
Narrowing for Non-Determinism with Call-Time
Choice Semantics?

F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid, Spain

fraguas@sip.ucm.es, jrodrigu@fdi.ucm.es, jaime@sip.ucm.es

Abstract. In a recent work we have proposed let-rewriting, a simple
one-step relation close to ordinary term rewriting but able, via local
bindings, to express sharing of computed values. In this way, let-rewriting
reflects the call-time choice semantics for non-determinism adopted by
modern functional logic languages, where programs are rewrite systems
possibly non-confluent and non-terminating. Equivalence with CRWL, a
well known semantic framework for functional logic programming, was
also proved. In this paper we extend that work providing a notion of let-
narrowing which is adequate for call-time choice as proved by a lifting
lemma for let-rewriting similar to Hullot’s lifting lemma for ordinary
rewriting and narrowing.

1 Introduction

Programs in functional-logic languages (see [7] for a recent survey) are construc-
tor based term rewriting systems possibly non-confluent and non-terminating,
as happens in the following example:

coin→ 0 repeat(X) → X :repeat(X)
coin→ 1 heads(X :Y :Y s) → (X,Y)

Here coin is a 0-ary non-deterministic function that can be evaluated to 0 or
1, and repeat introduces non-termination on the system. The presence of non-
determinism enforces to make a decision about call-time (also called singular)
or run-time choice (or plural) semantics [10, 15]. Consider for instance the ex-
pression heads(repeat(coin)):

• run-time choice gives (0, 0), (0, 1), (1, 0) and (1, 1) as possible results. Rewrit-
ing can be used for it as in the following derivation:

heads(repeat(coin))→ heads(coin : coin : . . .)→
(coin, coin)→ (0, coin)→ (0, 1)

• under call-time choice we obtain only the values (0, 0) and (1, 1) (coin is
evaluated only once and this value must be shared).

? This work has been partially supported by the Spanish projects Merit-Forms-UCM
(TIN2005-09207-C03-03) and Promesas-CAM (S-0505/TIC/0407).

Modern functional-logic languages like Curry [8] or Toy [12] adopt call-time
choice, as it seems more appropriate in practice. Although the classical theory
of TRS (term rewriting systems) is the basis of some influential papers in the
field, specially those related to needed narrowing [2], it cannot really serve as
technical foundation if call-time choice is taken into account, because ordinary
rewriting corresponds to run-time choice. This was a main motivation for the
CRWL1 framework [5, 6], that is considered an adequate semantic foundation
(see [7]) for the paradigm.

From an intuitive point of view there must be a strong connection between
CRWL and classical rewriting, but this has not received much attention in the
past. Recently, in [11] we have started to investigate such a connection, by means
of let-rewriting, that enhances ordinary rewriting with explicit let-bindings to
express sharing, in a similar way to what was done in [13] for the λ-calculus.
A discussion of the reasons for having proposed let-rewriting instead of using
other existing formalisms like term graph-rewriting [14, 3] or specific operational
semantics for FLP [1] can be found in [11].

In this paper we extend let-rewriting to a notion of let-narrowing. Our main
result will be a lifting lemma for let-narrowing in the style of Hullot’s one for
classical narrowing [9].

We do not pretend that let-narrowing as will be presented here can replace
advantageously existing versions of narrowing like needed narrowing [2] or nat-
ural narrowing [4], which are well established as appropriate operational pro-
cedures for functional logic programs. Let-narrowing is more a complementary
proposal: needed or natural narrowing express refined strategies with desirable
optimality properties to be preserved in practice, but they need to be patched
in implementations in order to achieve sharing (otherwise they are unsound for
call-time choice). Let-rewriting and let-narrowing intend to be the theoretical
basis of that patch, so that sharing needs not be left anymore out of the scope
of technical works dealing with rewriting-based operational aspects of functional
logic languages. Things are then well prepared for recasting in the future the
needed or natural strategies to the framework of let-rewriting and narrowing.

The rest of the paper is organized as follows. Section 2 contains a short pre-
sentation of let-rewriting. Section 3 tackles our main goal, extending let-rewriting
to let-narrowing and proving its soundness and completeness. Finally, Section 4
contains some conclusions and future lines of research. Omitted proofs can be
found at gpd.sip.ucm.es/fraguas/papers/longWLP07.pdf.

2 Preliminaries

2.1 Constructor-based term rewrite systems

We consider a first order signature Σ = CS∪FS, where CS and FS are two dis-
joint set of constructor and defined function symbols respectively, all them with
associated arity. We write CSn (FSn resp.) for the set of constructor (function)

1 CRWL stands for C onstructor-based ReW riting Logic.

symbols of arity n. We write c, d, . . . for constructors, f, g, . . . for functions and
X,Y, . . . for variables of a numerable set V. The notation o stands for tuples of
any kind of syntactic objects.

The set Exp of expressions is defined as Exp 3 e ::= X | h(e1, . . . , en), where
X ∈ V, h ∈ CSn ∪ FSn and e1, . . . , en ∈ Exp. The set CTerm of constructed
terms (or c-terms) is defined like Exp, but with h restricted to CSn (so CTerm ⊆
Exp). The intended meaning is that Exp stands for evaluable expressions, i.e.,
expressions that can contain function symbols, while CTerm stands for data
terms representing values. We will write e, e′, . . . for expressions and t, s, . . . for
c-terms. The set of variables occurring in an expression e will be denoted as
var(e).

We will frequently use one-hole contexts, defined as Cntxt 3 C ::= [] |
h(e1, . . . , C, . . . , en), with h ∈ CSn ∪ FSn. The application of a context C
to an expression e, written by C[e], is defined inductively as [][e] = e and
h(e1, . . . , C, . . . , en)[e] = h(e1, . . . , C[e], . . . , en).

The set Subst of substitutions consists of mappings θ : V −→ Exp, which
extend naturally to θ : Exp −→ Exp. We write eθ for the application of θ
to e, and θθ′ for the composition, defined by X(θθ′) = (Xθ)θ′. The domain
and range of θ are defined as dom(θ) = {X ∈ V | Xθ 6= X} and ran(θ) =⋃
X∈dom(θ) var(Xθ). Given W ⊆ V we write by θ|W the restriction of θ to W ,

and θ|\D is a shortcut for θ|(V\D). We will sometimes write θ = σ[W] instead
of θ|W = σ|W . In most cases we will use c-substitutions θ ∈ CSubst, verifying
that Xθ ∈ CTerm for all X ∈ dom(θ). We say that e subsumes e′, and write
e � e′, if eθ = e′ for some θ; we write θ � θ′ if Xθ � Xθ′ for all variables X and
θ � θ′[W] if Xθ � Xθ′ for all X ∈W .

A constructor-based term rewriting system P (CTRS, also called program
along this paper) is a set of c-rewrite rules of the form f(t)→ e where f ∈ FSn,
e ∈ Exp and t is a linear n-tuple of c-terms, where linearity means that variables
occur only once in t. Notice that we allow e to contain extra variables, i.e.,
variables not occurring in t. Given a program P, its associated rewrite relation
→P is defined as: C[lθ]→P C[rθ] for any context C, rule l→ r ∈ P and θ ∈ Subst.
Notice that in the definition of→P it is allowed for θ to instantiate extra variables
to any expression. We write ∗→P for the reflexive and transitive closure of the
relation →P . In the following, we will usually omit the reference to P.

2.2 Rewriting with local bindings

In [11] we have proposed let-rewriting as an alternative rewriting relation for
CTRS that uses let-bindings to get an explicit formulation of sharing, i.e., call-
time choice semantics. Although the primary goal for this relation was to estab-
lish a closer relationship between classical rewriting and the CRWL-framework
of [6], let-rewriting is interesting in its own as a simple one-step reduction
mechanism for call-time choice. This relation manipulates let-expressions, de-
fined as: LExp 3 e ::= X | h(e1, . . . , en) | let X = e1 in e2, where X ∈ V,
h ∈ CS ∪ FS, and e1, . . . , en ∈ LExp. The notation let X = a in e abbreviates

let X1 = a1 in . . . in let Xn = an in e. The notion of context is also extended
to the new syntax: C ::= [] | let X = C in e | let X = e in C | h(. . . , C, . . .).

Free and bound (or produced) variables of e ∈ LExp are defined as:

FV (X) = {X}; FV (h(e)) =
⋃
ei∈e FV (ei);

FV (let X = e1 in e2) = FV (e1) ∪ (FV (e2)\{X});
BV (X) = ∅; BV (h(e)) =

⋃
ei∈eBV (ei);

BV (let X = e1 in e2) = BV (e1) ∪BV (e2) ∪ {X}

We assume a variable convention according to which the same variable symbol
does not occur free and bound within an expression. Moreover, to keep simple
the management of substitutions, we assume that whenever θ is applied to an
expression e ∈ LExp, the necessary renamings are done in e to ensure that
BV (e) ∩ (dom(θ) ∪ ran(θ)) = ∅. With all these conditions the rules defining
application of substitutions are simple while avoiding variable capture:

Xθ = θ(X); h(e)θ = h(eθ); (let X = e1 in e2)θ = (let X = e1θ in e2θ)

The let-rewriting relation →l is shown in Figure 1. The rule (Fapp) per-
forms a rewriting step in a proper sense, using a rule of the program. Note that
only c-substitutions are allowed, to avoid copying of unevaluated expressions
which would destroy sharing and call-time choice. (Contx) allows to select any
subexpression as a redex for the derivation. The rest of the rules are syntactic
manipulations of let-expressions. In particular (LetIn) transforms standard ex-
pressions by introducing a let-binding to express sharing. On the other hand,
(Bind) removes a let-construction for a variable when its binding expression
has been evaluated. (Elim) allows to remove a binding when the variable does
not appear in the body of the construction, which means that the corresponding
value is not needed for evaluation. This rule is needed because the expected nor-
mal forms are c-terms not containing lets. (Flat) is needed for flattening nested
lets, otherwise some reductions could become wrongly blocked or forced to di-
verge (see [11]). Figure 2 contains a let-rewriting derivation for the expression
heads(repeat(coin)) using the program example of Sect. 1.

3 Let-narrowing

It is well known that in functional logic computations there are situations where
rewriting is not enough, and must be lifted to some kind of narrowing, because
the expression being reduced contains variables for which different bindings
might produce different evaluation results. This might happen either because
variables are already present in the initial expression to reduce, or due to the
presence of extra variables in the program rules. In the latter case let-rewriting
certainly works, but not in an effective way, since the parameter passing substi-
tution ‘magically’ guesses the right values for those extra variables.

The standard definition of narrowing as a lifting of rewriting in ordinary
TRS says (adapted to the notation of contexts): C[f(t)] θ Cθ[rθ], if θ is a mgu

(Contx) C[e]→l C[e′], if e→l e
′, C ∈ Cntxt

(LetIn) h(. . . , e, . . .)→l let X = e in h(. . . , X, . . .)
if h ∈ CS ∪ FS, e takes one of the forms e ≡ f(e′) with f ∈ FSn or
e ≡ let Y = e′ in e′′, and X is a fresh variable

(Flat) let X = (let Y = e1 in e2) in e3 →l let Y = e1 in (let X = e2 in e3)
assuming that Y does not appear free in e3

(Bind) let X = t in e →l e[X/t], if t ∈ CTerm

(Elim) let X = e1 in e2 →l e2, if X does not appear free in e2

(Fapp) f(t1θ, . . . , tnθ) →l eθ, if f(t1, . . . , tn)→ e ∈ P, θ ∈ CSubst

Fig. 1. Rules of let-rewriting

heads(repeat(coin))→l (LetIn)
let X = repeat(coin) in heads(X)→l (LetIn)
let X = (let Y = coin in repeat(Y)) in heads(X)→l (Flat)
let Y = coin in let X = repeat(Y) in heads(X)→l (Fapp)
let Y = 0 in let X = repeat(Y) in heads(X)→l (Bind)
let X = repeat(0) in heads(X)→l (Fapp)
let X = 0 : repeat(0) in heads(X)→l (LetIn)
let X = (let Z = repeat(0) in 0 : Z) in heads(X)→l (Flat)
let Z = repeat(0) in let X = 0 : Z in heads(X)→l (Fapp)
let Z = 0 : repeat(0) in let X = 0 : Z in heads(X)→l (LetIn,Flat)
let U = repeat(0) in let Z = 0 : U in let X = 0 : Z in heads(X)→l (Bind),2
let U = repeat(0) in heads(0 : 0 : U)→l (Fapp)
let U = repeat(0) in (0, 0)→l (Elim)
(0, 0)

Fig. 2. A let-rewriting derivation

of f(t) and f(s), where f(s) → r is a fresh variant of a rule of the TRS. We
note that frequently the narrowing step is not decorated with the whole unifier
θ, but with its projection over the variables in the narrowed expression. The
condition that the binding substitution θ is a mgu can be relaxed to accomplish
with certain narrowing strategies like needed narrowing [2], which use unifiers
but not necessarily most general ones.

This definition of narrowing cannot be directly translated as it is to the case
of let-rewriting, for two important reasons. The first is not new: because of call-
time choice, binding substitutions must be c-substitutions, as already happened
in let-rewriting. The second is that produced variables (those introduced by
(LetIn) and bound in a let construction) should not be narrowed, because their
role is to express intermediate values that are evaluated at most once and shared,
according to call-time choice. Therefore the value of produced variables should be

better obtained by evaluation of their binding expressions, and not by bindings
coming from narrowing steps. Furthermore, to narrow on produced variables
destroys the structure of let-expressions.

The following example illustrates some of the points above.
Example. Consider the following program over natural numbers (represented

with constructors 0 and s):

0 + Y → Y even(X)→ if (Y +Y == X) then true
s(X) + Y → s(X + Y) if true then Y → Y
0 == 0→ true s(X) == s(Y)→ X == Y
0 == s(Y)→ false s(X) == 0→ false
coin→ 0 coin→ s(0)

Notice that the rule for even has an extra variable Y . With this program, the
evaluation of even(coin) by let-rewriting could start as follows:

even(coin)→l let X = coin in even(X)
→l let X = coin in if Y + Y == X then true
→∗l let X = coin in let U = Y + Y in let V = (U == X) in if V then true
→∗l let U = Y + Y in let V = (U == 0) in if V then true

Now, all function applications involve variables and therefore narrowing is re-
quired to continue the evaluation. But notice that if we perform classical nar-
rowing in (for instance) if V then true, then the binding {V/true} will be created
thus obtaining let U=Y+Y in let true=(U==0) in if true then true which is not
a legal expression of LExp (because of the binding let true =(U==0)). Some-
thing similar would happen if narrowing is done in U == 0. What is harmless is
to perform narrowing in Y + Y, giving the binding {Y/0} and the (local to this
expression) result 0. Put in its context, we obtain now:

let U = 0 in let V = (U == 0) in if V then true
→l let V = (0 == 0) in if V then true
→l let V = true in if V then true
→l if true then true→l true

This example shows that let-narrowing must protect produced variables against
bindings. To express this we could add to the narrowing relation a parame-
ter containing the set of protected variables. Instead of that, we have found
more convenient to consider a distinguished set PV ar ⊂ V of produced vari-
ables Xp, Yp, . . ., to be used according to the following criteria: variables bound
in a let expression must be of PV ar (therefore let expressions have the form
let Xp=e in e’); the parameter passing c-substitution θ in the rule (Fapp) of
let-rewriting replaces extra variables in the rule by c-terms not having variables
of PV ar; and rewriting (or narrowing) sequences start with initial expressions
e not having free occurrences of produced variables (i.e., FV (e) ∩ PV ar = ∅).
Furthermore we will need the following notion:

Definition 1 (Admissible substitutions). A substitution θ is called admis-
sible iff θ ∈ CSubst and (dom(θ) ∪ ran(θ)) ∩ PVar = ∅.

The one-step let-narrowing relation e l
θ e
′ (assuming a given program P) is

defined in Fig. 3. The rules Elim, Bind, Flat, LetIn of let-rewriting are kept un-
touched except for the decoration with the empty substitution ε. The important
rules are (Contx) and (Narr). In (Narr), θ ∈ CSubst ensures that call-time
choice is respected; notice also that produced variables are non bound in the
narrowing step (by (ii)), and that bindings for extra variables and for variables
in the expression being narrowed cannot contain produced variables (by (iii)).
Notice, however, that if θ is chosen to be a mgu (which is always possible) then
the condition (iii) is always fulfilled. Notice also that not the whole θ is recorded
in the narrowing step, but only its projection over the relevant variables, which
guarantees that the annotated substitution is an admissible one. In the case of
(Contx) notice that θ is either ε or is obtained by (Narr) applied to the inner
e. By the conditions imposed over unifiers in (Narr), θ does not bound any
produced variable, including those in let expressions surrounding e, which guar-
antees that any piece of the form let Xp = r in . . . occurring in C becomes let
Xp = rθ in . . . in Cθ after the narrowing step.

(Contx) C[e] l
θ Cθ[e′] if e l

θ e
′, C ∈ Cntxt

(Narr) f(t) l
θ|F V (f(t))

rθ, for any fresh variant (f(p)→ r) ∈ P and θ ∈ CSubst
such that:

i) f(t)θ ≡ f(p)θ.
ii) dom(θ) ∩ PV ar = ∅.

iii) ran(θ|\FV (f(p))) ∩ PV ar = ∅.
(X) e l

ε e
′ if e→l e

′ using X∈ {Elim,Bind, F lat, LetIn}.

Fig. 3. Rules of let-narrowing

The one-step relation l
θ is extended in the natural way to the multiple-steps

narrowing relation l∗ , which is defined as the least reflexive relation verifying:

e l
θ1 e1

l
θ2 . . . en

l
θn
e′ ⇒ e l∗

θ1...θn
e′

We write e ln

θ e′ for a n-steps narrowing sequence.

3.1 Soundness and completeness of let-narrowing

In this section we show the adequacy of let-narrowing wrt let-rewriting. We
assume a fixed program P. We start by proving soundness, as stated in the
following result:

Theorem 1 (Soundness of let-narrowing). For any e, e′ ∈ LExp, e l∗

θ e′

implies eθ →∗l e′.
Completeness is, as usual, more complicated to prove. The key result is

the following generalization to the framework of let-rewriting of Hullot’s lift-
ing lemma [9] for classical rewriting and narrowing, stating that any rewrite

sequence for a particular instance of an expression can be generalized by a nar-
rowing derivation.

Lemma 1 (Lifting lemma for let-rewriting). Let e, e′ ∈ LExp such that
eθ →∗l e′ for an admissible θ, and let W be a set of variables with dom(θ) ∪
FV (e) ⊆ W. Then there exist a let-narrowing derivation e l∗

σ e′′ and an
admissible θ′ such that e′′θ′ = e′ and σθ′ = θ[W]. Besides, the let-narrowing
derivation can be chosen to use mgu’s at each (Narr) step. Graphically:

e e′′

eθ e′

l∗

σ

∗
l

θ θ′

As an immediate corollary we obtain the following completeness result of let-
narrowing for finished let-rewriting derivations:
Theorem 2 (Completeness of let-narrowing).
Let e ∈ LExp, t ∈ CTerm and θ an admissible c-substitution. If eθ →∗l t, then
there exist a let-narrowing derivation e l∗

σ t′ and an admissible θ′ such that
t′θ′ = t and σθ′ = θ[FV (e)].

3.2 Let-narrowing versus narrowing for deterministic systems

The relationship between let-rewriting (→l) and ordinary rewriting (→) is ex-
amined in [11], where →l is proved to be sound wrt →, and complete for the
class of deterministic programs, a notion close but not equivalent to confluence
(see [11] for the technical definition).

The class of deterministic programs is conjectured in [11] to be wider that
that of confluent programs, and it certainly contains all inductively sequential
programs (without extra variables). The following result holds (see [11]):
Theorem 3. Let P be any program, e ∈ Exp, t ∈ CTerm. Then:
(a) e→∗l t implies e→∗ t.
(b) If in addition P is deterministic, then the reverse implication holds.

Joining this with the results of the previous section we can easily establish
some relationships between let-narrowing and ordinary rewriting/narrowing, as
follows (we assume here that all involved substitutions are admissible):

Theorem 4. Let P be any program, e ∈ Exp, θ ∈ CSubst, t ∈ CTerm. Then:
(a) e l∗

θ t implies eθ →∗ t.
(b) If in addition P is deterministic, then:

(b1) If eθ →∗ t, there exist t′ ∈ CTerm, σ, θ′ ∈ CSubst such that e l∗

σ t′,
t′θ′ = t and σθ′ = θ[var(e)] (and therefore t′ � t, σ � θ[var(e)]).

(b2) If e ∗θ t, the same conclusion of (b1) holds.
Part (a) expresses soundness of l wrt rewriting, and part (b) is a com-

pleteness result for l wrt rewriting/narrowing, for the class of deterministic
programs.

4 Conclusions

Our aim in this work was to progress in the effort of filling an existing gap in
the functional logic programming field, where up to recently there was a lack
of a simple and abstract enough one-step reduction mechanism close enough
to ordinary rewriting but at the same time respecting non-strict and call-time
choice semantics for possibly non-confluent and non-terminating constructor-
based rewrite systems (possibly with extra variables), and trying to avoid the
complexity of graph rewriting [14]. These requirements were not met by two well
established branches in the foundations of the field: one is the CRWL approach,
very adequate from the point of view of semantics but operationally based on
somehow complicated narrowing calculi [6, 16] too far from the usual notion of
term rewriting. The other approach focuses on operational aspects in the form of
efficient narrowing strategies like needed narrowing [2] or natural narrowing [4],
based on the classical theory of rewriting, sharing with it the major drawback
that rewriting is an unsound operation for call-time choice semantics of functional
logic programs. There have been other attempts of coping operationally with
call-time choice [1], but relying in too low-level syntax and operational rules.

In a recent work [11] we established a technical bridge between both ap-
proaches (CRWL/classical rewriting) by proposing a notion of rewriting with
sharing by means of local let bindings, in a similar way to what has been done
for sharing and lambda-calculus in [13]. Most importantly, we prove there strong
equivalence results between CRWL and let-rewriting.

Here we continue that work by contributing a notion of let-narrowing (nar-
rowing for sharing) which we prove sound and complete with respect to let-
rewriting. We think that let-narrowing is the simplest proposed notion of narrow-
ing that is close to the usual notions of TRS and at the same time is proved ade-
quate for call-time choice semantics. The main technical insight for let-narrowing
has been the need of protecting produced (locally bound) variables against nar-
rowing over them. We have also proved soundness of let-narrowing wrt ordinary
rewriting and completeness for the wide class of deterministic programs, thus
giving a technical support to the intuitive fact that combining sharing with nar-
rowing does not create new answers when compared to classical narrowing, and
at the same time does not lose answers in case of deterministic systems. As far
as we know these results are new in the narrowing literature.

The natural extension of our work will be to add strategies to let-rewriting
and let-narrowing, an issue that has been left out of this paper but is needed as
foundation of effective implementations. But we think that the clear script we
have followed so far (first presenting a notion of rewriting with respect to which
we have been able to prove correctness and completeness of a a subsequent notion
of narrowing, to which add strategies in future work) is an advantage rather than
a lack of our approach.

References

1. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational seman-
tics for declarative multi-paradigm languages. Journal of Symbolic Computation,
40(1):795–829, 2005.

2. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In Proc. ACM
Symposium on Principles of Programming Languages (POPL’94), pages 268–279.
ACM Press, 1994.

3. R. Echahed and J.-C. Janodet. Admissible graph rewriting and narrowing. In
Proceedings of the Joint International Conference and Symposium on Logic Pro-
gramming, pages 325 – 340, Manchester, June 1998. MIT Press.

4. S. Escobar, J. Meseguer, and P. Thati. Natural narrowing for general term rewriting
systems. In RTA, pages 279–293, 2005.

5. J. C. González-Moreno, T. Hortalá-González, F. López-Fraguas, and M. Rodŕıguez-
Artalejo. A rewriting logic for declarative programming. In Proc. European Sym-
posium on Programming (ESOP’96), pages 156–172. Springer LNCS 1058, 1996.

6. J. C. González-Moreno, T. Hortalá-González, F. López-Fraguas, and M. Rodŕıguez-
Artalejo. An approach to declarative programming based on a rewriting logic.
Journal of Logic Programming, 40(1):47–87, 1999.

7. M. Hanus. Functional logic programming: From theory to Curry. Technical report,
Christian-Albrechts-Universität Kiel, 2005.

8. M. Hanus (ed.). Curry: An integrated functional logic language (version 0.8.2).
Available at http://www.informatik.uni-kiel.de/~curry/report.html, March 2006.

9. J. Hullot. Canonical forms and unification. In Proc. 5th Conference on Automated
Deduction, pages 318–334. Springer LNCS 87, 1980.

10. H. Hussmann. Non-Determinism in Algebraic Specifications and Algebraic Pro-
grams. Birkhäuser Verlag, 1993.

11. F. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández. A simple
rewrite notion for call-time choice semantics. In Proc. Principles and Practice of
Declarative Programming, ACM Press, pages 197–208, 2007.

12. F. López-Fraguas and J. Sánchez-Hernández. T OY: A multiparadigm declarative
system. In Proc. Rewriting Techniques and Applications (RTA’99), pages 244–247.
Springer LNCS 1631, 1999.

13. J. Maraist, M. Odersky, and P. Wadler. The call-by-need lambda calculus. J.
Funct. Program., 8(3):275–317, 1998.

14. D. Plump. Essentials of term graph rewriting. Electr. Notes Theor. Comput. Sci.,
51, 2001.

15. H. Søndergaard and P. Sestoft. Non-determinism in functional languages. The
Computer Journal, 35(5):514–523, 1992.

16. R. d. Vado-Vı́rseda. A demand-driven narrowing calculus with overlapping def-
initional trees. In Proc. ACM SIGPLAN Conf. on Principles and Practice of
Declarative Programming (PPDP’03), pages 213–227. ACM Press, 2003.

