
Proving Failure in Functional Logic Programs?

F. J. López-Fraguas and J. Sánchez-Hernández

Dep. Sistemas Informáticos y Programación, Univ. Complutense de Madrid
{fraguas,jaime}@sip.ucm.es

Abstract. How to extract negative information from programs is an
important issue in logic programming. Here we address the problem for
functional logic programs, from a proof-theoretic perspective. The start-
ing point of our work is CRWL (Constructor based ReWriting Logic),
a well established theoretical framework for functional logic program-
ming, whose fundamental notion is that of non-strict non-deterministic
function. We present a proof calculus, CRWLF, which is able to deduce
negative information from CRWL-programs. In particular, CRWLF is
able to prove ‘finite’ failure of reduction within CRWL.

1 Introduction

We address in this paper the problem of extracting negative information from
functional logic programs. The question of negation is a main topic of research in
the logic programming field, and the most common approach is negation as fail-
ure, as an easy effective approximation to the CWA (closed world assumption),
which is a simple, but uncomputable, way of deducing negative information from
positive programs (see e.g. [1] for a survey on negation in logic programming).

On the other hand, functional logic programming (FLP for short) is a power-
ful programming paradigm trying to combine the nicest properties of functional
and logic programming (see [4] for a now ‘classical’ survey on FLP). FLP sub-
sumes pure logic programming: predicates can be defined as functions returning
the value ‘true’, for which definite clauses can be written as conditional rewrite
rules. In some simple cases it is enough, to handle negation, just to define pred-
icates as two-valued boolean functions returning the values ‘true’ or ‘false’. But
negation as failure is far more expressive, and it is then of clear interest to inves-
tigate a similar notion for the case of FLP. Failure in logic programs, when seen
as functional logic programs, corresponds to failure of reduction to ‘true’. This
generalizes to a natural notion of failure in FLP, which is ‘failure of reduction’.

As technical setting for our work we have chosen CRWL [3], a well established
theoretical framework for FLP. The fundamental notion in CRWL is that of non-
strict non-deterministic function, for which CRWL provides a firm logical basis,
as mentioned for instance in [5]. Instead of equational logic, CRWL considers
a Constructor based ReWriting Logic, presented by means of a proof calculus,

? The authors have been partially supported by the Spanish CICYT (project TIC
98-0445-C03-02 ‘TREND’)



which determines what statements can be deduced from a given program. In
addition to the proof-theoretic semantics, [3] develop a model theoretic semantics
for CRWL, with existence of distinguished free term models for programs, and
a sound and complete lazy narrowing calculus as operational semantics. The
CRWL framework (with many extensions related to types, HO and constraints)
has been implemented in the system T OY [8].

Here we are interested in extending the proof-theoretic side of CRWL to cope
with failure. More concretely, we look for a proof calculus, which will be called
CRWLF (‘CRWL with failure’), which is able to prove failure of reduction in
CRWL. Since reduction in CRWL is expressed by proving certain statements,
our calculus will provide proofs of unprovability within CRWL. As for the case of
CWA, unprovability is not computable, which means that our calculus can only
give an approximation, corresponding to cases which can be intuitively described
as ‘finite failures’.

There are very few works about negation in FLP. In [10] the work of Stuckey
about constructive negation [12] is adapted to the case of FLP with strict func-
tions and innermost narrowing as operational mechanism. In [11] a similar work
is done for the case of non-strict functions and lazy narrowing. The approach
is very different of the proof-theoretic view of our work. The fact that we also
consider non-deterministic functions makes a significant difference.

The proof-theoretic approach, although not very common, has been followed
sometimes in the logic programming field, as in [6], which develops for logic
programs (with negation) a framework which resembles, in a very general sense,
CRWL: a program determine a deductive system for which deducibility, validity
in a class of models, validity in a distinguished model and derivability by an
operational calculus are all equivalent. Our work attempts to be the first step of
what could be a similar programme for FLP extended with the use of failure as
a programming construct.

The rest of the paper is organized as follows. In Section 2 we give the essen-
tials of CRWL which are needed for our work. Section 3 presents the CRWLF -
calculus, preceded by some illustrative examples. Section 4 contains the results
about CRWLF . Most of the results are technically involved, and their proofs
have been skipped because of the lack of space (full details can be found in [9]).
Section 5 contains some conclusions.

2 The CRWL Framework

We give here a short summary of CRWL, in its proof-theoretic face. Model
theoretic semantics and lazy narrowing operational semantics are not considered
here. Full details can be found in [3].

2.1 Technical Preliminaries

We assume a signature Σ = DCΣ ∪ FSΣ where DCΣ =
⋃

n∈IN
DCn

Σ is a set
of constructor symbols and FSΣ =

⋃
n∈IN

FSn
Σ is a set of function symbols, all



of them with associated arity and such that DCΣ ∩ FSΣ = ∅. We also assume
a countable set V of variable symbols. We write TermΣ for the set of (total)
terms (we say also expressions) built up with Σ and V in the usual way, and we
distinguish the subset CTermΣ of (total) constructor terms or (total) c-terms,
which only make use of DCΣ and V . The subindex Σ will usually be omitted.
Terms intend to represent possibly reducible expressions, while c-terms represent
data values, not further reducible.

We will need sometimes to use the signature Σ⊥ which is the result of ex-
tending Σ with the new constant (0-arity constructor) ⊥, that plays the role of
the undefined value. Over Σ⊥, we can build up the sets Term⊥ and CTerm⊥ of
(partial) terms and (partial) c-terms respectively. Partial c-terms represent the
result of partially evaluated expressions; thus, they can be seen as approxima-
tions to the value of expressions.

As usual notations we will write X, Y, Z, ... for variables, c, d, ... for construc-
tor symbols, f, g, ... for functions, e, e′, ... for terms and s, t, ... for c-terms.

We will use the sets of substitutions CSubst = {θ : V → CTerm} and
CSubst⊥ = {θ : V → CTerm⊥}. We write eθ for the result of applying θ to e.

Given a set of constructor symbols S we say that the terms t and t′ have an
S-clash if they have different constructor symbols of S at the same position.

2.2 The Proof Calculus for CRWL

A CRWL-program P is a set of conditional rewrite rules of the form:

f(t1, ..., tn)︸ ︷︷ ︸
head

→ e︸︷︷︸
body

⇐ C1, ..., Cn︸ ︷︷ ︸
condition

where f ∈ FSn; (t1, ..., tn) is a linear tuple (each variable in it occurs only once)
with t1, ..., tn ∈ CTerm; e ∈ Term and each Ci is a constraint of the form
e′ ./ e′′ (joinability) or e′ <> e′′ (divergence) where e′, e′′ ∈ Term. The reading
of the rule is: f(t1, ..., tn) reduces to e if the conditions C1, ..., Cn are satisfied.
We write Pf for the set of defining rules of f in P .

From a given program P , the proof calculus for CRWLF can derive three
kinds of statements:

• Reduction or approximation statements: e → t, with e ∈ Term⊥ and t ∈
CTerm⊥. The intended meaning of such statement is that e can be reduced
to t, where reduction may be done by applying rewriting rules of P or by
replacing subterms of e by ⊥. If e → t can be derived, t represents one of
the possible values of the denotation of e.

• Joinability statements: e ./ e′, with e, e′ ∈ Term⊥. The intended meaning
in this case is that e and e′ can be both reduced to some common totally
defined value, that is, we can prove e → t and e′ → t for some t ∈ CTerm.

• Divergence statements: e <> e′, with e, e′ ∈ Term⊥. The intended meaning
now is that e and e′ can be reduced to some (possibly partial) c-terms t and
t′ such that they have a DC-clash.



Table 1. Rules for CRWL-provability

(1)
e → ⊥

(2)
X → X

X ∈ V

(3)
e1 → t1, ..., en → tn

c(e1, ..., en) → c(t1, ..., tn)
c ∈ DCn, ti ∈ CTerm⊥

(4)
e1 → s1, ..., en → sn C e → t

f(e1, ..., en) → t
if t 6≡ ⊥, R ∈ Pf

(f(s1, ..., sn) → e ⇐ C) ∈ [R]⊥

(5)
e → t e′ → t

e ./ e′
if t ∈ CTerm

(6)
e → t e′ → t′

e <> e′
if t, t′ ∈ CTerm⊥ and have a DC−clash

It must be mentioned that the CRWL framework as presented in [3] does not
consider divergence conditions. They have been incorporated to CRWL in [7] as
a useful and expressive resource for programming.

When using function rules to derive statements, we will need to use what
are called c-instances of such rules: the set of c-instances of a program rule R
is defined as [R]⊥ = {Rθ|θ ∈ CSubst⊥}. This allows, in particular, to express
parameter passing.

Table 1 shows the proof calculus for CRWL. We write P `CRWL ϕ for express-
ing that the statement ϕ is provable from the program P .

The rule 4 allows to use c-instances of program rules to prove approximations.
These c-instances may contain ⊥ and rule (1) allows to reduce any expression
to ⊥. This reflects a non-strict semantics.

A distinguished feature of CRWL is that functions can be non-deterministic.
For example, assuming the constructors z (zero) and s (successor) for natural
numbers, a non-deterministic function coin can defined by the rules coin → z
and coin → s(z). The use of c-instances in rule (4) instead of general instances
corresponds to call time choice semantics for non-determinism (see [3]). As an
example, if in addition to coin we consider the function definition mkpair(X)
→ pair(X,X) (pair is a constructor), it is possible to build a CRWL-proof for
mkpair(coin) → pair(z,z) and also for mkpair(coin) → pair(s(z),s(z)), but not
for mkpair(coin) → pair(z,s(z)).

Observe that <> is not the logical negation of ./. They are not even incom-
patible: due to non-determinism, two expressions e, e′ can satisfy both e ./ e′ and
e <> e′ (although this cannot happen if e, e′ are c-terms). In the ‘coin’ example,
we can derive both coin ./ z and coin <> z.

We can define the denotation of an expression e as the set of c-terms to which
e can be reduced according to this calculus: [[e]] = {t ∈ CTerm⊥|P `CRWL e → t}



3 The CRWLF Framework

We now address the problem of failure in CRWL. Our primary interest is to
obtain a calculus able to prove that a given expression fails to be reduced. Since
reduction corresponds in CRWL to approximation statements e → t, we can
reformulate our aim more precisely: we look for a calculus able to prove that a
given expression e has no possible reduction (other than the trivial e → ⊥) in
CRWL, i.e., [[e]] = {⊥}.

Of course, we cannot expect to achieve that with full generality since, in
particular, the reason for having [[e]] = {⊥} can be non-termination of the pro-
gram as rewrite system, which is uncomputable. Instead, we look for a suitable
computable approximation to the property [[e]] = {⊥}, corresponding to cases
where failure of reduction is due to ‘finite’ reasons, which can be constructively
detected and managed.

Previous to the formal presentation of the calculus, which will be called
CRWLF (for ‘CRWL with failure’) we give several simple examples for a prelim-
inary understanding of some key aspects of it, and the reasons underlying some
of its technicalities.

3.1 Some Illustrative Examples

Consider the following functions, in addition to coin , defined in Sect. 2:

f(z) → f(z) g(s(s(X)) → z
h → s(z)
h → s(h)

k(X) → z ⇐ X ./ s(z)

The expressions f(z) and f(s(z)) fail to be reduced, but for quite different
reasons. In the first case f(z) does not terminate. The only possible proof ac-
cordingly to CRWL is f(z) → ⊥ (by rule 1); any attempt to prove f(z) → t with
t 6= ⊥ would produce an ‘infinite derivation’. In the second case, the only possi-
ble proof is again f(s(z)) → ⊥, but if we try to prove f(s(z)) → t with t 6= ⊥
we have a kind of ‘finite failure’: rule 4 needs to solve the parameter passing
s(z) → z, that could be finitely checked as failed, since no rule of the CRWL-
calculus is applicable. The CRWLF-calculus does not prove non-termination of
f(z), but will be able to detect and manage the failure for f(s(z)). In fact it will
be able to perform a constructive proof of this failure.

Consider now the expression g(coin). Again, the only possible reduction is
g(coin) → ⊥ and it is intuitively clear that this is another case of finite failure.
But this failure is not as simple as in the previous example for f(s(z)): in this
case the two possible reductions for coin to defined values are coin → z and
coin → s(z). Both of z and s(z) fail to match the pattern s(s(X)) in the rule
for g, but none of them can be used separately to detect the failure of g(coin).
A suitable idea is to collect the set of defined values to which a given expression
can be reduced. In the case of coin that set is {z, s(z)}. The fact that C is the
collected set of values of e is expressed in CRWLF by means of the statement
e C C. In our example, CRWLF will prove coin C {z, s(z)}. Statements e C C



generalize the approximation statements e → t of CRWL, and in fact can replace
them. Thus, CRWLF will not need to use explicit e → t statements.

How far should we go when collecting values? The idea of collecting all values
(and to have them completely evaluated) works fine in the previous example, but
there are problems when the collection is infinite. For example, according to its
definition above, the expression h can be reduced to any positive natural number,
so the corresponding set would be {s(z), s(s(z)), s(s(s(z))), ...}. Then, what if
we try to reduce the expression f(h)?. From an intuitive point of view it is clear
that the value z will not appear in this set, because all the values in it have
the form s(...). We can represent all this values by the set {s(⊥)}. Here we can
understand ⊥ as an incomplete information: we know that all the possible values
for h are successor of ‘something’; we do not know what is this ‘something’, but
in fact, we do not need to know it. Anyway the set does not contain the value
z, so f(h) fails. Notice that all the possible values for h are represented (not
present) in the set {s(⊥)}, and this information is sufficient to prove the failure
of f(h). The CRWLF-calculus will be able to prove the statement h C {s(⊥)},
and we say that {s(⊥)} is a Sufficient Approximation Set (SAS) for h.

In general, an expression will have multiple SAS’s. Any expression has {⊥}
as its simplest SAS. And, for example, the expression h has an infinite number
of SAS’s: {⊥}, {s(⊥)}, {s(z), s(s(⊥))},... The SAS’s obtained by the calculus for
coin are {⊥}, {⊥, s(⊥)},{⊥, s(z)}, {z,⊥}, {z, s(⊥)} and {z, s(z)}. The CRWLF-
calculus provides appropriate rules for working with SAS’s. The derivation steps
will be guided by these SAS’s in the same sense that CRWL is guided by ap-
proximation statements.

Failure of reduction is due in many cases to failure in proving the conditions
in the program rules. The calculus must be able to prove those failures. Consider
for instance the expression k(z). In this case we would try to use the c-instance
k(z) → z ⇐ z ./ s(z) that allows to perform parameter passing. But the condi-
tion z ./ s(z) is clearly not provable, so k(z) must fail. For achieving it we must
be able to give a proof for ‘z ./ s(z) cannot be proved with respect to CRWL’.
For this purpose we introduce a new constraint e 6./ e′ that will be true if we
can build a proof of non-provability for e ./ e′. In our case, z 6./ s(z) is clear
simply because of the clash of constructors. In general the proof for a constraint
e 6./ e′ will be guided by the corresponding SAS’s for e and e′ as we will see in
the next section. As our initial CRWL framework also allows constraints of the
form e <> e′, we need still another constraint </> for expressing ‘failure of <>’.

There is another important question to justify: we use an explicit represen-
tation for failure by means of the new constant symbol F. Let us examine some
examples involving failures. First, consider the expression g(s(f(s(z)))); for re-
ducing it we would need to do parameter passing, i.e., matching s(f(s(z))) with
some c-instance of the pattern s(s(X)) of the definition of g. As f(s(z)) fails to
be reduced the parameter passing must also fail. If we take {⊥} as an SAS for
f(s(z)) we have not enough information for detecting the failure (nothing can
be said about the matching of s(s(X)) and s(⊥)). But if we take {F} as an SAS
for f(s(z)), this provides enough information to ensure that s(F) cannot match



any c-instance of the pattern s(s(X)). Notice that we allow the value F to appear
inside the term s(F). It could appear that the information s(F) is essentially the
same of F (for instance, F also fails to match any c-instance of s(s(X))), but this
is not true in general. For instance, the expression g(s(s(f(s(z))))) is reducible
to z. But if we take the SAS {F} for f(s(z)) and we identify the expression
s(s(f(s(z)))) with F, matching with the rule for g would not succeed, and the
reduction of g(s(s(f(s(z))))) would fail.

We can now proceed with the formal presentation of the CRWLF-calculus.

3.2 Technical Preliminaries

We introduce the new constant symbol F into the signature Σ to obtain Σ⊥,F =
Σ ∪{⊥, F}. The sets Term⊥,F, CTerm⊥,F are defined in the natural way and we
will use the set CSubst⊥,F = {θ : V → CTerm⊥,F}.

A natural approximation ordering v over Term⊥,F can be defined as the least
partial ordering over Term⊥,F satisfying the following properties:

• ⊥ v e for all e ∈ Term⊥,F,
• h(e1, ..., en) v h(e′

1
, ..., e′n), if ei v e′i for all i ∈ {1, ..., n}, h ∈ DC ∪ FS

The intended meaning of e v e′ is that e is less defined or has less information
than e′. Two expressions e, e′ ∈ Term⊥,F are consistent if they can be refined to
obtain the same information, i.e., if there exists e′′ ∈ Term⊥,F such that e v e′′

and e′ v e′′.
Notice that the only relations satisfied by F are ⊥ v F and F v F. In particular,

F is maximal. This is reasonable, since F represents ‘failure of reduction’ and this
gives a no further refinable information about the result of the evaluation of
an expression. This contrasts with the status given to failure in [11], where F is
chosen to verify F v t for any t different from ⊥.

The class of programs that we consider in the following is less general than in
the CRWL framework. Rules of functions have the same form, but they must not
contain extra variables, i.e., for any rule (f(t) → e ⇐ C) ∈ P all the variables
appearing in e and C must also appear in the head f(t), i.e., var(e) ∪ V(C) ⊆
var(t). In FLP with non-deterministic functions this is not as restrictive as it
could appear: function nesting can replace the use (typical in logic programming)
of variables as repositories of intermediate values, and in many other cases where
extra variables represent unknown values to be computed by search, they can
be successfully replaced by non-deterministic ‘lazy generating’ functions (see [3]
for some examples).

We will frequently use the following notation: given e ∈ Term⊥,F, ê stands for
the result of replacing by ⊥ all the occurrences of F in e (notice that ê ∈ Term⊥,
and e = ê iff e ∈ Term⊥).

3.3 The Proof Calculus for CRWLF

In CRWLF five kinds of statements can be deduced:



• e C C, intended to mean ‘C is an SAS for e’.
• e ./ e′, e <> e′, with the same intended meaning as in CRWL.
• e 6./ e′, e </> e′, intended to mean failure of e ./ e′ and e <> e′ respectively.

We will sometimes speak of ./, <>, 6./, </> as ‘constraints’, and use the symbol
♦ to refer to any of them. The constraints 6./ and ./ are called the complemen-
tary of each other; the same holds for </> and <>, and we write ♦̃ for the
complementary of ♦.

When proving a constraint e♦e′ the calculus CRWLF will evaluate an SAS for
the expressions e and e′. These SAS’s will consist of c-terms from CTerm⊥,F, and
provability of the constraint e♦e′ depends on certain syntactic (hence decidable)
relations between those c-terms. Actually, the constraints ./, <>, 6./ and </> can
be seen as the result of generalizing to expressions the relations ↓, ↑, 6↓ and 6↑ on
c-terms, which we define now.

Definition 1 (Relations over CTerm⊥,F).

• t ↓ t′ ⇔def t = t′, t ∈ CTerm
• t ↑ t′ ⇔def t and t′ have a DC-clash
• t 6↓ t′ ⇔def t or t′ contain F as subterm or they have a DC-clash
• 6↑ is defined as the least symmetric relation over CTerm⊥,F satisfying:

i) X 6↑ X, for all X ∈ V
ii) F 6↑ t, for all t ∈ CTerm⊥,F

iii) if t1 6↑ t′
1
, ..., tn 6↑ t′n then c(t1, ..., tn) 6↑ c(t′

1
, ..., t′n) for all c ∈ DCn

The relations ↓ and ↑ do not take into account the presence of F, which
behaves in this case as ⊥. The relation ↓ is strict equality, i.e., equality re-
stricted to total c-terms. It is the notion of equality used in lazy functional or
functional-logic languages as the suitable approximation to ‘true’ equality (=)
over CTerm⊥. The relation ↑ is a suitable approximation to ‘¬ =’, and hence
to ‘¬ ↓’ (where ¬ stands for logical negation). The relation 6↓ is also an approx-
imation to ‘¬ ↓’, but in this case using failure information (6↓ can be read as ‘↓
fails’). Notice that 6↓ does not imply ‘¬ =’ anymore (we have, for instance, F 6↓ F).
Similarly, 6↑ is also an approximation to ‘¬ ↑’ which can be read as ‘↑ fails’.

The following proposition reflects these and more good properties of ↓, ↑, 6↓, 6↑.

Proposition 1. The relations ↓, ↑, 6↓, 6↑ verify

(a) For all t, t′, s, s′ ∈ CTerm⊥,F

(i) t ↓ t′ ⇔ t̂ ↓ t̂′ and t ↑ t′ ⇔ t̂ ↑ t̂′

(ii) t ↑ t′ ⇒ t 6↓ t′ ⇒ ¬(t ↓ t′)
(iii) t ↓ t′ ⇒ t 6↑ t′ ⇒ ¬(t ↑ t′)

(b) ↓, ↑, 6↓, 6↑ are monotonic, i.e., if t v s and t′ v s′ then: t<t′ ⇒ s<s′, where
< ∈ {↓, ↑, 6↓, 6↑}. Furthermore 6↓B and 6↑B are the greatest monotonic approx-
imations to ¬ ↓B and ¬ ↑B respectively, where <B is the restriction of < to
the set of basic (i.e., without variables) c-terms from CTerm⊥,F.

(c) ↓ and 6↑ are closed under substitutions from CSubst; 6↓ and ↑ are closed under
substitutions from CSubst⊥,F



By (b), we can say that ↓, ↑, 6↓, 6↑ behave well with respect to the information
ordering: if they are true for some terms, they remain true if we refine the
information contained in the terms. Furthermore, (b) states that 6↓, 6↑ are defined
in the best way, at least for basic c-terms. For c-terms with variables, we must
take care: for instance, given the constructor z, we have ¬(X ↓ z), but not X 6↓ z.
Actually, to have X 6↓ z would violate a basic intuition about free variables in
logical statements: if the statement is true, it should be true for any value (taken
from an appropriate range) substituted for its free variables. The part (c) shows
that the definitions of ↓, ↑, 6↓, 6↑ respect such principle. Propositions 2 and 3 of
the next section show that monotonicity and closedness by substitutions are
preserved when generalizing ↓, ↑, 6↓, 6↑ to ./, <>, 6./, </>.

Table 2 contains the CRWLF-calculus. Some of the rules use a generalized
notion of c-instances of a rule R: [R]⊥,F = {Rθ | θ ∈ CSubst⊥,F}. We will use
the notation P `CRWLF ϕ (P 6`CRWLF ϕ resp.) for expressing that the statement ϕ
is provable (is not provable resp.) with respect to the calculus CRWLF and the
program P .

The first three rules are analogous to those of the CRWL-calculus, now deal-
ing with SAS’s instead of simple approximations (notice the cross product of
SAS’s in rule 3). In rule 4, for evaluating an expression f(e) we produce SAS’s
for the arguments ei and then, for each combination of values in these SAS’s
and each program rule for f , a part of the whole SAS is produced; all of them
are unioned to obtain the final SAS for f(e). This is quite different from rule
4 in CRWL: there we could use any c-instance of any rule for f ; here we need
to consider simultaneously the contribution of each rule to achieve ‘complete’
information about the values to which the expression can be evaluated. We use
the notation f(t) CR C to indicate that only the rule R is used to produce C.

Rules 5 to 8 consider all the possible ways in which a concrete rule R can
contribute to the SAS of a call f(t), where the arguments t are all in CTerm⊥,F

(come from the evaluation of the arguments of a previous call f(e)). Rules 5 and
6 can be viewed as positive contributions. The first one obtains the trivial SAS
and 6 works if there is a c-instance of the rule R with a head identical to the head
of the call (parameter passing); in this case, if the constraints of this c-instance
are provable, then the resulting SAS is generated by the body of the c-instance.
Rules 7 and 8 consider the negative or failed contributions. Rule 7 applies when
parameter passing can be done, but it is possible to prove the complementary
ei♦̃e′i of one of the constraints ei♦e′i in the condition of the used c-instance. In
this case the constraint ei♦e′i (hence the whole condition in the c-instance) fails.
Finally, rule 8 considers the case in which parameter passing fails because of a
DC ∪ {F}-clash between one of the arguments in the call and the corresponding
pattern in R.

We remark that for given f(t) and R, the rule 5 and exactly one of rules
6 to 8 are applicable. This fact, although intuitive, is far from being trivial to
prove and constitutes in fact an important technical detail in the proofs of the
results in the next section. We also remark that, for the sake of a better reading
of rule 4, we have written ordinary set union for collecting SAS’s. This could



Table 2. Rules for CRWLF-provability

(1)
e C {⊥}

(2)
X C {X}

X ∈ V

(3)
e1 C C1 ... en C Cn

c(e1, ..., en) C {c(t1, ..., tn) | t ∈ C1 × ... × Cn}
c ∈ DCn ∪ {F}

(4)
e1 C C1 ... en C Cn ... f(t) C

R
CR,t ...

f(e1, ..., en) C

⋃
R∈Pf ,t∈C1×...×Cn

CR,t
f ∈ FSn

(5)
f(t) C

R
{⊥}

(6)
e C C C

f(t) C
R
C

(f(t) → e ⇐ C) ∈ [R]⊥,F

(7)
ei♦̃e′i

f(t) C
R
{F}

(f(t) → e ⇐ ..., ei♦e′i, ...) ∈ [R]⊥,F, where i ∈ {1, ..., n}

(8)
f(t1, ..., tn) C

R
{F}

R ≡ (f(s1, ..., sn) → e ⇐ C), ti and si have a
DC ∪ {F}-clash for some i ∈ {1, ..., n}

(9)
e C C e′ C C′

e ./ e′
∃t ∈ C, t′ ∈ C′ t ↓ t′

(10)
e C C e′ C C′

e <> e′
∃t ∈ C, t′ ∈ C′ t ↑ t′

(11)
e C C e′ C C′

e 6./ e′
∀t ∈ C, t′ ∈ C′ t 6↓ t′

(12)
e C C e′ C C′

e </> e′
∀t ∈ C, t′ ∈ C′ t 6↑ t′

be modified in such a way that F is excluded from the union if it contains some
other c-term different from F. For example, if we obtain the SAS’s {z} and {F}
from two function rules, we could take {z} as the final SAS for the call instead
of {F, z}. All the results of the next section are valid with this modification.

Rules 9 to 12 deal with constraints. With the use of the relations ↓, ↑, 6↓, 6↑
introduced in Sect. 3.3 the rules are easy to formulate. For e ./ e′ it is sufficient to
find two c-terms in the SAS’s verifying the relation ↓, what in fact is equivalent to
find a common totally defined c-term such that both expressions e and e′ can be
reduced to it (observe the analogy with rule 5 of CRWL). For the complementary
constraint 6./ we need to use all the information of SAS’s in order to check the
relation 6↓ over all the possible pairs. The explanation of rules 11 and 12 is quite
similar.

The next example shows a derivation of failure using the CRWLF-calculus.



Example 1. Let us consider a program P with the constructors z, s for natural
numbers, [] and ‘:’ for lists (although we use Prolog-like notation for them, that
is, [z, s(z)|L] represents the list (z : (s(z) : L))) and also the constructors t, f
that represent the boolean values true and false. Assume the functions coin and
h defined in Sect. 2.2 and also the function mb (member) defined as:

mb(X, [Y |Ys ]) → t ⇐ X ./ Y
mb(X, [Y |Ys ]) → t ⇐ mb(X,Ys) ./ t

If we try to evaluate the expression mb(coin, [s(h)]) it will fail. Intuitively,
from definition of h the list in the second argument can be reduced to lists of
the form [s(s(...))] and the possible values of coin, z and s(z), will never belong
to those lists. The CRWLF-calculus allows to build a proof for this fact, that is,
mb(coin, [s(h)]) C {F}, in the following way: by application of rule 4 the proof
could proceed by generating SAS’s for the arguments

coin C {z, s(z)} (ϕ1) [s(h)] C {[s(s(⊥))]} (ϕ2)

and then collecting the contributions of rules of mb for each possible combination
of values for the arguments; for the pair (z, [s(s(⊥))]) the contribution of rules
for mb (here we write C1 to refer to the first rule of mb and C2 for the second)
will be

mb(z, [s(s(⊥))]) C1 {F} (ϕ3) mb(z, [s(s(⊥))]) C2 {F} (ϕ4)

and for the pair (s(z), [s(s(⊥)]) we will have

mb(s(z), [s(s(⊥))]) C1 {F} (ϕ5) mb(s(z), [s(s(⊥))]) C2 {F} (ϕ6)

The following derivation shows the form of the full derivation, but we only
give details of the proofs for ϕ3 and ϕ4. At each step, we indicate by a number
on the left the rule of the calculus applied in each case:

4

ϕ
1

ϕ
2

7

11

3

zC{z}
3

3

1

⊥C{⊥}
s(⊥)C{s(⊥)}

s(s(⊥))C{s(s(⊥))}
z 6./ s(s(⊥))

ϕ3 ≡ mb(z, [s(s(⊥))])C
1
{F}

7

11

4

3

zC{z}
3

[]C{[]}
8

mb(z, [])C
1,2{F}

mb(z, [])C{F}
3

tC{t}
mb(z, []) 6./ {t}

ϕ4 ≡ mb(z, [s(s(⊥))])C
2
{F} ϕ

5
ϕ

6

mb(coin, [s(h)])C{F}

In both ϕ3 and ϕ4 the failure is due to a failure in the constraints of rules,
what requires to prove the complementary constraint 6./ by rule 11. In the first
case, z 6./ s(s(⊥)), there is a clear clash of constructors. But in the second case
it involves the failure for the expression mb(z, []) that is proved again by rule
4 of the calculus. The SAS’s for the arguments only produce the combination
(z, []) and both rules of mb fails over it by rule 8 of the calculus. The notation
mb(z, [])C1,2{F} which appears on the top of the proof of ϕ4 is an abbreviation
for both statements mb(z, [])C1{F} and mb(z, [])C2{F}.

All the contributions of ϕ3, ϕ4, ϕ5 and ϕ6 are {F}, and putting them together
we obtain {F} as an SAS for the original expression mb(coin, [s(h)]) as expected.



4 Properties of CRWLF

In this section we explore some properties of the CRWLF-calculus and its relation
with CRWL. In the following we assume a fixed program P .

The non-determinism of the CRWLF-calculus allows to obtain different SAS’s
for the same expression. As the SAS for an expression is a finite approximation to
the denotation of the expression it is expected some kind of consistency between
SAS’s for the same expression. Given two of them, we cannot ensure that one
SAS must be more defined than the other in the sense that all the elements of
the first are more defined than all of the second. For instance, two SAS’s for coin
are {⊥, s(z)} and {z,⊥}. The kind of consistency for SAS’s that we can expect
is the following:

Definition 2 (Consistent Sets of c-terms). Two sets C, C ′ ⊂ CTerm⊥,F are
consistent iff for all t ∈ C there exists t′ ∈ C′ (and vice versa, for all t′ ∈ C′ there
exists t ∈ C) such that t and t′ are consistent.

Our first result states that two different SAS’s for the same expression must
be consistent.

Theorem 1 (Consistency of SAS). Given e ∈ Term⊥,F, if P `CRWLF e C C
and P `CRWLF e C C′, then C and C′ are consistent.

This result is a trivial corollary of part a) of the following lemma.

Lemma 1 (Consistency). For any e, e′, e1, e2, e
′
1, e

′
2 ∈ Term⊥,F

a) If e, e′ are consistent, P `CRWLF e C C and P `CRWLF e′ C C′, then C and C′

are consistent.
b) If e1, e

′
1 are consistent and e2, e

′
2 are also consistent, then: P `CRWLF e1♦e2 ⇒

P 6`CRWLF e′
1
♦̃e′

2

As a trivial consequence of part b) we have:

Corollary 1. P `CRWLF e♦e′ ⇒ P 6`CRWLF e♦̃e′, for all e, e′ ∈ Term⊥,F

This supports our original idea about 6./ and </> as computable approxima-
tions to the negations of ./ and <>.

Another desirable property of our calculus is monotonicity, that we can in-
formally understand in this way: the information that can be extracted from an
expression can not decrease when we add information to the expression itself.
This also reflects in the fact that if we can prove a constraint and we consider
more defined terms in both sides of it, the resulting constraint must be also
provable. Formally:

Proposition 2 (Monotonicity of CRWLF). For e, e′, e1, e2, e
′
1
, e′

2
∈ Term⊥,F

a) If e v e′ and P `CRWLF e C C, then P `CRWLF e′ C C
b) If e1 v e′1, e2 v e′2 and P `CRWLF e1♦e2 then P `CRWLF e′1♦e′2, where

♦ ∈ {./, 6./, <>, </>}



Monotonicity, as stated here, refers to the degree of evaluation of expression,
and does not contradict the well known fact that negation as failure is a non-
monotonic reasoning rule. In our setting it is also clearly true that, if we ‘define
more’ the functions (i.e, we refine the program, not the evaluation of a given
expression), an expression can become reducible when it was previously failed.

The next property says that what is true for free variables is also true for
any possible (totally defined) value, i.e., provability in CRWLF is closed under
total substitutions.

Proposition 3. For any θ ∈ CSubst, e, e′ ∈ Term⊥,F

a) P `CRWLF e C C ⇒ P `CRWLF eθ C Cθ
b) P `CRWLF e♦e′ ⇒ P `CRWLF eθ♦e′θ

4.1 CRWLF related to CRWL

The CRWLF-calculus has been built as an extension of CRWL for dealing with
failure. Here we show that our aims have been achieved.

We recall that a CRWLF-program is a CRWL-program not containing extra
variables in rules. The following results are all referred to CRWLF-programs.

The next result shows that the CRWLF-calculus indeed extends CRWL. Parts
a) and b) show that statements e C C generalize approximation statements e → t
of CRWL. Parts c) and d) show that CRWLF and CRWL are able to prove
exactly the same joinabilities and divergences (if F is ignored for the comparison).

Proposition 4. For any e, e′ ∈ Term⊥,F

a) P `CRWLF e C C ⇒ ∀t ∈ C,P `CRWL ê → t̂
b) P `CRWL ê → t ⇒ ∃C such that t ∈ C and P `CRWLF e C C
c) P `CRWLF e ./ e′ ⇔ P `CRWL ê ./ ê′

d) P `CRWLF e <> e′ ⇔ P `CRWL ê <> ê′

We can revise within CRWLF the notion of denotation of an expression, and
define [[e]]F = {t ∈ CTerm⊥,F | e C C, t ∈ C}, for any e ∈ Term⊥,F. As a
consequence of the previous proposition we have [[e]] ⊆ [[e]]F for any e ∈ Term⊥

and [̂[e]]F = [[ê]] for any e ∈ Term⊥,F, where, given a set S, Ŝ is defined in the

natural way Ŝ = {t̂ | t ∈ S}.
All the previous results make easy the task of proving that we have done

things right with respect to failure. We will need a result stronger than Prop.
4, which does not provide enough information about the relation between the
denotation of an expression and each of its calculable SAS’s.

Proposition 5. Given e ∈ Term⊥,F, if P `CRWLF e C C and t ∈ [[ê]], then there
exists s ∈ C such that s and t are consistent.

Proof. Assume P `CRWLF e C C. If we take t ∈ CTerm⊥ such that P `CRWL ê → t,
then by part b) of Prop. 4 there exists C ′ such that P `CRWLF e C C′ with t ∈ C′.

By Theorem 1 it follows that C and C ′ are consistent. By definition of consis-
tent SAS’s, as t ∈ C′, then there exist s ∈ C such that t and s are consistent. ut



We easily arrive now at our final result.

Theorem 2. Given e ∈ Term⊥,F, if P `CRWLF e C {F} then [[ê]] = {⊥}

Proof. If t ∈ [[ê]], we know from Prop. 5 that F and t must be consistent. As F is
consistent only with ⊥ and itself, and t ∈ CTerm⊥, we conclude that t = ⊥. ut

5 Conclusions and Future Work

We have proposed the proof calculus CRWLF (Constructor based ReWriting
Logic with Failure), which allows to deduce negative information from a wide
class of functional logic programs. In particular, the calculus provides proofs of
failure of reduction, a notion that can be seen as the natural FLP counterpart
of negation as failure in logic programming.

The starting point for CRWLF has been the proof calculus of CRWL [3], a
well established theoretical framework for FLP. The most remarkable insight has
been to replace the statements e → t of CRWL (representing a single reduction
of e to an approximated value t) by e C C (representing a whole, somehow
complete, set C of approximations to e). With the aid of C we have been able to
cover all the derivations in CRWL, as well as to prove failure of reduction and,
as auxiliary notions, failure of joinability and divergence, the two other kinds of
statements that CRWL was able to prove.

It is interesting to remark that C provide, at the level of logical descriptions,
a finer control over reduction than →. Two examples: e C {t}, t ∈ CTerm
expresses the property that e is reducible to the unique totally defined value
t; e C C, e′ C C, with C consisting only of total c-terms, expresses that e and
e′ reduce to exactly the same (totally defined) values. The same properties, if
expressed by means of →, would require the use of universal quantification,
which is out of the scope of CRWL. Observe that, although the side conditions
‘t ∈ CTerm’ and ‘C consisting only of total c-terms’ of the examples are not
statements of CRWLF, they are purely syntactical conditions.

The idea of collecting into an SAS values coming from different reductions
for a given expression e presents some similarities with abstract interpretation
which, within the FLP field, has been used in [2] for detecting unsatisfiability
of equations e = e′ (something similar to failure of our e ./ e′). We can mention
some differences between our work and [2]:

• Programs in [2] are much more restrictive: they must be confluent, terminat-
ing, satisfy a property of stratification on conditions, and define strict and
total functions.

• In our setting, each SAS for an expression e consists of (down) approxima-
tions to the denotation of e, and the set of SAS’s for e determines in a precise
sense (Props. 4 and 5) the exact denotation of e. In the abstract interpre-
tation approach one typically obtains, for an expression e, an abstract term
representing a superset of the denotation of all the instances of e. But some
of the rules of the CRWLF-calculus (like (9) or (10)) are not valid if we re-
place SAS’s by such supersets. To be more concrete, if we adopt an abstract



interpretation view of our SAS’s, it would be natural to see ⊥ as standing
for the set of all constructor terms (since ⊥ is refinable to any value), and
therefore to identify an SAS like C = {⊥, z} with C ′ = {⊥}. But from e C C
we can deduce e ./ z, while it is not correct to do the same from e C C ′.
Therefore, the good properties of CRWLF with respect to CRWL are lost.

We see our work as the first step in the research of a whole framework for
dealing with failure in FLP. Some natural (but not small!) future steps are: to
enlarge the class of considered programs by allowing extra variables; to consider
‘general’ programs which make use of failure information, and to develop model
theoretic and operational semantics for them.

Acknowledgements: We thank the anonymous referees for their useful comments.

References

[1] K.R. Apt and R. Bol. Logic programming and negation: A survey. Journal of

Logic Programming, 19&20:9–71, 1994.
[2] D. Bert and R. Echahed. Abstraction of conditional term rewriting systems. In

Proc. ILPS’95, pages 162–176. MIT Press, 1995.
[3] J.C. González-Moreno, T. Hortalá-González, F.J. López-Fraguas, and

M. Rodŕıguez-Artalejo. An approach to declarative programming based on
a rewriting logic. Journal of Logic Programming, 40(1):47–87, 1999.

[4] M. Hanus. The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming, 19&20:583–628, 1994.

[5] M. Hanus (ed.). Curry: An integrated functional logic language. Available
at http://www-i2.informatik.rwth-aachen.de/~hanus/curry/report.html,
February 2000.

[6] G. Jäger and R.F. Stärk. A proof-theoretic framework for logic programming. In
S.R. Buss (ed.), Handbook of Proof Theory, pages 639–682. Elsevier, 1998.

[7] F.J. López-Fraguas and J. Sánchez-Hernández. Disequalities may help to narrow.
In Proc. APPIA-GULP-PRODE’99, pages 89–104, 1999.

[8] F.J. López-Fraguas and J. Sánchez-Hernández. T OY : A multiparadigm declara-
tive system. In Proc. RTA’99, Springer LNCS 1631, pages 244–247, 1999.

[9] F.J. López-Fraguas and J. Sánchez-Hernández. Proving failure in functional logic
programs (extended version). Tech. Rep. SIP 00/100-00, UCM Madrid, 2000.

[10] J.J. Moreno-Navarro. Default rules: An extension of constructive negation for
narrowing-based languages. In Proc. ICLP’95, pages 535–549. MIT Press, 1994.

[11] J.J. Moreno-Navarro. Extending constructive negation for partial functions in
lazy functional-logic languages. In Proc. ELP’96, pages 213–227. Springer LNAI
1050, 1996.

[12] P.J. Stuckey. Constructive negation for constraint logic programming. In Proc.

LICS’91, pages 328–339, 1991.


