Declarative Programming
with Real Constraints !

T. Hortala-Gonzalez, F. J. Lopez-Fraguas,
J. Sanchez-Hernandez, E. Ullan-Hernandez

TECHNICAL REPORT SIP - 5997

Dep. Lenguajes, Sistemas Informaticos y Programacion
Univ. Complutense de Madrid

APRIL 97

! The authors have been partially supported by the Spanish CICYT (project TIC 95-0433-C03-01 'CPD’)
and the ESPRIT Working Group 22457 (CCL-TT).

Declarative Programming with Real Constraints

T. Hortala-Gonzalez, F. J. Lépez-Fraguas,
J. Sanchez-Hernandez, E. Ullan-Hernandez

Universidad Complutense de Madrid, Dpto. de Informdtica y Automdtica
Facultad de CC. Matemdticas, Avda. Complutense s/n, 28040 Madrid, Spain

email-{alp94teja,fraguas,evah} @eucmaz.sim.ucm.es, jaimewQeucrnos.sim.ucm.es

Abstract. We present a declarative language — CF LP(R) — which enhances functional
logic programming with constraint solving capabilities. CFLP(R) features: poly-
morphic types, nondeterministic functions, lazy evaluation, higher order (even logic)
computations, arithmetical constraints over real numbers and disequality constraints
over syntactic terms. The features of the language are shown by means of examples,
attempting to demonstrate the interest of CFLP(R). The execution mechanism of
the language results of a simple combination of lazy narrowing (with a sophisticated
strategy, as realized in up to date functional logic languages) and constraint solving.
The language has been implemented by means of translation of source programs into a
Prolog system supporting real constraint solving. This shows the practicability of the

proposal.

1 Introduction

Constraints play a central role in present days research, development and application of
logic programming (LP) languages (see [?] for a survey). Most of the interest in this field
started with the proposal of the C'LP(X') scheme [?], a general framework for constraint logic
programming (CLP) languages. The CLP(X') scheme was conceived hand by hand with one
of its most prominent instances, the language C'LP(R) [?], which extended traditional LP by
the use of real arithmetic constraints for expressing conditions in clauses and for describing
solutions, and combined SLD-resolution with a mechanism for solving linear constraints. Due
to the variety of its applications and to the clarity of its conception, C LP(R) has had a great
influence in later CLP languages. We think that the two main merits of CLLP have been to
convert domain dependent computations (as arithmetic calculations, in the case of CLP(R)),
which are impure (but essential to practice) features of logic programs, into declarative ones,
and to convert constraint programming (a technology independently developed) into a very
rich programming paradigm.

Traditional LLP and CLP lack features which are recognized as powerful tools for a pro-
ductive declarative programming: polymorphic type discipline, lazy evaluation, higher order
(HO) features. Some effort has been devoted to those matters in the LP community (see e.g.
[7, 7, 7)), but nevertheless it seems that those issues are still better supported in functional
programming (FP). This is one of the main reasons advocated for the the integration of
the FP and LP paradigms, which constitutes another important branch in the evolution of
declarative languages (see [?] for a survey).

With functional logic programming (FLP) a problem arises: while FP smoothly support
domain dependent computations in a declarative way, this property is lost in the usual ap-
proach to FLP, which is based in some Herbrand-like representation of data. In particular
the problem of nondeclarativeness of arithmetic re-appears. To incorporate constraints to
FLP appears then as a natural, not merely speculative, interesting task. In [?, ?] a the-
oretical general scheme — CFLP(X) — for constraint functional logic programming (CFLP)
was proposed, with the aim of extending lazy FLP in the same way that C'LP(X) extended
traditional LP. There are other proposals for CFLP [?, 7, 7] but, as far as we know, they
have not fructified in the development of concrete, practical languages.

In this paper we describe the language C'F'LP(R) which incorporates real arithmetic
constraints to a higher order lazy nondeterministic functional logic language in the spirit of
[?, ?]. The language incorporates also syntactic disequality constraints in the way of [?]. The
language has been implemented in the system TOY(R) (http://mozart.mat.ucm.es/incoming
/comprimidos/toyr.tar.gz), which is an extension of the FLP system TOY (http://mozart.mat.
ucm .es/incoming/comprimidos/toy.tar.gz). The rest of the paper is organized as follows: in
Sect. 7?7 we shortly describe the language and its syntax. Section 7?7 contains a non trivial
example showing some of the possibilities of our language. In Sect. 7?7 we informally explain
the execution mechanism of the language, and sketch how to translate CF LP(R)-programs
into a constraint logic programming language. Sect. 77 includes some words about the actual
implementation. Finally, Sect. 7?7 summarizes some conclusions.

2 Description of the language

We give here quite a succinct account of the constructs of the language, which will be exem-
plified in Sect. ??. CFLP(R) programs consists of datatype, type alias and infiz operator
definitions, rules for defining functions and clauses for defining predicates. Syntax is most
borrowed from Haskell [?] (the main exception being that variables begin with upper-case
letters whereas constructors use lower-case). Note, in particular, that functions are curried
and the usual conventions about associativity of application hold.

Datatype definitions like data nat = zero | suc nat, define new (possibly polymorphic)
constructed types and determine a set of data constructors for each type. The set of all data
constructor symbols will be noted as CS (CS™ for all constructors of arity n).

Types 7, 7', ... can be constructed types, tuples (7i,...,7,), or functional types of the
form 7 — 7/. As usual, — associates to the right. C'FLP(R) provides predefined types
such as [A] (the type of polymorphic lists, for which Prolog notation is used), bool and real.
Furthermore, type alias definitions like type point=(real,real) are allowed. Type alias
are simply macros, but they are useful for writing more abstract, self-documenting programs.
Type classes are not considered in CFLP(R).

Any CFLP(R)-program has an associated set F'S of function symbols, each with a cor-
responding program arity. We note by FS™ the set of function symbols of program arity
n. Some of the functions are primitive, which include the arithmetic functions +, —, *, /.
Each function f € FS™ has an associated principal type of the form 7 — ... =5 7, = 7
(where 7 does not contain —). m is called the type arity of f, and must be n < m.
As usual in functional programming, types are inferred and, optionally, can be declared
in the program. Each non primitive f € FS” is defined by a set of rules of the form
fti...tn = € < p1,...,pk, where (t1...%,) is a tuple of linear (i.e., with no repeated
variable) patterns (see below), e is an ezpression (see below), and each constraint ¢; has the

form e{e’, where { € {==, /=,<,>,<=,>=}. A rule has a conditional reading: f#1...%,
can be reduced to e if the constraint 1, ..., @ is satisfied. The constraint < 1, ..., g is
omitted if k = 0. In e == ¢’ or ¢/=¢’, e and ¢’ must have the same type.

A pattern t is defined as t == X | v | (t1,...,¢,) | ct1...t,| f t1...t,, where risa
real number, ¢ € CS™, n < m, f € FS™, n < m. One distinguished feature of our patterns
is that partial application of ¢ and f (which have functional type) are allowed within them,
which are then called HO patterns. This corresponds to an intensional point of view of HO
patterns (see [?, 7]). Observe that in this approach function symbols, when partially applied,
behave as data constructors.

FEzxpressions e are of the forme := X | r| (e1,...,en) |ce1...en| fe1...en|eer...en,
where ¢ € CS™, n < m, f € FS™, n < m. Of course expressions are assumed to be
well-typed.

In addition to the arithmetic functions, we have the boolean primitive functions ==, /=,
<, <=, >, >= (notice the overloading of symbols, which can be solved by the context),
which can be understood as defined by the rules

X == = true <== X == X == = false <==X /=Y
and similarly for the others. For if then_else (which can be defined by rules), the usual
syntax ¢f _then _else _ is allowed.

Another distinguished feature of our language is that functions can be nondeterministic
(no confluence properties for the program are required). For example, the rules X //Y = X
and X // Y =Y constitute a valid definition for a ‘choice function’ // 1. The reduction of
(0//1) produces first 0 and then, if backtracking is required, 1. Following [?, ?] our language
adopts the so called call-time choice semantics for nondeterministic functions [?].

Predicates are particular cases of boolean functions, for which clausal notation is allowed.
The syntax pt1... tn :— ©1,...,¢k 18 a sugaring for p#1... 1, = true < ¢1,...,¢k.
Some more sugaring: < ..., b,... 1s an abbreviation for < ..., b == true,... With these
sugarings in mind and some obvious changes (like currying elimination), it is easy to see that
(pure) CLP(R)-programs are C'F L P(R)-programs.

If €, ¢’ have type real, then in order to satisfy a constraint e{¢’, e and ¢’ must be reduced
to primitive expressions (i.e., involving no defined function) r, s such that »{s is compatible
with the accumulated so far arithmetical constraints. Compatibility is checked by a constraint
solver. We stick here to the C'LP(R) philosophy: non-linear constraints are delayed. For
the non real case, ‘==’ and ‘/=’ are interpreted as strict equality and disequality. Such
constraints are transformed into some kind of solved forms. For instance, X /= [Y, Z] (which
covers infinitely many positive cases) is a solved form (see [?, 7] for details).

Goals take the form @1, ..., ¢r. Solving a goal means obtaining conditions (a mixture of
substitution and constraints) over their variables ensuring the satisfiability of the goal.

To give a complete semantic characterization of CFLP(R) is far out of the scope of
this paper. We may cite some works giving give solid foundations to different aspects of
the language: [?] explains how the untyped FO subset of CFLP(R) can be characterized
as an instance of the CFLP(X) scheme [?, ?]. [?, 7] study disequality constraints. [?, 7]
investigate nondeterministic functions in an FLP setting, for FO and HO cases respectively.
Polymorphic (and algebraic) types in an FLP setting are treated in [?].

1// is an example of infir operator, which are like in Haskell. Sections (partial applications of infix
operators) are also allowed.

3 Programming in CFLP(R)

We illustrate here different features of CFLP(R) by means of an example. We would like to
emphasize that all the pieces of code (for which we use typewriter style) are executable in
TOY(R) as they are (except for some reformatting, due to space reasons) and that answers
for example goals correspond to real execution of the program. We sometimes omit the
definition of (mainly HO) functions which are ‘standard’ in functional programming.

Types, functions, HO functions. Our program example deals with regions
(sets of points) in the plane. Following a usual approach in functional programming, we
identify regions with their characteristic functions. Points in the plane are simply pairs of
real numbers. So we introduce the type alias declarations type point = (real,real) and
type region = point -> bool. In order to give more ‘set-flavour’ to regions, we declare
an operator infixr 50 <<- (read ‘belongs to’ or ‘is in’) and define P <<~ R = R P.
Up to now, all definitions are almost pure sugaring, but nevertheless they contribute to the
writing of a more readable code. Next, we define a variety of regions or region generators:
the empty region, the whole plane, regions consisting of a single point, rectangles (defined by
their left-down and right-up corners), circles (defined by their center and radius). The infix
operators infixr 40 /\ and infixr 30 \/ are used for boolean (sequential) conjunction
and disjunction, whose definitions are standard. not is boolean negation.

emptyReg, thePlane:: region point:: point -> region

emptyReg P = false point P Q = P==Q

thePlane P = true

rectangle:: point -> point -> region

rectangle (A,B) (C,D) (X,Y) =4 <=X /NX<=C /NB<=Y /\Y<=D

circle:: point -> real =-> region

circle (A,B) R (X,Y) = (X-A)*(X-A)+(Y-B)*(Y-B) <= R#R

false /\ Y = false true \/ Y = true not true = false

true /\ Y =Y false \/ Y = Y not false = true

Observe that all these regions are two-valued boolean functions. We define now some basic
operations with regions: intersection, union, complement.

intersct, union:: region -> region —-> region

outside:: region -> region

intersct R R* P P <<- R /\ P <<- R~ outside R P = not (P <<- R)
union RR"P=P<<-R \/ P <R~

Notice that all these are HO functions, since regions are functions. The HO technology can

be used for readily defining presumably useful functions like the following for intersecting or
unioning lists of regions. The standard (in FP) HO function foldr is used.

intersctAll, unionAll:: [region] -> region

intersctAll = foldr intersct thePlane unionAll = foldr union emptyReg
We can define many other operations on regions, like movements. We introduce first vectors
in the plane (complex numbers) and arithmetic operations (+., =., *., /.) over them,
whose straightforward definitions are omitted. We introduce a new type-alias for vectors
type vector = (real,real). Now it is easy to define, e.g, translations (determined by a
vector) or homotheties (determined by the center and the factor of scale).

translate:: vector -> region -> region

homothety:: point -> real -> region -> region
translate VR P = (P -. V) <<- R

homothety C FR P = (C +. (P -. C) /. (F,0)) <<= R

Lazy evaluation, infinite structures. Since the language uses lazy evaluation,
we can define infinite structures like the infinite lists of regions obtained by application of
rayItems which are then unioned to form an ‘infinite region’ in ray.

rayItems:: vector -> region -> [region]

ray:: vector —-> region -> region

rayItems V R = [R|rayItems V (translate V R)]

ray V R = unionAll (rayItems V R)

As a subtlety, observe that ray V R can give only the value true (if a point P is not in ray
V R then the computation never ends), therefore it computes a semicharacteristic function.
This is not really our fault, since infinite unions of recursive sets are in general not recursive,
but only recursively enumerable.

Reversibility of functions. If we disregard syntactical differences, the program
written so far works as a functional (e.g. Haskell) program. The Haskell evaluation of an
expression e would correspond to solving the goal X == e. But our language provides a much
more flexible use of functions, due to the incorporation of constraint solving. For instance,
the goals P <<- rectangle (0,0) (1,1) and (1,1) <<- outside (point P) produce the
respective answers P == (_A, B) { B>=0, _B=<1, _A>=0, _A=<1 } and

P /= (1, 1) . Such goals make no sense in a functional language. In standard functional
logic languages they would fail (or produce a runtime error) since real arithmetic is an
impure feature which is not reversible. Notice that the disequality in the last answer is not
an arithmetic constraint but a syntactic disequality constraint, one of the abilities of our
language.

As a consequence of the possibility of solving goals with logical variables ranging over
reals, we can define functions in CFLP(R) which are not Haskell-like functions anymore.
For instance, we can define the predicate

move:: vector -> region -> region

move (U,V) R P :- 0 <= A, A <= 1, translate (A*U,A*V) R P
which recognizes if the region traversed by the translation of a region R through a vector
(U, V) meets the point P. Notice the existential reading of the variable A in the condition?,
whose appearance precludes a direct counterpart of this definition in a functional language.
In CFLP(R), the goal P <<~ move (1,2) (rectangle (0,0) (1,1)) gives the answer

P == (_A,_ B) {_A-0.5%_B=<i, _A-0.5%_B>= -0.5, _A>=0, A=<2, _B>=0, _B=<3}.

Comparing CFLP(R) with CLP(R): a discussion. It is generally accepted
that polymorphic types, lazy evaluation and HO features are powerful tools for writing
concise, highly descriptive and well structured programs. This is justification enough for
a functional extension of a constraint logic language, but there are further reasons, not so

2This existential variable is responsible of having defined move as a predicate that, as in the case of ray,
computes a semicharacteristic function. Again this is not our fault, since existential quantification does not
preserve recursivity.

frequently discussed, which can be well illustrated by our program example.

The definition of, e.g., rectangles is much more cumbersome in a CLP language, if both
values true and false are expected as possible when asking if a point is in a rectangle. The
obvious CLP-definition

rectangle((4,B),(C,D),(X,Y)) :- {A=<X,X=<C,B=<Y,Y=<D}.

({ - } in CLP-code denotes invocation to the constraint solver) only serves for obtaining
positive answers. As it is well known, negation as failure can only deal correctly with ground
goals, and constructive negation is very hard to implement.

Of course, it is possible to redefine rectangle adding an argument with possible values
true and false. The new CLP-definition could look like this:

rectangle((A,B),(C,D),(X,Y), true) :- {A =< X, X =< C, B=<7Y, Y =<D}.
rectangle((4,B),(C,D),(X,Y),false) :- {A>X ; X >C ; B>Y ; Y > D}

This is less clear than the CFLP(R) definition and, in addition, the CL.P-goal
rectangle((0,0),(1,1),P,false) gives answers with some amount of redundancy, in con-
trast to the analogous C'FLP(R)-goal false == P <<- rectangle (0,0) (1,1) which
gives the incompatible answers

P == (_A, _B) P == (_A, _B) P == (_A, _B) P == (_A, _B)}
{ _B>1.0 } { _B<0.0 } {_>1.0} { _A<0.0 }
{_ >=0.0} { _4>=0.0}

{ _A=<1.0} { _A=<1.0}

To obtain incompatible answers we can explicitly incorporate to each disjunct in the second
clause for rectangle//] the negation of the previous ones, resulting in a much more complicated
and error-prone way of proceeding. Trying to be more ‘abstract’, we could recognize the
usefulness of programming (the relational counterpart of) boolean functions for =<, >=, ...

and for the boolean connectives and, or, ... We could then write
leq(X,Y,true) :- {X =< Y}. and(false,X,false).
leq(X,Y,false) :- {X >= Y}. and(true,X,X).

and similarly for the others. We could rewrite rectangle/4 into the more ‘functional’ version

rectangle((4,B),(C,D),(X,Y),Truth) :-
leq(A,X,T1),leq(X,C,T2),1leq(B,Y,T3),1leq(Y,D,T4),
and(T1,T2,U),and(U,T3,V),and(V,T4,Truth).

In fact, this resembles closely our CFLP(R) definition of rectangles, but is nevertheless
much less readable due to the difficulty in this case of using infix operators (since predicates
are ternary) and, more significantly, to the need of unnesting function applications (of and
in this case). Furthermore, this new definition again results in non incompatible answers for
many goals. But this is not all. The flattening of nested applications has the unpleasant
consequence that much computational effort can be wasted if we are mimicing with predic-
ates (like and/3) non strict functions (like /\, which is not strict in its second argument).
For instance, for solving the CLP-goal rectangle((0,0),(2,2),(-1,1),false), all the
conditions in the body of the last clause must be proved, while it seems that after proving
leq(0,-1,false), we can immediately conclude that the conjunction is false. Another un-
pleasant effect of the same fact is that search spaces can be increased. For instance, the

CLP-goal rectangle((0,0),(2,2),(-1,P),false) produces three answers constraining P,
instead of succeeding without any condition over P, as happens with the CFLP(R)-goal
false == (-1,P) <<- rectangle (0,0) (2,2). Of course, CLP-programmers can argue
that the above definition of rectangle is still a bad one, and that intermediate truth values
should be passed through invocations to leq, avoiding the comparisons leq(_, _,_) when a
value false is obtained. This results in something similar to the following CLP-definition.

rectangle((4,B),(C,D),(X,Y),Truth) :-
leq(A,X,T1),leqIfTrue(T1,X,C,T2),leqIfTrue(T2,B,Y,T3),leqIfTrue(Y,D,T4).

leqIfTrue(false,_,_,false). leqIfTrue(true,X,Y,T) :- leq(X,Y,T).

We think that the CFLP(R) formulation is clearly simpler, more ‘descriptive’, and better
structured than this one.

Higher order logic computations. In CFLP(R), variables with HO type are
allowed during execution. In this case, the system tries to instantiate the variable to a HO
pattern which satisfies the goal. For instance, for the goal (0,0) <<- R, we expect R to be
instantiated to HO patterns denoting regions containing the point (0,0). Some (selected)
answers provided by the system are:

== (point (0, 0))

== (rectangle (_A, _B) (_C, _D)) { _C>=0, _A=<0, _B=<0, _D>=0 }
== (outside emptyReg)

== (outside (point _A)) { _& /= (0, 0) }

R == (outside (outside (point (0, 0))))

o o oo

Higher order patterns. Among the HO capabilities of our language, it is remarkable
the possibility of using HO patterns in left hand sides of rules for function definitions. In
practice this means that we can distinguish cases, when defining a HO function, according
to different ‘intensional shapes’ that an argument (of HO type) can adopt.

Let us revise, for instance, our definition of intersct. It was a good definition, but we
may want to take into account the fact that intersecting the empty region with any other
gives the empty region, or that by intersecting rectangles we obtain again a rectangle. HO
patterns allow us to express easily this kind of things, as it is done in the following variation
of intersct. A similar treatment could be done for union of regions.

intersct”:: region -> region -> region
intersct’” emptyReg R = emptyReg
intersct” R emptyReg = emptyReg
intersct”’ (rectangle (4,B) (C,D)) (rectangle (A°,B°) (C",D7)) =
if (A" <=¢C"") /\ (B°" <= D’") then rectangle (A°°,B°") (C**,D"")
else emptyReg
<== A““==max A A , B°==max B B?, C°==min C C* , D°“== min D D~
% Now, the default rule
intersct” R R“ = intersct R R~ % Uses the old definition
<== Y 1if none of the above situations apply
R /= emptyReg, R’ /= emptyReg,
(R,R") /= (anyRectangle,anyRectangle).

anyRectangle = rectangle undefined undefined
undefined = undefined <== true == false

The last rule of intersct ’ requires some explanations. If we had written no condition, then
the default rule would be applicable to any pair of regions, including the empty region and
rectangles. Tt is not incorrect, but will produce two alternative computations for such cases,
while the idea was: proceed in a particular way for the the empty region and rectangles,
and in a default way in the rest of the cases. The condition of the last rule is interesting by
itself, since 1t reveals a somehow surprising aspect of our syntactic disequality constraints,
as is the capability of expressing certain universally quantified disequations. We explain this
now. The (constant) function undefined, whose evaluation simply fails, can be thought as
denoting the least defined element (L) of each type. The conditions t == L and t/= L do
not hold, for any ¢ (including L itself). As a consequence, a condition of the form X /= ¢
undefined is equivalent to say VY (X /= ¢ Y), i.e., X does not take the form (¢ _). In our
example, the condition (R,R*) /= (anyRectangle,anyRectangle) expresses that either R
or R~ does not take the form (rectangle _), so the rule for intersecting rectangles cannot
be applied.

HO patterns can be used for partially defining functions which are computable in par-
ticular cases, but not in general. As an example, consider inclusion of regions, which is
undecidable in general. But it is possible to define inclusion for particular cases. We can
make explicit such cases or, as we do here, reuse intersect’ for capturing them. The case
of ‘non-inclusion’ can be treated with more generality.

(<<):: region -> region -> bool
R << R’ = true <== intersct”’ R R’ ==
R << R’ = false <== P <<- R, not (P <<- R")

Nondeterministic functions Nondeterministic (ND) functions can be profitably
used instead of relations in some occasions. This is particularly true in presence of lazy
evaluation, as is our case. We show with an example how the typically inefficient generate-
and-test programming scheme of logic programming can be converted into a more efficient
one if generation is done by means of a ND function, which is lazily evaluated according
to the demand of the test. If the test is incremental and fails for the (partially generated)
current candidate solution, then it is rejected without the need of completing its generation,
and by backtracking a new candidate is tried. In a lazy functional language one could follow
the same approach, but replacing backtracking by a (lazy) traversal of the (lazily generated)
list of all solutions, which can be a very large intermediate structure.

A simple (but still with some interest) situation of this kind is the following: given a region
R and a sequence of movements Mvs, we want to reorder Mvs into a new list of movements
Mvs “ whose sequential application to R avoids to meet any of the points of a list Pts. We first
program as separate concerns the generation of candidate solutions (this is done by means
of a ND function permut Mvs) and the check of validity of one candidate Mvs * (this is done
by means of check R Pts Mvs~, whose definition uses some standard HO functions). If we
had ‘“where-constructions’in our language, we would then define the top level function as

solution R Pts Mvs = Mvs”® <== check R Pts Mvs~
where Mvs~® = permut Mvs % This is not true CFLP(R)

As it is well known, ‘where-constructions’can be lifted, and this is done so in the CFLP(R)-
program below, which uses the ND function // of Sect. 77.

permut [1 = []
permut [X|Xs] = insert X (permut Xs) % It is ND, since insert is ND

insert X [1 = [X]
insert X [Y|Ys] = [X,Y|Ys] // [Y|insert X Ys] % ND choice

check R Pts Mvs :- avoids Pts (doMoves R Mvs)

avoids Pts R = all (not.(<<- R)) Pts ¥% all and (.) are standard
%(doMoves R [Mv,Mv’,Mv°“,...]) is R “union~ (Mv R) “union®> (Mv~ (Mv R))...
doMoves R [] =R

doMoves R [Mv|Mvs] = union R (doMoves Mvs (Mv R))

solution R Pts Mvs = solAux R Pts (permut Mvs)
Ywhere
solAux R Pts Mvs = Mvs <== check R Pts Mvs

For instance, the goal
X == solution (rectangle (0,0) (2,2)) [(3,3)] [(homothety (0,0) 2),
(homothety C 0.5), (translate (2,2)),(translate (1,1))],
C <<- (rectangle (-1,-1) (0,0))
has three solutions, the first one being
¢ == (0, _A)
X == [(homothety (0, _A) 0.5), (tramslate (2, 2))
(homothety (0, 0) 2), (translate (1, 1))]
{_A > -1, _4 < -0}
It would be easy to generalize solution to a HO function implementing a generic lazy
generate-and-test programming scheme, having as parameters the generator, the test and the
parameters of the problem.

4 Execution mechanism

Like in CLP, constraints are independent of functions: when a constraint appears in a logic
program the solver is invoked. In the same way, the constraint solver over reals is invoked
when needed in CF LP(R), while keeping the operational mechanism of the underlying func-
tional logic language: lazy narrowing in our case. The computation strategy corresponds
to the demand driven strategy (dds, for short) presented in [?], which is closely related to
‘needed narrowing’ [?], a strategy proved to be optimal for a distinguished class of term
rewriting systems. Dds is based on the idea of evaluating subterms just when a demand
exists. The demand is determined by the shape of the rules left hand sides (lhs, for short).
The integration of constraints over real numbers does not require any modification on the
above strategy. Constraint resolution comes into play when a rule is to be applied: the
constraints must be satisfied. The ‘compilation-to-Prolog’ approach [?, ?] followed in the
implementation of the language motivated us to take advantage of some existing CLP(R)
system, instead of designing and implementing from scratch our own solver for real con-
straints. The main idea for managing real constraints is to manipulate them until we obtain

a suitable CLP(R) format, i.e. to evaluate the involved C'FLP(R) expressions until we get
CLP(R) expressions.

We concentrate here in FO computations, since we treat HO a la Warren [?, 7, 7], i.e.,
by translation to FO.

In the rest of this section, we start roughly presenting the dds-strategy for lazy narrowing,
followed by some comments about the interaction with the C'LP(R) constraint solver. We
end observing that sharing cannot be regarded as an optional optimization, but as something
needed in order to ensure the soundness of the answers.

4.1 The Demand Driven Strategy for Lazy Narrowing

A formal presentation of this strategy is far out of the scope of this paper; the reader can find
the details in [?]. All along this section, we use the rules Rijpt = {R; =1; = ¢; <= C; | 1 <
i < 4} (numbered in textual order) for the function intersct’ (see Sect. 7?) to illustrate
the strategy.

We start with some preliminary notions concerning the demanded positions in the lhs of
the defining rules. Let Ry = {R; | 1 < i < m} denote the set of the defining rules for a
function symbol f. Let u denote a position. We say:

e u is demanded by the lhs of a rule R; iff it has a constructor at position u.
o u is demanded iff u is demanded by the lhs of some rule R; € R;.

o u is uniformly demanded iff u is demanded by every lhs of the rules in Ry.

The study of the different kinds of demand in the defining rules of a function symbol f
would lead to the definition of the dds-strategy. The defining rules are expressed by a dds-tree
whose intended meaning is to reflect the strategy. In Fig. 7?7 we show the dds-tree related to
the function intersct”, and in the following we try to explain the strategy by means of it.

Looking at the rules for intersct *, we observe the following situation: Ry and R3 demand
position 1, Rs and Rs demand position 2, whereas R4 does not demand any position. A
uniformly demanded position does not exist with respect to the whole set of rules. We
proceed splitting R;,; into three subsets: S; = {Ri, R3},S2 = {R2},Sp = {Ra4}, in such
a way that position 1 is uniformly demanded by the rules in S, position 2 is uniformly
demanded by the rules in S5, and Sy contains a single rule that does not demand any
position.

Figure 1: dds-tree for intersct”’

For each subset that uniformly demands a position 2, the idea is that when the function
is called, say intersct’ e; es, the expression that occurs at position ¢ must be evaluated to
head normal form. Looking at the tree in Fig. 77, the first branch illustrates that position
1 is uniformly demanded. If evaluating e; yields emptyReg or (rectangle _ _) or a logic
variable, the rules in S; are applied. The first two results would lead to apply the appropriate

rule (Ry or Rs), while obtaining a variable as result would not allow to discard any of the
rules: this suggests a choice point at the implementation level.

If after evaluating e; we do not obtain any of the above results, or if another answer
is asked for, we would continue with the second branch of the tree. Now, position 2 is
uniformly demanded and the process is the same than above, except that in order to apply
Rs, evaluating es has to yield emptyReg or a logic variable. Again, if it were not the case or
if we asked for another answer, we would consider the third branch. This branch does not
demand evaluation of the arguments and could be tried directly.

At the implementation level, the strategy reflected by the dds-tree of Fig. 77 is expressed
by means of the following CLP(R) clauses:

int(R,R”,H) :- hnf(R,HR), int;(HR,R,H).
int(R,R”,H) :- hnf(R’,HR’), ints(R,HR’,H).
int(R,R",H) :- solve((}), hnf(ey ,H).

They represent the nodes at the first level of the tree.

int) (emptyReg,R’,emptyReg).
inty ((rectangle (A,B) (C,D)),R”,H) :- hnf(R“,HR"),
inty 5((rectangle (A4,B) (C,D)),HR",H).

ints (R, emptyReg,emptyReg) .

These clauses reflect the situation at the second level of nodes.

inty 3((rectangle (4,B) (C,D)),(rectangle (A°,B") (C°,D7)),H) :-
solve((C3), hnf(es,H).

Finally, this clause corresponds to the third level node.

There are two main predicates: hAnf(E, H), which specifies that H is one of the pos-
sible results of narrowing the expression £ into head normal form, and solve, which solves
constraints (of rules and goals), and that is going to be explained in the next subsection.

The above code does not correspond exactly to the implementation, which is the result
of many transformations and optimizations. Some of them are pointed out in Sect. 77.

4.2 Constraint solving

As it has been shown in the above example, the need for solving constraints appears in the
rule application context. Prior to give the result of applying a given rule, we have to satisfy
the constraints (if it were the case). This is done by means of the following predicate:

solve((y, ¢')) — solve(p),solve(y’).

solve(L==R) :— hnf(L,L'),hnf(R,R’), equal(L’,R’).
solve(L /=R) :— hnf(L,L),hnf(R,R’), notequal(L’,R’).
solve(L $ R) :— hnf(L,L’) hnf(R,R'), {L'OR'}.

%Y Qe <, <=,>,>=}

The interaction with the CLP(R) solver is reflected in the last clause. Notwithstanding,
every time a constraint (or an operation) over real expressions (i.e. with type real) appears
the CLP(R) solver will be eventually invoked. The idea is always the same. The expressions

have to be ‘simplified’ in order to let the CLP(R) system to solve the constraint. By
simplifying we mean computing the head normal forms of both expressions. Doing this, we
get a ‘simplified’ constraint written in the proper C'LP(R) syntax, due to the fact that these
hnf are going to be either logic variables or real numbers.

With strict equality (‘==") and disequality (‘/=’) we follow the same ideas presented in
[?, 7], apart from the straightforward extensions for dealing with real numbers.

4.3 Sharing

As pointed out in Sect. 77 nondeterministic functions are allowed in our framework. Owing
to this fact, sharing is essential: it is not regarded as an optimization, but its incorporation
turns to be inevitable as the following example (inspired in Hussmann [?]) shows.

coin

1l
= O

coin

double X = X + X

Consider the goal (double coin). If sharing were not supported, we could obtain 1 as an
answer, which is unsound for the ‘call-time choice’ semantics mentioned in Sect. ??. In the
presence of sharing, the only two answers for the above goal are 0 and 2. Both of them are
sound.

5 Implementation issues.

In this section we show some aspects of the implementation of TOY(R), specially those
referring to constraints. The system is implemented in Sicstus Prolog 3.3, which provides
a solver for real constraints developed by C. Holzbaur [?]. The translation of functions is
basically the one presented in Sect. 7?7 with many optimizations, such as unfoldings, swapping
arguments for a better indexing, elimination of unnecessary arguments, etc. Some of this
optimizations (but not all) can be found in [?, ?].

TOY(R) supports three kinds of constraints:

e Strict equalities, e == ¢’. They are treated as in [?, 7] with some new optimizations.
The two most important are: a) when one of the expressions begins by a constructor
symbol we imitate it, that is, we calculate a head normal form of the other, but oriented
to the first one in order to fail as soon as possible if both terms are not equal. For
instance, if we have e==(c), we first calculate hnf(e,c(X)), where X is a tuple of
new variables. This optimization reduces the search space and has better termination
properties in general. b) When both expressions are already in head normal form, we
first look for a conflict of constructors, in order to fail as soon as possible without
narrowing anything. At the same time, we build a ’continuation’ (the set of constraints
to be solved next), if no conflict is found. This implementation has better termination
properties than a naive one, as shown by the example (¢ loop a) == (c loop b) (where
¢,a,b are constructor symbols and loop is an expression whose evaluation does not end).
A naive strategy would decompose, proceeding sequentially with the new equalities
loop == loop and a == b, thus incurring in non-termination, while our implementation
is able to immediately fail because of the conflict @ == 5.

e Disequality, e /= e’. Here no orientation is possible. Then both terms are narrowed
to head normal form from the beginning (as in [?, ?]) and then the optimization b) for
equality of head normal forms is suitable here (looking for conflict of constructors in
order to get immediate success). Let us comment how TOY(R) deals with constraints
of the form X /= (c &), like X /= (suc e) (where zero and suc are the constructors
symbols for the type of natural numbers). If e is a pattern, then X /= (suc e) is in
solved form and the disequality is stored. If e involves defined functions, TOY(R)
does not perform, in a first alternative, any narrowing step over e, but guarantees
the disequality binding X to zero. As a second alternative, to be eventually activated
by backtraking, X /= (suc e) will be transformed into X == (suc Y), Y /= e, for
which TOY(R) would need to narrow e in order to solve it. This is the natural way to
implement disequalities with the philosophy of laziness and to preserve its semantics.

e Arithmetic constraints over reals, which, of course, include equality and disequality.
The system has a group of predefined arithmetic functions which perform all the re-
quired numerical computations. The code for dealing with constraints over reals is
isolated from the rest because all the calls to the solver appear into the code of these
functions. For example, the function + has the following code:

+(X,Y,H) - hnf(X,HX), hnf(Y,HY), {H = HX+HY} .

In presence of a disequality we must distinguish at run-time whether it is a syntactic
one or it must be send to the solver.

The first and second kinds are in the base of the system and they were supported in a
previous version. TOY(R) also implements the equality-function and disequality-function
much more efficiently than the naive ones presented in Sect. 77 taking advantage of some
optimizations.

We end this section with some comments about showing answers for goals in TOY(R),
which has been by far the more difficult task when incorporating constraints to TOY for
obtaining TOY(R). The main problems have come from the fact that Sicstus Prolog 3.3
does not provide good communication facilities with the solver (specially a predicate for
projecting constraints). We need the definition of relevant variables to describe how answers
are presented. We say that a variable is relevant in an answer if: a) it appears in the goal, b)
it appears in a term to which a variable of the goal is bound, or c) it appears in a non-linear

constraint over real numbers. Using this concept the answer is formed by:
e Bindings (showed as equalities) for variables appearing in the goal.

o Relevant syntactic disequalities. A disequality is relevant if it contains some relevant
variable in some of its terms.

e Constraints over real numbers that are calculated by making the projection over the
set of relevant variables.

6 Conclusions

We hope to have convincingly demonstrated the interest and suitability of CFLP(R), a
functional logic programming language enhanced with the possibility of using real arith-
metic constraints. Due to its functional component, CFLP(R) provides better tools, when

compared to C'LP(R), for a productive declarative programming. Due to the use of con-
straints, the expressivity and capabilities of our language are clearly superiour to those of
a functional language. The language can be applied to a wide range of problems which
include all CLP(R) applications and typical uses of functional programming for numerical
algorithms.

For the execution mechanism of the language, we have easily integrated constraint solving
into a sophisticated, state-of-the-art execution mechanism for lazy narrowing. This leads nat-
urally to an implementation where C'F' L P(R)-programs are translated into a Prolog system
equipped with a constraint solver. The merit of our approach, if any, is to show how easily
existing constraint technology can be integrated into a functional logic framework. Tt seems
clear to us that what have be done by us with linear real constraints can be realized also
with other kind of interesting constraint systems, such as nonlinear constraints, constraints
over finite domains, or boolean constraints.

Acknowledgements: We thank Christian Holzbaur for kindly helping us with some aspects of his
constraint solver; we are indebted to Puri Arenas, Rafa Caballero and Juan Carlos Gonzélez for
their help while developing and writing the work. This research has been partially supported by
the Spanish National Project T1C95-0433-C03-09 “CPD” and by the Esprit BRA Working Group
EP-22457 “CCL 11”.

References

[1] Antoy S., Echahed R., Hanus M.: A Needed Narrowing Strategy. 21st ACM Symp. on Principles
of Programming Languages, 268-279, Portland 1994.

[2] Arenas-Sanchez P., Gil-Luezas A., Lépez-Fraguas F.J.: Combining Lazy Narrowing with Dis-
equality Constraints. Procs. of PLILP’94, Springer LNCS 844, 385-399, 1994.

[3] Arenas-Sanchez P., Rodriguez-Artalejo M.: A Semantic Framework for Functional Logic Pro-
gramming with Algebraic Polymorphic Types. Procs. of CAAP’97, to appear, 1997.

[4] Darlington J., Guo Y.K.: A New Perspective on Integrating Functions and Logic Languages.
Procs. of the 3rd Conference on Fifth Generation Computer Systems, Tokyo, 682-693, 1992.

[5] Gonzalez-Moreno J.C.: A Correctness Proof for Warren’s HO into FO Translation. Procs. of
GULP’93, 569-585, 1993.

[6] Gonzalez-Moreno J.C., Hortald-Gonzdlez T., Rodriguez-Artalejo M.: On the Completeness of
Narrowing as the Operational Semantics of Functional Logic Programming. Procs. of CSI.’92,
Springer LNCS 702, 216-230, 1993.

[7] Gonzalez-Moreno J.C., Hortald-Gonzélez T., Lépez-Fraguas F.J, Rodriguez-Artalejo M.: A
Rewriting Logic for Declarative Programming. Procs. of ESOP’96, Springer LNCS 1058, 156—
172, 1996.

[8] Gonzdlez-Moreno J.C., Hortald-Gonzdlez T., Rodriguez-Artalejo M.: A Higher Order Rewrit-
ing Logic for Functional Logic Programming. Procs. of ICLLP’97, to appear, 1997.

[9] Hanus M.: Efficient Translation of Lazy Functional Logic Programs into Prolog. Procs. of
LOPSTR’95, Springer LNCS 1048, 252-266.

[10] Hanus M.: The Integration of Functions into Logic Programming: A Survey. Journal of Logic
Programming 19-20. Special issue “Ten Years of Logic Programming”, 583-628, 1994.

[11] Report on the Programming Language Haskell: a Non-strict, Purely Functional Language.
Version 1.4, Peterson J. and Hammond K. (eds.), January 1997.

Holzbaur C.: OFAI clp(Q,R) Manual. Edition 1.3.3, Austrian Research Institute for Artificial
Intelligence, Vienna, TR-95-09, 1995.

Hussmann H.:. Non-determinism in Algebraic Specifications and Algebraic Programs.
Birkhauser, 1993.

Jaffar J., Lassez J.I... Constraint Logic Programming. Procs. of the 14th ACM Symp. on
Principles of Programming Languages, 114-119, Munich 1987.

Jaffar J., Maher M.J.: Constraint Logic Programming: A Survey. Journal of Logic Program-
ming 19/20, 503-582, 1994.

Jaffar J., Michaylov S., Stuckey P.J., Yap R.H.C.: The CLP(R) Language and System. ACM
Transactions on Programming Languages and Systems, Vol. 14, No. 3, 339-395, July 1992.

Loogen R., Lépez-Fraguas F.J, Rodriguez-Artalejo M.: A Demand Driven Computation
Strategy for Lazy Narrowing. Procs. of PLILP’93, Springer LNCS 714, 184-200, 1993.

Lépez-Fraguas F.J.: A General Scheme for Constraint Functional Logic Programming. Procs.
of ALP’92, Springer LNCS 632, 213-217, 1992.

Lépez-Fraguas F.J.: Programacién funcional y logica con restricciones. PhD thesis, DIA-UCM,
Madrid 1994.

Mandel L.: Constrained Lambda Calculus. Shaker, 1995.

Moreno-Navarro J.J., Rodriguez-Artalejo M.: Logic Programming with Functions and Predic-
ates: The Language BABFEL. Journal of Logic Programming 12, 189-223, 1992.

Miick A., Streicher T., Lock H.: A Tiny Constraint Functional Logic Language and Its Con-
tinuation Semantics. Procs. of ESOP’94, Springer LNCS 788, 439-453, 1994.

Naish L.: Higher-order Logic Programming in Prolog. Procs. of the JICSLLP’96 Post-Conference
Workshop “Multi-Paradigm Logic Programming”, Chakravarty M.M.T'., Guo Y. and Ida T.
(eds), Report 96-28, Technische Universitat Berlin, September 1996.

Pfenning F.: Types in Logic Programming. The MIT Press, 1992.

Warren D.H.D: Higher-order extensions to Prolog: are they needed?. Hayes J.E., Michie D. and
Pao Y-H. (eds), Machine Intelligence 10, Ellis Horwood, 441-454, 1982.

