* \subseteq \mathcal{D}' \). The largest arc-consistent search space exists, and it is unique [28].

An arc-consistency algorithm takes as input argument a constraint satisfaction problem \(\mathcal{P} \equiv (\mathcal{V}, \mathcal{C}, \mathcal{D}), \) and returns either the largest arc-consistent search subspace for \(\mathcal{P} \) if it does not contain any empty domain or INCONSISTENT if it does. A simplified version of the arc-consistency algorithm is shown in Fig. 1. It uses a queue to keep track of constraints to be visited. Unsupported values from the domains of the variables are removed until a fixed point is reached or until inconsistency is detected (a domain results empty). Whenever the domain of a variable is modified as the result of revisiting a constraint, the constraints where the variable appears are queued. The algorithm terminates when the queue is empty or when inconsistency is detected. A specialized version of this algorithm for a number of the most important classes of constraints runs in \(O(ed) \) in time, where \(e \) is the number of constraints and \(d \) is the size of the largest domain [28].

For example, given the CSP(FD) \(\langle \{X,Y\}, \{X+Y \geq 6, X \neq Y, |X-Y| \neq 1\}, \{\{1, \ldots, 5\} \times \{\{1, \ldots, 5\}\}\rangle \), the output of the arc-consistency algorithm will be \(D(X) = \{\ldots, 3\}, \) \(D(Y) = \{\ldots, 5\} \) (unsupported values have been removed from the domains of the variables). However, for the same set of variables and constraints, but with the search space \(\{\ldots, 3\} \times \{\ldots, 3\} \), the algorithm will detect inconsistency.

Constraint satisfaction problems usually describe hard search problems, therefore some kind of search with backtracking is necessary to solve them. Most constraint solvers perform a search that enforces arc consistency at each node of the search tree. The arc-consistency algorithm is invoked each time a value is tried for a variable, removing unsupported values from the domains of the other variables, thus reducing the search space. If some domain is left empty (inconsistency is detected), that branch cannot lead to a solution, and backtracking is performed.

Definition 7—Singleton Domain: A finite domain \(d \) is a singleton domain if and only if it consists of just one value \(a \). That is, \(d = \{a\} \). A domain with more than one value will be called a nonsingleton domain.

Definition 8—Singleton Variable: Given a search space \(D \), a domain variable \(v \) is said to be singleton if and only if \(D(v) \) is a singleton domain. Variables whose domains consist of multiple values are called nonsingleton variables.

Definition 9—Singleton Search Space: Given a search space \(D \), it will be called a singleton search space if and only if all domain variables are singleton, that is, it only contains one point. A search space with more than one point will be called nonsingleton.

Note that arc consistency is not complete, that is, a CSP \(\mathcal{P} \) can be arc consistent with respect to a search space \(D \), but there may be no solution to \(\mathcal{P} \) in \(D \). For example, the CSP(FD) \(\langle \{X,Y\}, \{X+Y \geq 6, X \neq Y, |X-Y| \neq 1\}, \{4,5\} \times \{4,5\} \rangle \) is arc consistent (every constraint is arc consistent by itself), but none of the four points in \(\{4,5\} \times \{4,5\} \) is a solution. However, if \(\mathcal{P} \) is arc consistent with respect to \(D \) and \(D \) is singleton, then \(D \) is a solution to \(\mathcal{P} \). Moreover, if \(D \) is singleton and \(\mathcal{P} \) is not arc consistent with respect to \(D \), then it is not a solution to \(\mathcal{P} \). Therefore, solution and arc-consistent singleton search space are equivalent terms.

B. Arc-Consistent Search Subspaces

In this subsection, we define a key concept, arc-consistent subspace, the basis for representation in our approach.

Definition 10—Arc-Consistent Subspace: Given a CSP \(\mathcal{P} \equiv (\mathcal{V}, \mathcal{C}, \mathcal{D}), \) a search space \(D' \) is an arc-consistent subspace (AC subspace) with respect to \(\mathcal{P} \) if and only if \(D' \subseteq D \) and the CSP \(\langle \mathcal{V}, \mathcal{C}, D' \rangle \) is arc consistent.

Convention 2—\(D \cap v_i \) in \(d \): Given a search space \(D \equiv D(v_1) \times \cdots \times D(v_n) \) and a finite domain \(d_i \) \(D \cap v_i \) in \(d \) denotes the search space \(D(v_1) \times \cdots \times D(v_{i-1}) \times D(v_i) \cap D(v_{i+1}) \times \cdots \times D(v_n) \).

The usual way to generate an arc-consistent subspace \(D' \) with respect to a CSP \(\mathcal{P} \equiv (\mathcal{V}, \mathcal{C}, \mathcal{D}), \) is to invoke the arc-consistency algorithm, taking as input argument the CSP \(\mathcal{P} \) plus an additional constraint over one of the variables in \(V \), that is, the CSP \(\langle \mathcal{V}, \mathcal{C}, D \cap v_i \in d \rangle \).

Fig. 2 depicts a graphical representation of different arc-consistent subspaces for a generic initial search space \(D \). Arc-consistent subspace \(ACSS_1 \) (black dot) is a singleton search space, that is, a single point, and therefore it lies in the solution space. \(ACSS_2 \) is not singleton, but it only contains points that are solutions to the problem. \(ACSS_3 \) contains some points that are solutions to the problem, and some others that are not. Note that it is also possible to have an AC subspace that does not contain any point solution to the problem, but a singleton AC subspace outside the solution space cannot exist. Fig. 3 illustrates the AC subspace concept in the context of an arithmetic CSP.

C. Constrained Optimization Problems over Finite Domains

In many occasions, we are not looking for just a feasible solution to a constraint problem, but rather, the best feasible solu-
tion according to an objective function. This kind of problem for which solutions are not equally preferred are called constraint optimization problems over finite domains. Many complex search problems such as resource allocation, scheduling, and hardware design can be stated as constrained optimization problems over finite domains.

Definition 11—Constraint Optimization Problem Over Finite Domains [COP(FD)]: A constraint optimization problem over finite domains is stated as a pair \((\mathcal{P}, f)\), where \(\mathcal{P} = (\mathcal{V}, \mathcal{C}, \mathcal{D})\) is a constraint satisfaction problem, and \(f: \mathcal{N}^* \times \cdots \times \mathcal{N}^* \rightarrow \mathcal{N}\) is the objective function to optimize (minimize or maximize).

An example of CSP is the \(n\)-queens problem, which requires us to place \(n\) queens in an \(n \times n\) chessboard in such a way that no queen attacks each other, i.e., they are not in the same column, row, or diagonal. This problem can be modeled with a set of \(n\) variables \(\mathcal{V} = \{v_1, \ldots, v_n\}\) and a search space \(\mathcal{D} = d_1 \times \cdots \times d_n\), where each \(d_k = \{1, \ldots, n\}\). Each variable represents one row of the chessboard. The assignment \(v_2 = 5\) indicates that a queen is positioned in the fifth column of the third row. The set of constraints \(\mathcal{C}\) is

- \(v_i \neq v_j, 1 \leq i < j \leq n\) (no two queens in the same column)
- \(|v_i - v_j| \neq (j - i), 1 \leq i < j \leq n\) (no two queens in the same diagonal).

The constraint of no two queens in the same row is implicit in the representation.

As an example of COP(FD), consider the valued \(n\)-queens problem [26] an extension of the \(n\)-queens problem, which requires the assignment of a weight associated with each board location \((i, j)\), defined by the matrix \(w(i, j), 1 \leq i \leq n, 1 \leq j \leq n\). Now, the goal is to find a solution to the \(n\)-queens problem that maximizes the sum of the weights of the positions where the queens are placed, that is, the objective function is

\[
f(V) = \sum_{i=1}^{n} w(i, v_i).
\]

Fig. 4 shows an instance of the problem for eight queens, as well as its optimal solution.

As an example of the formulation of a constrained optimization problem in a constraint programming language, Fig. 5 shows the code for the valued \(n\)-queens problem in the constraint programming language OPL [23]. Keyword int defines constant integers, while keyword var int declares domain variables over finite integer domains. The default optimization strategy is based on a depth-first branch and bound algorithm.

III. CONSTRAINED EVOLUTION PROGRAMS

This section discusses in detail the hybridization of arc-consistency and evolution programs in order to solve constraint optimization problems over finite domains. These two mechanisms complement each other: constraint-solving techniques open a flexible and efficient way to handle constraints in evolution programs, while evolution programs allow us to deal with large-scale search spaces. This hybridization implies coming up with a solution for chromosome representation, chromosome evaluation, and the design of genetic operators.

A. Representation

Classical approaches to handle constraints in evolution programs use one or more problem-specific tricks as penalty functions, repair algorithms, or linear recombination. We will make use of generic constraint-solving techniques over finite domains in order to design a novel approach to handle constraints. In our approach, a chromosome is not represented as an array of values, but as an array of finite domains, that is, not just a single point, but a subset of the points of the search space. Moreover, all chromosomes in the population will be arc-consistent search spaces (AC subspace) to the problem, generated by means of genetic operators based on the Arc-consistency function, which returns AC subspaces where inconsistent values have been removed from the domains of the variables. Therefore, a chromosome will be a subspace of the initial search space containing many or no solutions, and in particular, it may be a singleton search space, and thus, a solution to the constraint satisfaction problem. Evaluation, selection, and replacement strategies ensure convergence to singleton chromosomes. Given this chromosome representation, genetic operators are deterministic search procedures based on arc-consistency techniques that take as input argument an AC subspace, and generate a new AC subspace.

B. Evaluation

Since a chromosome is an AC subspace, chromosome evaluation is more elaborate than the calculation of a fitness function for a single point of the search space. In order to take advantage of the chromosome representation, we make a dual evaluation: for each chromosome, we compute a fitness value and a feasibility value.

Fitness plays the usual role, so its calculation is based on the objective function. The need for the feasibility value comes from the fact that an AC subspace may contain just a single point (and in this case, it is a solution to the problem), or it may contain many points (the whole search space in the worst case). Feasibility indicates how far away a chromosome is from being a singleton, measuring the relative size of the AC subspace. Chromosomes closer to being singleton have a higher feasibility value. Selection mechanisms will exploit the advantages of this dual evaluation. Similar dual-evaluation approaches have been pro-
Fig. 3. Examples of AC subspaces for the CSP \(\{X, Y\}, \{X + Y \geq 6, X \neq Y, X - Y \neq 1\}, \{1 \cdots 5\} \times \{1 \cdots 5\}\). AC subspace_1 is singleton (thus a solution). AC subspace_2 only contains solution points. AC subspace_3 contains four points, but only one of them is a solution. AC subspace_4 contains four points, none of them being solution, although it is also an arc-consistent subspace.

\[
\begin{array}{c|cccccccc}
\text{Variable } Y & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
V_1 & 6 & 28 & 20 & 9 & 15 & 18 & 19 & 22 \\
V_2 & 9 & 22 & 14 & 21 & 23 & 28 & 0 & 3 \\
V_3 & 16 & 5 & 6 & 8 & 0 & 14 & 5 & 11 \\
V_4 & 30 & 22 & 16 & 21 & 19 & 16 & 23 & 13 \\
V_5 & 18 & 30 & 19 & 30 & 22 & 3 & 23 & 25 \\
V_6 & 30 & 5 & 26 & 25 & 18 & 1 & 27 & 2 \\
V_7 & 20 & 21 & 6 & 6 & 21 & 13 & 3 & 31 \\
V_8 & 6 & 14 & 0 & 4 & 3 & 27 & 19 & 2 \\
\end{array}
\]

Fig. 4. Instance of the valued 8-queens problem. Each square of the board shows its weight \(w(i,j) \). Remark squares form the optimal solution \(V = \{3, 6, 8, 1, 4, 7, 5, 2\} \), which yields a value \(f(V) = 181 \).

\[
\begin{align*}
\text{int } N &= \ldots; \\
\text{int Weights[1..N,1..N]} &= \ldots; \\
\text{var } \text{int ObjectiveVariable;} \\
\text{var } \text{int Queens[1..N] in 1..N;} \\
\text{maximize } \text{ObjectiveVariable subject to} \\
\text{ObjectiveVariable} &= \text{sum}(i \text{ in } 1..N) \text{ Weights[i,Queens[i]]}; \\
\text{forall } (\text{ordered } i,j \text{ in } 1..N) \\
&\text{ Queens[i] }<\text{ Queens[j];} \\
&\text{ Queens[i] }-\text{ Queens[j]} < j - i; \\
&\text{ Queens[j] }-\text{ Queens[i]} < j - i; \\
\end{align*}
\]

Fig. 5. Valued n-queens in OPL.

posed [15], although with a quite different view of the feasibility value.

Fig. 6 shows the expected evolution of the population as generations transpire. The initial population is expected to have low average values for fitness and feasibility, whereas the final population will have higher values, and in particular, there will be singleton chromosomes, that is, solutions to the problem.

1) Fitness: In a COP(FD), the objective function \(f: \mathcal{N} \times \cdots \times \mathcal{N} \rightarrow \mathcal{N} \) is defined for those points of the search space that satisfies the constraints. In our approach, a chromosome is not a point of the search space, but an arc-consistent set of points that may include points that do not satisfy the constraints. Constraint programming itself offers the way to evaluate the fitness function of an AC subspace. In our context, a COP(FD) \(\langle V, C, D, f \rangle \) is defined using a constraint programming language; thus, the objective function \(f \) is defined as a new domain variable \(v_{of} \) along with constraints relating \(v_{of} \) and \(V \). The arc-consistency algorithm prunes the domain of \(v_{of} \) as it prunes any other domain variable, so arc consistency returns the lower and upper bound of the objective function for a given AC subspace. We will refer to \(v_{of} \) as the objective variable, and \(D(v_{of}) \) will denote its domain in a given search space \(D \).

For instance, let us return to the valued \(n \)-queens problem. The objective function to maximize is the sum of the weights of the positions occupied by the queens. The objective variable is defined as

\[
v_{of} = \sum_{i=1}^{n} w(i, v_i),
\]

that is, an arithmetic constraint involving the variables \(v_i \) which represent the queens positions. In general, \(D(v_i) \) is not singleton; therefore, \(w(i, v_i) \) would be a finite domain instead of an integer, and so is the resulting sum.

Fig. 7 shows the approach for computing fitness. A chromosome (an AC subspace, denoted by \(D \)) has associated a domain \(D(v_{of}) \), the domain of the variable \(v_{of} \) in the search space \(D \). Fitness is computed from the value of \(D(v_{of}) \) in the AC subspace being evaluated \((D) \), normalized with respect to the size of \(D_{ini}(v_{of}) \), the domain of \(v_{of} \) in the initial search space. First, a weighted average (\(\text{fit} \)) is computed from the minimum and maximum values of \(D(v_{of}) \) (\(\min_{v_{of}}, \max_{v_{of}} \), resp.)

The weight \(w_{fit} \) is a problem-dependent parameter. Its most usual value is 0.5. Finally, \(\text{fit} \) is normalized with respect to the minimum and maximum values of \(D_{ini}(v_{of}) \) (\(\min_{v_{of}}, \max_{v_{of}} \), resp.), in order to obtain a final real value that ranges from 0 (worst) to 1 (best).
2) Feasibility: The feasibility measures the relative size of the AC subspace with respect to the initial search space, indicating how far a chromosome is from being a singleton. Fig. 8 shows the calculation of feasibility for a chromosome D. First, we define the function $rs : V \rightarrow R$ which returns the normalized size of the domain of a variable v in a search space D with respect to its size in the initial search space D_{ini}. Next, feasibility is computed as a weighted average between $feva$ and $feas$, where weight w_{feas} is a problem-dependent parameter, $feva$ is the value returned by the rs function for the objective variable v_{of}, and $feas$ is the average value of $rs(v_{i})$, $v_{i} \in V$. Feasibility values range from 0 (when $D = D_{ini}$) to 1 (when D is singleton).

In order to clarify the evaluation of chromosomes, consider the valued 8-queens example problem. The top chessboard in Fig. 9 represents a chromosome D_2. Filled squares are the possible rows for each variable. $D_2(v_2)$, the set of columns where a queen at the second row may be placed, is $\{6\}$; thus, v_2 is a singleton in D_2. So are v_1, v_7, and v_8. However, v_4, v_5, v_9, and v_9 are not singleton. For example, $D(v_1) = \{1, 3\}$, so the queen at the first row may be placed at columns 1 or 3. The bottom chessboard in Fig. 9 represents a chromosome (AC subspace) D_2, which is singleton and also a feasible solution to the problem. Note that $D_2 \subseteq D_1$.

Table I illustrates values of fitness and feasibility for the chromosomes represented in Fig. 9, as well as intermediates values taking part in the calculation (for $w_{fit} = 0.5$ and $w_{feas} = 0.5$).

C. Integration Algorithm

The main algorithm arc-consistent evolution program follows the structure of a steady-state genetic algorithm. Fig. 10 shows the pseudocode. Functions in boldface invoke the arc-consistency algorithm. Words in italics are parameters to be set.

The initialization step is a loop that generates a certain number (population size) of chromosomes by means of the AC-random-search procedure. The evaluation step computes the fitness and feasibility values for each AC subspace (chromosome) in the population. In the selection step, some chromosomes are marked as survivors, so they will not be replaced by the new AC subspaces generated by crossover. The best chromosomes are more likely to be selected, as the rank-selection procedure performs a biased stochastic selection. An elitist policy is used, so the best chromosome always survives. The alteration step is divided into the application of two genetic operators, AC-crossover and AC-mutation, both AC subspace generators guided by the arc-consistency algorithm. New chromosomes generated by crossover take the place in the population of those chromosomes not chosen to survive. Mutation is applied to those chromosomes selected to survive with a probability mutation rate. New AC subspace gener-
As the number of generations increases, the weight of fitness \(f_{\text{ea, weight}}(t)\) increases, in order to help convergence toward singleton chromosomes (solutions). Fig. 12 illustrates this policy by means of level lines of equal probability in a representation of the population in the fitness/feasibility plane. It shows examples of the level lines of equal probability to be chosen to survive for the first and last generations. Chromosomes with higher fitness are preferred in the first generations, while in the last generations, chromosomes with higher feasibility are preferred, helping convergence toward feasible solutions.

In order to select chromosomes to take part in crossover, the sorting criterion to select one of the parents is the fitness value, whereas the other parent is selected using the feasibility value as the sorting criterion. This heuristic leads to the crossover of a promising parent in terms of fitness, with a promising parent in terms of being closer to be a solution, expecting to produce fit and feasible chromosomes. Fig. 13 illustrates this policy by means of level lines of equal probability in a representation of the population in the fitness/feasibility plane. Level lines of probability for choosing the “fit” chromosome are horizontal, while level lines of probability for choosing the “feasible” chromosome are vertical.

\[\text{As the number of generations increases, the weight of fitness } f_{\text{ea, weight}}(t) \text{ increases, in order to help convergence toward singleton chromosomes (solutions). Fig. 12 illustrates this policy by means of level lines of equal probability in a representation of the population in the fitness/feasibility plane. It shows examples of the level lines of equal probability to be chosen to survive for the first and last generations. Chromosomes with higher fitness are preferred in the first generations, while in the last generations, chromosomes with higher feasibility are preferred, helping convergence toward feasible solutions.}

\]
function AC-evolution-program ((V,C,D), ObjectiveVariable) : Solution
Var X_1, X_2 : AC-Subspace
Pop : Array[1..population_size] of AC-Subspace
begin
/* initialization */
for i := 1 to population_size do
 Pop[i] := AC-random-search(V,C,D)
end-for
/* evaluation */
for i := 1 to population_size do
 Fitness[i] := AC-fitness(Pop[i], D, ObjectiveVariable)
 feasibility[i] := AC-feasible(Pop[i], D, ObjectiveVariable)
end-for
/* main loop */
for t := 1 to number_of.generations do
 /* selection */
 for i := 1 to (1-over.rate) * population_size - 1 do
 X := rank-selection(Pop, Fitness + fea_weight(t)*Feasibility)
 mark X to survive
 end-for
 mark best singleton chromosome in Pop to survive
 /* alteration */
 for i := 1 to population_size do
 if not marked-to-survive(Pop[i]) then
 X_1 := rank-selection(Pop, Fitness)
 X_2 := rank-selection(Pop, Feasibility)
 Pop[i] will-be-replaced-by AC-crossover(X_1, X_2, V, C, D)
 else
 if random-between(0,1) > mutation.rate then
 Pop[i] will-be-replaced-by AC-mutation(Pop[i], V, C)
 end-if
 end-if
 end-for
 update Pop
 evaluate Pop
end-for
return best singleton chromosome in Pop
end

Fig. 10. AC evolution program.

function rank-selection (Pop, Criterion) : Chromosome
begin
 Sort Pop by Criterion
 x := random.real.between(0,1)
 i := population_size * x
 return Pop[i]
end

Fig. 11. Rank-based selection with a quadratic bias.

F. Genetic Operators

Genetic operators generate the new chromosomes that will be added to the next population, taking as input chromosomes from the current population. In our approach, genetic operators generate AC subspace, whose arc consistency is guaranteed by the Arc-Consistency algorithm. Genetic operators implement stochastic AC subspace builders, taking a previous AC subspace as input information to guide the search for a new AC subspace. Genetic operators are clustered in two classes: mutation and crossover. Mutation creates a new AC subspace by means of a small change in a single chromosome, whereas crossover searches for a new AC subspace combining information from two chromosomes. The design of genetic operators is a crucial point in all evolution algorithms because they must guarantee that new individuals inherit their ancestors’ properties, and they also must allow the exploration of new areas of the search space.
function $\text{AC-random-search}(V, C, D) : A\text{C-Subspace}$
begin
 \text{p[1..n]} := \text{random-permutation-between}(1, n)
 \text{for } i := 1 \text{ to } n \text{ do}
 \text{k := random.int.between(min(D(v_{p[i]})), max(D(v_{p[i]})))}
 \text{NewD := Arc-Consistency(V, C, D \cap v_{p[i]} in \{k\})}
 \text{if NewD != CONSISTENT then}
 \text{D := NewD}
 \text{end-if}
 \text{end-for}
 \text{return D}
end

Fig. 14. AC random search.

1) Crossover: New chromosomes generated by means of the crossover operator replace those not selected to survive. Parent chromosomes are chosen using the rank-selection function, as the algorithm in Fig. 10 shows. One parent is selected biased toward fitness (probably a high fit, but not feasible solution), and the other parent is selected biased toward feasibility (probably a feasible solution, but low fit).

Different crossovers were tried on a set of benchmarks; a uniform AC-crossover search algorithm, as implemented in Fig. 16, showed the best results on average. Given two AC subspaces, the AC-crossover operator generates a new AC subspace, which is a mixture of the two parents. In the first place, k (a random value between 1 and $n - 1$) randomly chosen variables $v_{[k]}$ are assigned the corresponding domain from the first parent ($v_{[k]}$ in ACSS_1, line 5). Next, arc consistency is enforced, and finally, remaining variables $v_{[k+1..n]}$ are assigned, enforcing arc consistency, the corresponding domain from the second parent ($v_{[k]}$ in ACSS_2, line 9). If the arc-consistency algorithm detects inconsistency, the domain of the variable is left unchanged.

Fig. 17 illustrates an example of crossover for the valued 8-queens problem. Board B_5 represents the new chromosome generated from the crossover of chromosomes represented in P_1 and P_2. P_2 is a singleton chromosome, whereas P_1 is not. The domain of the objective variable (sum of the possible occupied squares) is $\{121 \cdots 190\}$ and $\{155\}$ for P_1 and P_2, resp. Variables are processed in the following order, randomly chosen: $v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8$. A random number k of variables are taken directly from parent P_1, let $k = 3$. Therefore, domain $\{4, 5\}$ is assigned to variable v_3, value 2 is assigned to v_2, and domain $\{1, 4, 7, 8\}$ is assigned to v_4. Then, arc consistency is enforced, obtaining board B_1. The rest of the variables are sequentially processed in the established order, v_3, v_4, v_5, v_6, v_7, by assigning to each variable the corresponding domain from parent P_2 and enforcing arc consistency. That is, starting from B_1, we try $B_1 \cap v_2$ in $\{1\}$, obtaining board B_2 after arc-consistency enforcing. Next, $B_2 \cap v_2$ in $\{4\}$ is tried, which leads to inconsistency (no value left for v_2), and therefore board B_2 is kept. Then, we try $B_2 \cap v_7$ in $\{3\}$, obtaining B_4, and next $B_4 \cap v_8$ in $\{6\}$ obtaining B_5, which is a singleton chromosome. Therefore, B_5 is the resulting offspring, as any further assignment will leave the board unchanged or lead to inconsistency. B_5 yields a value of 168 for the objective function.

2) Mutation: The traditional mutation operator generates a new chromosome by means of a small change in an old one, allowing the exploration of new areas of the search space, and escaping from local optima. The mutation operator in our system has been designed not just to allow exploration, but also to perform local search, a weak point in traditional genetic algorithms. Fig. 18 shows the algorithm of the mutation operator. The role played by mutation depends on the quality of the input chromosome (function evaluate-quality, line 1), taking into account both the fitness and feasibility values.

- Singleton, High Fitness (Lines 2–8, Fig. 18): The purpose of the mutation operator in this case is to perform a fine tuning toward the optimal solution. A new chromosome is obtained by means of a local search around the input chromosome, which will be replaced by the new one if and only if it is a better fit chromosome (lines 5–8). The local search is performed in two steps.

1) A new AC subspace is generated from the input chromosome by means of the AC-enlarge function (line 3). The intended purpose of AC-enlarge is to generate a nonsingleton AC subspace around a singleton input chromosome. Fig. 19 shows the AC-enlarge algorithm. Variables are processed one by one in a randomly chosen order. Each variable takes its value from the input chromosome, and then, arc consistency is enforced. This process continues until a singleton AC subspace is obtained. The result is the last nonsingleton AC subspace generated.

2) Next, a local random search (line 4) is performed within the new nonsingleton AC subspace in order to obtain a new singleton chromosome. This is achieved with the AC-random-search function, previously presented. In this case, the input search space is not the whole search space, but the AC subspace obtained in step 1).

- Singleton, Low Fitness (Lines 9-10): Now, the intended purpose of the mutation operator is to replace the low-fit chromosome by a new one that will allow the exploration
Fig. 15. Example of the generation of an initial chromosome for the valued 8-queens problem. White squares denote allowed values, while gray ones denote forbidden values. Light gray squares come from the previous board, while dark gray ones represent values removed in the current arc-consistency enforcement. Circles correspond to singleton variables. Black circles are assignments, while gray ones denote that the value is the result of the current arc-consistency enforcement.

Fig. 16. AC crossover. $ACSS_1$ and $ACSS_2$ are the parent chromosomes. D_{ini} denotes the initial search space.

of new areas of the search space. Therefore, a new chromosome is generated using the $AC\text{-}enlarge$ function, taking the old chromosome as input.

- **Nonsingleton, High Fitness (Lines 11-12):** The input chromosome is a promising one, but it is not singleton, so there is no guarantee that a solution lies in it. The mutation operator tries to increase its feasibility by means of the $AC\text{-}random\text{-}search$ function.

- **Nonsingleton, Low Fitness (Lines 13-14):** A new chromosome is generated with the same method used for the initial population in order to allow the exploration of new areas of the search space.

The function $evaluate\text{-}quality$ checks whether the chromosome is singleton, and decides if it is of low or high fitness. A singleton (resp., nonsingleton) chromosome will be classified as *highly fit* if its fitness value is above the average fitness of singleton (resp., nonsingleton) chromosomes in the current population.

Fig. 20 shows an example of mutation, for the valued 8-queens problem, in the case of a singleton chromosome with high fitness, that is, the random local search. Board B represents the input chromosome, which has a fitness value of 147. In the first step, the $AC\text{-}enlarge$ algorithm is used to generate a nonsingleton chromosome around the input one. The order of processing variables, randomly chosen, is $v_3, v_5, v_3, v_6, v_4, v_7, v_2, t_8$. Variable v_3 is assigned the corresponding value from the input chromosome (represented in board B), and arc consistency is enforced, obtaining board
Fig. 17. Example of crossover of two chromosomes for the valued 8-queens problem. White squares denote allowed values. Black squares represent forbidden values because of the assignment of the domains from parent P1. Gray squares represent values removed because of arc-consistency enforcement. Circles correspond to singleton variables. Black circles are assignments, while gray ones denote that the value is the result of the current arc-consistency enforcement.

```
function AC-mutation(ACSS, V, C): AC-Subspace
begin
  switch evaluate-quality(ACSS) of
  case singleton, high fitness: /* local tuning */
    ACSS_enlarged := AC-enlarge(V, C, ACSS, D_init)
    NewACSS := AC-random-search(V, C, ACSS_enlarged)
    if NewACSS better-than ACSS then
      return NewACSS
    else return ACSS
  end-if
  case singleton, low fitness: /* enlarge it */
    return AC-enlarge(V, C, ACSS)
  case non-singleton, high fitness: /* try to make it singleton */
    return AC-random-search(V, C, ACSS)
  case non-singleton, low fitness: /* replace it */
    return AC-random-search(V, C, D_init)
  end-switch
end
```

Fig. 18. AC mutation.

```
function AC-enlarge (V, C, ACSS, D_init): AC-Subspace
begin
  ACSS_max := D_init
  p[1..n] := random-permutation-between[1, n]
  repeat
    NewACSS := ACSS_max
    ACSS_max := Arc-Consistency (V, C, NewACSS \ p[i] in ACSS[v_{p[i]}] )
    until singleton(ACSS_{max})
  return NewACSS
end
```

Fig. 19. AC-enlarge enlarges a solution (singleton AC subspace) returning a nonsingleton AC subspace.

B1. Analogously, \(\nu_3 \) is assigned value \(\{4\} \) (board B2), and \(\nu_3 \) is assigned \(\{8\} \) (board B3). Arc-consistency enforcement after assigning value \(\{1\} \) to variable \(\nu_6 \) leads to a singleton chromosome (board B4); therefore, the final result of AC-enlarge is the last nonsingleton chromosome, that is, board B3. The second step of mutation consists of an AC-random-search that takes as input the result of the first step. A new random order of processing variables is generated: \(\nu_8, \nu_7, \nu_3, \nu_4, \nu_1, \nu_2, \nu_5, \nu_6 \).
Variable v_8 is assigned value $\{6\}$, randomly chosen from the domain of v_8 in board $B3$ ($\{2,5,6\}$), which leads to inconsistency, so board $B3$ is kept. Similarly, variable v_7 is assigned value $\{5\}$, obtaining the final mutated chromosome, represented in board $B6$, which has a fitness value of 181.

IV. PARALLEL EXECUTION MODEL

This section presents a parallel execution model of the hybridization introduced in the previous section for a distributed memory multiprocessor. There are three main approaches to parallelize an evolution program [29], [30].

- Global parallelization [31]–[34]: Selection and mating consider all of the individuals in the population, but the application of genetic operators and/or the evaluation of individuals is performed in parallel.
- Subpopulation model [35]–[37]. The population is divided into multiple subpopulations or demes that evolve isolated, exchanging individuals occasionally.
- Hybrid algorithms [38], [39], which combine both approaches.

We have adopted a global parallelization approach because of the following reasons.

- Properties, behavior, and theoretical fundamentals of the sequential algorithm are preserved.
- Crossover is coarse grained, as it implies searching in a discrete search space performing arc consistency.
- The higher communication rate of a global parallelization versus other approaches does not significantly penalize speedup since modern distributed memory multiprocessors provide fast, low-latency asynchronous read/write access to remote processors’ memory, avoiding rendezvous overhead.

A global parallelization of the presented constrained optimization evolution program is expected to achieve high speedups since arc consistency leads to coarse-grained genetic operators. Global parallelization implies a centralized population. Shared-memory architectures support a straight
implementation of this approach, whereas distributed-memory architectures may suffer from communication overhead. We propose a global parallelization model for a distributed-memory architecture based on a virtual centralized population, physically distributed among the processors in order to reduce communications. Target architecture is any modern distributed-memory multiprocessor that allows fast asynchronous read/write access to remote processors’ memory. This feature places them in a middle point between traditional shared- and distributed-memory architectures.

Fig. 21. Data distribution model. Solid arrows represent fetching a remote chromosome. Dotted arrows represent mutual exclusion access to the shared operation table.

The data distribution model, shown in Fig. 21, can be summarized as follows:

- The population is distributed among the processors in the system. Each processor owns a subset of the population and a local localization table, indicating a processor where nonlocal chromosomes can be found.
- One processor of the system is distinguished as master. This processor behaves as any other, but it is also in charge of the sequential part of the algorithm, and keeps the shared operation table.
- The master produces the operation table, which reflects chromosomes selected to survive, to be mutated, and to take part in crossover (global mating). The operation table is broadcast at the beginning of every generation, so each processor has a local copy of it.
- Genetic operations are performed in parallel. Coordination is achieved by means of atomic test and swap on the master processor’s operation table. A processor may need to fetch (asynchronously) a chromosome from a remote processor’s memory in order to perform the selected genetic operation.

At the beginning of each generation, each processor owns a subset of the population formed by:

- chromosomes generated by itself in the previous generation
- chromosomes from the previous population fetched from a remote processor, but not replaced in the current population (steady-state approach). Therefore, a chromosome may be present at many processors.

Fig. 22 shows the algorithm executed in each processor. Initially, a subset of the population is generated (line 1). Every time a new chromosome is generated, its evaluation (fitness and feasible values) are asynchronously written to the master’s memory. Lines 2–14 enclose the main loop; each iteration produces a new generation. Synchronization is needed at the beginning of each generation (line 3) in order to perform the global mating. The master establishes the genetic operations in order to generate the next population (line 5), filling the operation table, which is broadcast to every processor (line 7). The loop in lines 8–12 performs genetic operations (crossover or mutation) until there are no more left. A processor may perform any of the pending operations (line 10), so it may need to fetch chromosomes from a remote processors’ memory (line 9). The resulting offspring is kept in local memory, but the evaluation values are asynchronously written to master’s memory (line 11).

Scheduling of pending operations is performed in a dynamic self-guided way, following a set of rules to minimize the number of chromosomes to be fetched from remote processors. Function Fetch-Operation (line 8) consults the local copy of the operation table and the localization table, choosing an operation to perform. In order to minimize the need to fetch remote chromosomes, the local operation table is scanned selecting operations in the following order:

1) crossover of two local chromosomes
2) mutation of a local chromosome
3) crossover of a local chromosome with a remote one
4) mutation or crossover of remote chromosomes.

Once an operation is selected, the corresponding entry of the shared operation table is tested and updated in mutual exclusion. If the selected operation has already been performed by another processor, the local operation table is updated, and another operation is chosen. Otherwise, the processor writes its unique processor number in the shared operation table. Once every operation has been performed, local copies of the opera-
Fig. 22. Parallel constrained evolution program.

Fig. 23. Fetch operation example. Circled numbers denote local chromosomes. Abbreviation (genetic operation to perform) in brackets denotes initial value. Solid arrows denote successful test and write operations. Dotted arrows denote unsuccessful test and write operations on the shared operation table.

Fig. 24. Time diagram for a generation. $T_s =$ sequential fraction (global selection for mating), $T_{op} =$ broadcast of operation table, $T_{seq} =$ sequential genetic operation, $T_{xp} =$ parallel genetic operation, $T_{fp} =$ fetch an operation from master, $T_{re} =$ fetch remote parents, $T_{we} =$ write evaluation values to master, $T_{sd} =$ waiting for synchronization, $T_p =$ parallel execution of genetic operators.

tion table reflect which processor has generated the new chromosomes, allowing the proper update of the localization table (line 13) for the next generation, discarding local copies of outdated chromosomes.

Fig. 23 illustrates an example of operation fetching. Processor 1 (P_1) selects, in the first place, the crossover operation (XV) that will replace chromosome number 3 (field index) because both parents (chromosomes 3 and 8) are in its local memory. P_1 successfully tests and writes its processor number in the shared operation table. P_2 behaves similarly with respect to operation 2. Once P_1 has finished the crossover operation, it proceeds to select operation 1, as it owns one of the involved parents, writing its number in the shared operation table. P_2 also tries to fetch operation 1, but it finds that the operation has been already selected by processor 1, so P_2 updates its local operation table, and proceeds to select a new operation.

Fig. 24 shows the time diagram for a generation. There is a sequential time fraction due to the generation (T_s) and broadcasting (T_{op}) of the operation table. The time to perform a crossover in parallel (T_{xp}) is the sequential time (T_{xs}), increased by the time to select an operation (T_{fo}), the time to
fetch the parents (T_{fp}) only if necessary), and the time to write the evaluation values in master’s memory ($T_{w}C$). The policy to select the next genetic operator to apply favors choosing operations among local chromosomes; therefore, it is expected to frequently avoid the overhead due to T_{fp}. The dynamic self-guided scheduling of the algorithm balances work load, minimizing idle time T_{id}, introduced by the necessary synchronization between generations.

Linear speedups will be obtained if the communication overhead—$T_{comm}=T_{w}C+T_{dp}$, and T_{comm}—is much smaller than the genetic operation granularity (T_{gen}), and when the number of genetic operations per generation is much greater than the number of processors. In this situation, T_{id} and T_{s} are much smaller than T_{p}.

V. EXPERIMENTAL RESULTS

This section presents the empirical results obtained with our system PCSOS (parallel constrained stochastic optimization system) [40], a constraint programming environment that implements the presented work. Section V-A presents results obtained for the valued n-queens problem in order to discuss the sequential behavior of the system. This first part of the experiments were carried out on a Pentium 200 MHz under Linux.

Section V-B reports the evaluation of the parallel version of PCSOS using a complex constrained optimization problem arising in hardware design, the channel-routing problem. Experiments have been carried out on a CRAY T3E, a distributed memory multiprocessor. Processing elements are connected by a bidirectional 3-D torus network achieving communication rates of 480 Mbytes/s. Parallel programming capabilities are extended through the Cray Shared Memory Library, which allows fast asynchronous read/write access to remote processors’ memory.

A. The Valued n-Queens Problem

In this subsection, we compare the sequential performance of the presented approach versus a depth-first branch and bound (B&B) algorithm, the usual optimization method used by constraint programming languages [17]. We report the results obtained for four different sizes of the board: 16, 32, 48, and 64. In each board, the value assigned to each of the $n \times n$ locations is a randomly generated integer between 0 and 31. Recall that the objective function is defined as the sum of the values of the board locations occupied by queens.

Table II shows, for each board size, the value of the best solution found versus different elapsed CPU times for the valued n-queens problem; first column indicates the size of the board; second column corresponds to the CPU elapsed time in seconds; third column shows the results obtained with the branch-and-bound algorithm; last two columns, labeled with E.P. and Dev., resp., show the average and standard deviation of the results obtained with our approach for ten runs.

B. The Channel-Routing Problem

PCSOS parallel performance has been evaluated using a set of typical constrained optimization problems that is suitable to be modeled with constraints over finite domains. In this subsection, we report the performance of the system for a VLSI design problem, the channel-routing problem.

1) Benchmark Description: The channel-routing problem [41] is a particular kind of interconnection routing problem, which is one of the major tasks in the physical design of very large-scale integration (VLSI) circuits. The routing area is restricted to a rectangular channel. A channel consists of two parallel horizontal rows with numbered pins. Pins that belong to the same net are connected together subject to a set of routing constraints. The channel-routing problem is to find routing paths for a given set of nets in a given channel such that no segments overlap each other, and the routing area and the total length of routing paths are minimized. There are different approaches to the problem that impose different restrictions on the channel and routing paths. In this paper, we consider the dogleg-free multilayer channel-routing problem [42], which imposes the following three restrictions.

- The routing area in a channel is divided into several pairs of layers, one called a horizontal layer, and the other a vertical layer. There is a fixed number of tracks in each horizontal layer.
- The routing path for every net consists of only one horizontal segment which is parallel to the two rows of the channel, and several vertical segments which are perpendicular to the two rows. Horizontal segments are placed only in horizontal layers, and vertical segments are placed
only in vertical layers. The ends of segments in a routing path are connected through via holes.

- No routing path can stretch over more than one pair of layers. Thus, for each net, we only need to determine the horizontal layer and the track for the horizontal segment. The positions for the vertical segments are determined directly after the horizontal segment is fixed.

The channel-routing problem has been studied extensively in the VLSI design community. LaPaugh [41] proved that the problem is NP complete. Many algorithms were initially proposed for the problem [43], [44], most of them graph based. More recently, neural network [45], simulated annealing [46], genetic algorithms [47], and constraint logic programming [42] have been proposed.

The above formulation can be stated as a constrained optimization problem over finite domains [42]. Each net is to be assigned a pair layer/track where the horizontal segment is to be placed. Let \(L \) be the number of layers, and let \(T \) be the number of tracks in each layer. Each net is associated a domain variable \(\nu \) whose initial domain ranges from 0 to \((L \times T) - 1\), indicating the global position of the track where the horizontal segment is to be placed. The layer is \(\nu \) \text{div} \(T \), where \text{div} stands for integer division, and the track number within the layer is \(\nu \) \text{mod} \(T \), where \text{mod} stands for the remainder operation.

Given this problem representation, the set of domain variables \(\mathcal{V} \) must satisfy the following two sets of constraints.

- **Horizontal constraints**, to avoid overlapping of horizontal segments. These constraints are straightforward to model: for each pair of nets \(n_i \) and \(n_j \), if the rightmost terminal of \(n_i \) is equal or greater than the leftmost terminal of \(n_j \), nets \(n_i \) and \(n_j \) cannot be assigned the same global track, that is, \(\nu_i \neq \nu_j \).

- **Vertical constraints**, to avoid overlapping vertical segments. Modeling vertical constraints requires a conditional precedence relation of tracks: for each terminal \(i \), let \(\text{net}_\text{top} \) be the net where top terminal \(i \) belongs to, and let \(\text{net}_\text{bot} \) be the net where bottom terminal \(i \) belongs to. If both nets are placed in the same layer, the track assigned to \(\text{net}_\text{top} \) must be greater than the track assigned to \(\text{net}_\text{bot} \).

The benchmark suite given in [43] is extensively used in the VLSI design community. A representative component of the suite is Deutch’s difficult problem. The problem is to route a set of 72 nets on a channel where there are 174 terminals on each row. There are 117 vertical constraints and 846 horizontal constraints. The objective function to be minimized is the total length of the routing path, that is, the sum of the lengths of each routing path, for a given number of tracks per layer.

2) Performance of Sequential Execution: The channel-routing problem has been tested for 2 layers/11 tracks, 3 layers/7 tracks, and 4 layers/5 tracks. For each number of layers/tracks, five different settings of the parameters (population size, number of generations, and ratio of population replaced with offsprings) were tried. In all settings, the \textit{mutation rate} was set to 0.1, \(w_{fj} \) to 0.5, \(w_{feo} \) to 0, and \textit{feasibility} increases linearly from 0.4 to 0.8. All five settings yield the same number of crossovers. For each setting, the program was run ten times with a different initial random seed on the CRAY T3E, making use of just one processor. Fig. 25 shows the improvement of the solution quality (length of the routing path) versus the number of crossovers for the 4 layer/5 track version.

Setting (e) shows the worst behavior. It seems that the large population of this setting leads to replications and to a slow evolution. Setting (b) is also slow to improve the quality of the solutions due to the low percentage of crossover. (c) is the set-
ting showing the best performance. The population size is large enough to have a wide variety of schematas, and every individual in the population is replaced every generation. Fig. 26 shows the best solutions found for 4 layers/5 tracks.

3) Performance of Parallel Execution: We have investigated the impact of the number of processors used by PCSOS on the time to reach solutions and on their quality, that is, the system speedup. The speedup of a parallel system for a given program is defined as the ratio of the parallel execution time and the sequential time.

The speedup obtained with PCSOS is almost linear in all cases. Fig. 27 shows the speedup obtained for five different parameter settings, all of them leading to the same number of genetic operations. Each reported result is the average of ten executions with a different random seed. Since the speedup obtained is linear, we can conclude that the times due to communication overhead (T_{for}, T_{fp}, and T_{wr}), described in Fig. 24, are negligible in comparison with the time to perform a crossover T_{xov}. A lower number of crossovers per generation (small population and/or low crossover ratio) implies a higher sequential fraction and a higher idle time, thus reducing speedup. As expected, the settings scaling better, (a), (c), and (e) are those with both a higher population size and the ratio of population replaced.

A particular issue of the model affecting the speedup—the ratio of chromosomes fetched from a remote processor—has also been studied. Fig. 28 illustrates the efficiency of the policy for selecting genetic operations, displaying the percentage of chromosomes that had to be fetched from a remote processor versus the number of processors. Solid lines correspond to the self-guided scheduling using the minimization rules described in Section IV. Dotted lines correspond to selecting the first pending genetic operation. Minimization rules divide by two the percentage of chromosomes to be fetched from a remote processor.

We have also investigated the relation between the quality of the solution found and the time required to find it for different numbers of processors. Fig. 29 shows the quality of the solution found versus the number of processors for a fixed amount of time. Measurements have been taken with parameter setting (a) of Fig. 27. For a fixed elapsed time, the solution quality increases with the number of processors, although with the characteristic oscillation of stochastic computations. Alternatively, the time to obtain a certain solution quality decreases with the number of processors.
VI. CONCLUSION

We have presented a method for solving constrained optimization problems over finite domains based on the integration of constraint-solving techniques and evolution programs. Constraint programming languages allow a declarative problem statement, while evolution programs are a useful optimization method for large discrete search spaces. The input to the evolution program is a constraint graph generated by a program written in a constraint programming language; thus, the method is problem independent, as long as the problem is suited to be modeled in a constraint programming language over finite domains. chromosomes are arc-consistent subspaces of the search space of the problem, and genetic operators generate new arc-consistent subspaces, based on an arc-consistency algorithm. Arc consistency guarantees that singleton arc-consistent sub-
spaces are solutions to the constrained problem. A dual evaluation of chromosomes is performed: besides the usual fitness value, a feasibility value, computed from the size of the AC sub-space, indicates how far a chromosome is from being a solution. Selection mechanisms exploit the advantages of this dual evaluation.

The hybridization model is appropriate for a global parallelization scheme due to the coarse grain of genetic operations. We have designed a global parallelization model based on a virtual centralized population, physically distributed among the processors in order to reduce communications. A target architecture is any distributed memory multiprocessor, such as the CRAY T3E, on which our system PCSOS has been developed. A complex constrained optimization problem over finite integer domains, coming from the field of hardware design, has been used to test the efficiency of the system. Linear speedups have been obtained when increasing the number of processors, showing that communication overhead is negligible versus the execution time of genetic operators.

ACKNOWLEDGMENT

Useful comments from anonymous referees are greatly acknowledged. The authors also thank the Editor, D. B. Fogel, for the careful reading and comments that improved the presentation of this paper.

REFERENCES

Alvaro Ruiz-Andino received the B.S. degree in computer science in 1992 from the University Complutense of Madrid.

He is currently a Researcher and Associate Professor in the Computer Science Department, University Complutense of Madrid. His main research interests are logic and constraint programming, evolutionary programming, and parallel computer architectures.

Lourdes Araujo received the B.S. degree in physics and the Ph.D. degree in computer science in 1987 and 1994, respectively, both from the Complutense University of Madrid.

After spending three years working on the design and fabrication of communication networks, she joined the Complutense University in 1990, where she is currently an Associate Professor of Computer Science. Her doctoral research focused on a parallel implementation of Prolog. Her research interests include logic and constraint programming, as well as parallel computer architectures and evolutionary programming.

Fernando Sáenz received the B.S. degree in physics in 1988, and the Ph.D. degree in physics in 1995, both from the University Complutense of Madrid.

Since 1991, he has been working in the Computer Science Department at Faculty of Physics. He is currently an Associate Professor attached to the Department of Computer Architecture and Automatic Control. He was an FPI (Research Training) fellow at the University Complutense of Madrid, and at the Institut für Informatik at Aachen, Germany. He has worked in both logic programming and functional-logic programming parallelism. His current research interests include parallel computer architectures, and parallelism in constraint and optimization programming languages.

Dr. Sáenz is a member of VHDL International and GUVE (VHDL Spanish User Group).

José Ruz received the B.S. degree in physics from the Complutense University of Madrid in 1974, and the Ph.D. degree in computer science in 1980 from the same University.

He is currently a Professor in the Department of Computer Architecture and Automatic Control at the Complutense University of Madrid, Spain. In the past, he has worked on concurrent database machines and parallel execution of logic and functional programming languages. His current research interests include parallel computer architectures, and all aspects of parallel execution of constraint and optimization programming languages.

Dr. Ruz is a member of the IEEE Computer Society.