
EAAI 2006

On Abstraction-Carrying Code and
Certificate-Size Reduction

Germán Puebla1 Elvira Albert2

Puri Arenas2 Manuel Hermenegildo1,3

1 Technical University of Madrid, {german,herme}@fi.upm.es

2 Complutense University of Madrid, {elvira,puri}@sip.ucm.es

3 University of New Mexico, herme@unm.edu

Abstract

Abstraction-Carrying Code (ACC) is a framework for mobile code safety in which
the code supplier provides a program together with an abstraction (or abstract
model of the program) whose validity entails compliance with a predefined safety
policy. The abstraction plays thus the role of safety certificate and its generation
is carried out automatically by a fixed-point analyzer. The advantage of provid-
ing a (fixed-point) abstraction to the code consumer is that its validity is checked
in a single pass (i.e., one iteration) of an abstract interpretation-based checker.
A main challenge to make ACC useful in practice is to reduce the size of certifi-
cates as much as possible, while at the same time not increasing checking time.
Intuitively, we only include in the certificate the information which the checker is
unable to reproduce without iterating. We introduce the notion of reduced cer-

tificate which characterizes the subset of the abstraction which a checker needs
in order to validate (and re-construct) the full certificate in a single pass. Based
on this notion, we show how to instrument a generic analysis algorithm with the
necessary extensions in order to identify the information relevant to the checker.

1 Introduction

Proof-Carrying Code (PCC) [?] is a general framework for mobile code
safety which proposes to associate safety information in the form of a cer-
tificate to programs. The certificate (or proof) is created at compile time by
the certifier on the code supplier side, and it is packaged along with the code.
The consumer who receives or downloads the (untrusted) code+certificate
package can then run a checker which by an efficient inspection of the code
and the certificate can verify the validity of the certificate and thus com-
pliance with the safety policy. The key benefit of this “certificate-based”

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Puebla, Albert, Arenas, Hermenegildo

approach to mobile code safety is that the consumer’s task is reduced from
the level of proving to the level of checking, a task that should be much
simpler, efficient, and automatic than generating the original certificate.

Abstraction-carrying code (ACC) [?,?] has been recently proposed as
an enabling technology for PCC in which an abstraction (or abstract model
of the program) plays the role of certificate. An important feature of ACC
is that not only the checking, but also the generation of the abstraction is
automatically carried out by a fixed-point analyzer. In this paper, we will
consider analyzers which construct a program analysis graph which is inter-
preted as an abstraction of the (possibly infinite) set of states explored by
the concrete execution. To capture the different graph traversal strategies
used in different fixed-point algorithms, we use the generic description of
[?], which generalizes the algorithms used in state-of-the-art analysis en-
gines. Essentially, the certification/analysis carried out by the supplier is
an iterative process which repeatedly traverses the analysis graph until a
fixpoint is reached. The analysis information inferred for each call which
appears during the (multiple) graph traversals is stored in the answer table
[?]. After each iteration (or graph traversal), if the answer computed for
a certain call is different from the one previously stored in the answer ta-
ble, both answers are lubbed and the result is used 1) to update the table,
and 2) to enforce recomputation of those calls whose answer depends on it.
In the original ACC framework, the final full answer table constitutes the
certificate. The key idea is that, since the certificate contains the fixpoint,
a single pass over the analysis graph is sufficient to validate the certificate
in the consumer side. It should be noted that the ACC framework and our
work here are defined at the source-level, whereas in existing PCC frame-
works the code supplier typically packages the certificate with the object
code rather than with the source code (both are untrusted). The reasons
and motivations for our approach can be found in [?].

One of the main challenges for the practical uptake of ACC (and re-
lated methods) is to produce certificates which are reasonably small. This
is important since the certificate is transmitted together with the untrusted
code and, hence, reducing its size will presumably contribute to a smaller
transmission time –very relevant for instance under scarce (or expensive)
network connectivity conditions. Also, this reduces the storage cost for the
certificate. Nevertheless, a main concern when reducing the size of the cer-
tificate is that checking time is not increased as a consequence. In principle,
the consumer could use an analyzer for the purpose of generating the whole
fixpoint from scratch, which is still feasible as analysis is automatic. How-
ever, this would defeat one of the main purposes of ACC, which is to reduce
checking time. The objective of this paper is to characterize the subset
of the abstraction which must be sent within a certificate and which still
guarantees a single pass checking process.

2

Puebla, Albert, Arenas, Hermenegildo

Fixpoint compression is being used in different contexts and tools. For
instance, in the Astrée analyzer [?], only one abstract element by head of
loop is kept for memory usage purposes. In the PCC scheme, the basic idea
in order to compress a certificate is to store only the analysis information
which the checker is not able to reproduce by itself [?]. For instance, this
general idea has also been deployed in lightweight bytecode verification [?]
where the certificate, rather than being the whole set of frame types (FT)
associated to each program point as obtained by standard bytecode verifi-
cation [?], is reduced by omitting those (local) program points FTs which
correspond to instructions without branching and which are lesser than the
final FT (fixpoint). Our proposal for ACC is at the same time more gen-
eral (because of the parametricity of the ACC approach) and carries the
reduction further because it includes only the analysis information of those
calls in the analysis graph whose answers have been updated, including both
branching and non branching instructions. The intuition is that, when there
is at most one (initial) update during the computation of an entry in the an-
swer table, the part of the analysis graph associated to it has been computed
in one traversal, i.e., its fixpoint has been reached in a single pass. Hence,
we can safely extract such information from the certificate and the checker
should still be able to re-generate it in a single pass. In this work, we intro-
duce the notion of reduced certificate which characterizes the subset of the
abstraction which the checker needs in order to validate (and re-construct)
the full certificate in a single pass. Then, we show how to instrument the
generic analysis algorithm of [?] with the necessary extensions in order to
identify relevant information to the checker.

The rest of the paper is organized as follows. The following section
presents a general view of ACC. Section 3 recalls the certification process
performed by the code supplier and illustrates it through our running ex-
ample. In Section 4, we characterize the notion of reduced certificate and in
Section 5, we instrument a generic certifier for its generation. Finally, Sec-
tion 6 concludes and discusses the work presented in this paper and future
work.

2 A General View of Abstraction-Carrying Code

We assume the reader is familiar with abstract interpretation (see [?]) and
(Constraint) Logic Programming (C)LP (see, e.g., [?] and [?]).

A certifier is a function certifier : Prog ×ADom ×AInt 7→ ACert which
for a given program P ∈ Prog , an abstract domain Dα ∈ ADom and a
safety policy Iα ∈ AInt generates a certificate Certα ∈ ACert , by using
an abstract interpreter for Dα, which entails that P satisfies Iα. In the
following, we denote that Iα and Certα are specifications given as abstract
semantic values of Dα by using the same α.

The basics for defining such certifiers (and their corresponding checkers)

3

Puebla, Albert, Arenas, Hermenegildo

in ACC are summarized in the following six points:

Approximation. We consider an abstract domain 〈Dα,v〉 and its corre-
sponding concrete domain 〈2D,⊆〉, both with a complete lattice structure.
Abstract values and sets of concrete values are related by an abstraction
function α : 2D → Dα, and a concretization function γ : Dα → 2D. An
abstract value y ∈ Dα is a safe approximation of a concrete value x ∈ D
iff x ∈ γ(y). The concrete and abstract domains must be related in such
a way that the following holds [?] ∀x ∈ 2D : γ(α(x)) ⊇ x and ∀y ∈
Dα : α(γ(y)) = y. In general v is induced by ⊆ and α. Similarly, the
operations of least upper bound (t) and greatest lower bound (u) mimic
those of 2D in a precise sense.

Analysis. We consider the class of fixed-point semantics in which a (mono-
tonic) semantic operator, SP , is associated to each program P . The
meaning of the program, [[P]], is defined as the least fixed point of the SP

operator, i.e., [[P]] = lfp(SP). If SP is continuous, the least fixed point is
the limit of an iterative process involving at most ω applications of SP

starting from the bottom element of the lattice. Using abstract inter-
pretation, we can usually only compute [[P]]α, as [[P]]α = lfp(Sα

P). The
operator Sα

P is the abstract counterpart of SP .

analyzer(P,Dα) = lfp(Sα
P) = [[P]]α(1)

Correctness of analysis ensures that [[P]]α safely approximates [[P]], i.e.,
[[P]] ∈ γ([[P]]α).

Verification Condition. Let Certα be a safe approximation of P . If an
abstract safety specification Iα can be proved w.r.t. Certα, then P satisfies
the safety policy and Certα is a valid certificate:

Certα is a valid certificate for P w.r.t. Iα if Certα v Iα(2)

Certifier. Together, equations (1) and (2) define a certifier which provides
program fixpoints, [[P]]α, as certificates which entail a given safety policy,
i.e., by taking Certα = [[P]]α.

Checking. A checker is a function checker : Prog ×ADom×ACert 7→ bool
which for a program P ∈ Prog , an abstract domain Dα ∈ ADom and a
certificate Certα ∈ ACert , checks whether Certα is a fixpoint of Sα

P or
not:

checker(P,Dα, Certα) returns true iff (Sα
P (Certα) ≡ Certα)(3)

Verification Condition Regeneration. To retain the safety guarantees,
the consumer must regenerate a trustworthy verification condition –Equa-
tion 2– and use the incoming certificate to test for adherence of the safety
policy.

P is trusted iff Certα v Iα(4)

A fundamental idea in ACC is that, while analysis –equation (1)– is an

4

Puebla, Albert, Arenas, Hermenegildo

iterative process, checking –equation (3)– is guaranteed to be done in a
single pass over the abstraction.

3 Generation of Certificates in ACC

This section recalls ACC and the notion of full certificate in the context of
(C)LP [?]. For concreteness, we build on the algorithms of CiaoPP [?].

3.1 The Analysis Algorithm

Algorithm 1 has been presented in [?] as a generic description of a fixed-
point algorithm which generalizes those used in state-of-the-art analysis
engines, such as the one in CiaoPP [?]. In order to analyze a program,
traditional (goal dependent) abstract interpreters for (C)LP programs re-
ceive as input, in addition to the program P and the abstract domain Dα,
a set Sα ∈ AAtom of Abstract Atoms (or call patterns). Such call patterns
are pairs of the form A : CP where A is a procedure descriptor and CP
is an abstract substitution (i.e., a condition of the run-time bindings) of A
expressed as CP ∈ Dα. For brevity, we sometimes omit the subscript α in
the algorithms. The analyzer of Algorithm 1 constructs an and–or graph [?]
(or analysis graph) for Sα which is an abstraction of the (possibly infinite)
set of (possibly infinite) and-or trees explored by the concrete execution of
initial calls described by Sα in P . The program analysis graph is implicitly
represented in the algorithm by means of two data structures, the answer
table and the dependency arc table.
• The answer table contains entries of the form A : CP 7→ AP where A is

always a base form. 1 Informally, its entries should be interpreted as “the
answer pattern for calls to A satisfying precondition (or call pattern),
CP , accomplishes postcondition (or answer pattern), AP.”

• A dependency arc is of the form Hk : CP0 ⇒ [CP1] Bk,i : CP2. This is
interpreted as follows: if the rule with Hk as head is called with description
CP0 then this causes that the i-th literal Bk,i to be called with description
CP2. The remaining part CP 1 is the program annotation just before Bk,i

is reached and contains information about all variables in rule k.

Intuitively, the analysis algorithm is a graph traversal algorithm which
places entries in the answer table and dependency arc table as new nodes
and arcs in the program analysis graph are encountered. To capture the
different graph traversal strategies used in different fixed-point algorithms,
a prioritized event queue is used. We use Ω ∈ QHS to refer to a Queue

1 Program rules are assumed to be normalized: only distinct variables are allowed to
occur as arguments to atoms. Furthermore, we require that each rule defining a predicate
p has identical sequence of variables xp1

, . . . xpn
in the head atom, i.e., p(xp1

, . . . xpn
).

We call this the base form of p.

5

Puebla, Albert, Arenas, Hermenegildo

Algorithm 1 Generic Analyzer for Abstraction-Carrying Code
1: function Analyze f(S,Ω)
2: for A : CP ∈ S do
3: add event(newcall(A : CP),Ω)
4: while E := next event(Ω) do
5: if E := newcall(A : CP) then new call pattern(A : CP,Ω)
6: else if E := updated(A : CP) then add dependent rules(A : CP,Ω)
7: else if E := arc(R) then process arc(R,Ω)
8: return answer table

9: procedure new call pattern(A : CP,Ω)
10: for all rule Ak : −Bk,1, . . . , Bk,nk

do

11: CP0 :=Aextend(CP, vars(Bk,1, . . . , Bk,nk
))

12: CP1 := Arestrict(CP0, vars(Bk,1))
13: add event(arc(Ak : CP ⇒ [CP0] Bk,1 : CP1),Ω)
14: add A : CP 7→ ⊥ to answer table

15: procedure process arc(Hk : CP0 ⇒ [CP1] Bk,i : CP2,Ω)
16: if Bk,i is not a constraint then

17: add Hk : CP0 ⇒ [CP1] Bk,i : CP2 to dependency arc table
18: W := vars(Ak, Bk,1, . . . , Bk,nk

); CP3 := get answer(Bk,i : CP2,CP1,W,Ω)
19: if CP3 6= ⊥ and i 6= nk then
20: CP4 := Arestrict(CP3, vars(Bk,i+1));
21: add event(arc(Hk : CP0 ⇒ [CP3] Bk,i+1 : CP4),Ω)
22: else if CP3 6= ⊥ and i = nk then
23: AP1 := Arestrict(CP3, vars(Hk)); insert answer info(H : CP0 7→ AP1,Ω)

24: function get answer(L : CP2,CP1,W,Ω)
25: if L is a constraint then return Aadd(L,CP1)
26: else AP0 := lookup answer(L : CP2,Ω); AP1 := Aextend(AP0,W)
27: return Aconj(CP1,AP1)

28: function lookup answer(A : CP,Ω)
29: if there exists a renaming σ s.t.σ(A : CP) 7→ AP in answer table then

30: return σ−1(AP)
31: else add event(newcall(σ(A : CP)),Ω) where σ is renaming s.t. σ(A) in base

form; return ⊥

32: procedure insert answer info(H : CP 7→ AP,Ω)
33: AP0 := lookup answer(H : CP); AP1 := Alub(AP,AP0)
34: if AP0 6= AP1 then
35: add (H : CP 7→ AP1) to answer table ;
36: add event(updated(H : CP),Ω)

37: procedure add dependent rules(A : CP,Ω)
38: for all arc of the form Hk : CP0 ⇒ [CP1] Bk,i : CP2 in graph where there

exists renaming σ s.t. A : CP = (Bk,i : CP2)σ do

39: add event(arc(Hk : CP0 ⇒ [CP1] Bk,i : CP2),Ω)

Handling Strategy which a particular instance of the generic algorithm may
use. Events are of three forms:

• newcall(A : CP) which indicates that a new call pattern for literal A with
description CP has been encountered.

• arc(Hk : ⇒ [] Bk,i :) which indicates that the rule with Hk as head
needs to be (re)computed from the position k, i.

• updated(A : CP) which indicates that the answer description to call pat-

6

Puebla, Albert, Arenas, Hermenegildo

tern A with description CP has been changed.

The functions add event and next event respectively push an event to the
priority queue and pop the event of highest priority, according to Ω. The
algorithm is defined in terms of four abstract operations on the domain Dα:

• Arestrict(CP ,V) performs the abstract restriction of a description CP to
the set of variables in the set V , denoted vars(V);

• Aextend(CP ,V) extends the description CP to the variables in the set
V ;

• Aconj(CP 1,CP2) performs the abstract conjunction of two descriptions;

• Alub(CP 1,CP2) performs the abstract disjunction of two descriptions.

More details on the algorithm can be found in [?,?]. Let us briefly explain
its main procedures. The algorithm centers around the processing of events
on the priority queue, which repeatedly removes the highest priority event
(Line 4) and calls the appropriate event-handling function (L5-7). The
function new call pattern initiates processing of all the rules for the definition
of the internal literal A, by adding arc events for each of the first literals
of these rules (L13). Initially, the answer for the call pattern is set to ⊥
(L14). The procedure process arc performs the core of the analysis. It
performs a single step of the left-to-right traversal of a rule body. If the
literal Bk,i is not a constraint (L16), the arc is added to the dependency arc
table (L17). Atoms are processed by function get answer. Constraints are
simply added to the current description (L25). In the case of literals, the
function lookup answer first looks up an answer for the given call pattern in
the answer table (L29) and if it is not found, it places a newcall event (L39).
When it finds one, then this answer is extended to the variables in the rule
the literal occurs in (L26) and conjoined with the current description (L27).
The resulting answer (L18) is either used to generate a new arc event to
process the next literal in the rule, if Bk,i is not the last one (L19); otherwise,
the new answer is computed by insert answer info. This is the part of the
algorithm more relevant to the generation of reduced certificates. The new
answer for the rule is combined with the current answer in the table (L33).
If the fixpoint for such call has not been reached, then the answer table
entry is updated with the combined answer (L35) and an updated event
is added to the queue (L36). The purpose of such an update is that the
function add dependent rules (re)processes those calls which depend on the
call pattern A : CP whose answer has been updated (L38). This effect
is achieved by adding the arc events for each of its dependencies (L39).
Note that dependency arcs are used for efficiency: they allow us to start
the reprocessing of a rule from the body atom which actually needs to be
recomputed due to an update rather than from scratch.

7

Puebla, Albert, Arenas, Hermenegildo

3.2 Running Example

Our running example is the program rectoy taken from [?]. We will use it
to illustrate our algorithms and show that our approach improves state-of-
the-art techniques for reducing the size of certificates. In all our examples,
abstract substitutions over a set of variables V , assign a regular type [?]
to each variable in V . We use term as the most general type (i.e., term
corresponds to all possible terms). For brevity, variables whose regular
type is term are often not shown in abstract substitutions. Also, when it is
clear from the context, an abstract substitution for an atom p(x1, . . . , xn)
is shown as a tuple 〈t1, . . . , tn〉, such that each value ti indicates the type of
xi. The most general substitution > assigns term to all variables in V . The
least general substitution ⊥ assigns the empty set of values to each variable.

Example 3.1 Consider the Ciao version of procedure rectoy [?] and the
call pattern rectoy(N, M) : 〈int, term〉 which indicates that external calls to
rectoy are performed with an integer value, int, in the first argument N.

rectoy(N,M) :- N = 0, M = 0.

rectoy(N,M) :- N1 is N-1, rectoy(N1,R), M is N1+R.

We now briefly describe four main steps carried out in the analysis using
some Ω ∈ QHS (the detailed steps and analysis graph can be found in the
technical report [?]):

A. The initial event newcall(rectoy(N, M) : 〈int, term〉) introduces the arcs
A1,1 and A2,1 in the queue, each one corresponds to the rules in the order
above:

A1,1 ≡ arc(rectoy(N, M) : 〈int, term〉 ⇒ [{N/int}] N = 0 : {N/int})

A2,1 ≡ arc(rectoy(N, M) : 〈int, term〉 ⇒ [{N/int}] N1 is N− 1 : {N/int})

The initial answer E1 rectoy(N, M) : 〈int, term〉 7→ ⊥ is inserted in the

answer table. Label E1 is introduced for future reference.

B. Assume that Ω assigns higher priority to A1,1. The next arc is generated:

A1,2 ≡ arc(rectoy(N, M) : 〈int, term〉 ⇒ [{N/int}] M = 0 : {M/term})
As it is the last atom in the body (L22), procedure insert answer info
computes Alub(⊥, {N/int, M/int}) and overwrites E1 with

E ′

1
rectoy(N, M) : 〈int, term〉 7→ 〈int, int〉

Consequently, U1 : updated(rectoy(N, M) : 〈int, term〉) is introduced in
the queue.

C. Now, Ω can choose between the processing of U1 or A2,1. Let us assume
that A2,1 has higher priority. For its processing, we consider that prede-
fined functions “−”, “+” and “is” are dealt by the algorithm as standard

8

Puebla, Albert, Arenas, Hermenegildo

constraints (see [?] for further details). Next, the arc:

A2,2 ≡ arc(rectoy(N, M) : 〈int, term〉 ⇒

[{N/int, N1/int}] rectoy(N1, R) : 〈int, term〉)

is introduced in the queue and the corresponding dependency stored. By
using the current answer E ′

1
, we get the arc A2,3:

A2,3 ≡ arc(rectoy(N, M) : 〈int, term〉 ⇒

[{N/int, N1/int, R/int}] M is N1 + R : {N1/int, R/int})

Clearly, the processing of A2,3 does not change the final answer E ′

1
. Hence,

no more updates are introduced in the queue.

D. Finally, we have to process the event U1 introduced in step B to which
Ω has assigned lowest priority. The procedure add dependent rules finds
the dependency corresponding to arc A2,2 and inserts an arc for it in the
queue. This relaunches an arc identical to A2,2, which in turn launches
an arc identical to A2,3. However, the reprocessing does not change the
fixpoint result E ′

1
and analysis terminates.

A fundamental issue here is that if we use some Ω′ ∈ QHS which assigns a
priority to U1 higher than to A2,1, the whole reprocessing of A2,2 and A2,3 in
step D will not be performed. The reason is that the dependency arc table
would be empty prior to processing A2,2. Hence add dependent rules would
not introduce any arc. This corresponds to the notion of redundant update
which we will introduce in Def. 4.1. 2

3.3 Full Certificate

The following definition corresponds to the essential idea in the ACC frame-
work –equations (1) and (2)– of using a static analyzer to generate the cer-
tificates. The analyzer corresponds to Algorithm 1 and the certificate is the
full answer table.

Definition 3.2 [full certificate] We define function Certifier f:Prog×AD-
om ×AAtom × AInt × QHS 7→ ACert which takes P ∈ Prog, Dα ∈ AD-
om, Sα ∈ AAtom, Iα ∈ AInt , Ω ∈ QHS and returns as full certificate,
FCert ∈ ACert , the answer table computed by Analyze f(Sα, Ω) for P in
Dα iff FCert v Iα.

Example 3.3 Consider the safety policy expressed by the following spec-
ification Iα : rectoy(N, M) : 〈int, term〉 7→ 〈int, real〉. The certifier in
Def. 3.2 returns as valid certificate the single entry E ′

1
. Clearly E ′

1
v Iα. 2

4 The Notion of Reduced Certificate

The key observation in order to reduce the size of certificates is that certain
entries in a certificate may be irrelevant, in the sense that the checker is

9

Puebla, Albert, Arenas, Hermenegildo

able to reproduce them by itself in a single pass. The notion of relevance is
directly related to the idea of recomputation in the program analysis graph.
Intuitively, given an entry in the answer table A : CP 7→ AP , its fixpoint
may have been computed in several iterations from ⊥, AP0, AP1, . . . until
AP . For each change in the answer, an updated event updated(A : CP)
is generated during analysis. The above entry is relevant in a certificate
(under some strategy) when its updates force the recomputation of other
arcs in the graph which depend on A : CP (i.e., there is a dependency from
it in the table). Thus, unless A : CP 7→ AP is included in the (reduced)
certificate, a single-pass checker which uses the same strategy as the code
producer will not be able to validate the certificate.

According to the above intuition, we are interested in determining when
an entry in the answer table has been “updated” during analysis and such
changes affect other entries. However, there are two special types of updated
events which can be considered “irrelevant”. The first one is called redun-
dant update and corresponds to the kind of updates which force a redundant
computation (like the event U1 generated in step B of Ex. 3.1). We write
DAT |A:CP to denote the set of arcs of the form H : CP0 ⇒ [CP1]B : CP2

in the current dependency arc table such that they depend on A : CP , i.e.,
A : CP = (B : CP2)σ, for some renaming σ.

Definition 4.1 [redundant update] Let P ∈ Prog, Sα ∈ AAtom and Ω ∈
QHS. We say that an event updated(A : CP) which appears in the event
queue during the analysis of P for Sα is redundant w.r.t. Ω iff, when it is
generated, DAT |A:CP = ∅.

In the following section, we propose a slight modification to the analysis
algorithm so that redundant updates are executed as soon as they appear,
so that they never enforce redundant recomputation. Correctness of this
modification can be found in the technical report [?].

Example 4.2 In our running example, U1 is redundant for Ω at the mo-
ment it is generated. However, since the event has been given low pri-
ority, its processing is delayed until the end and, in the meantime, a de-
pendency from it has been added. This causes the unnecessary redundant
re-computation of the second arc for rectoy (A2,2). 2

The second type of updates which can be considered irrelevant are initial
updates which, under certain circumstances, are generated in the first pass
over an arc. In particular, we do not take into account updated events
generated when the answer table contains ⊥ for the updated entry. Note
that this case still corresponds to the first traversal of any arc and should
not be considered as a reprocessing.

Definition 4.3 [initial update] In the conditions of Def. 4.1, we say that

10

Puebla, Albert, Arenas, Hermenegildo

an event updated(A : CP) which appears in the event queue during the
analysis of P for Sα is initial for Ω if, when it is generated, the answer table
contains A : CP 7→ ⊥.

Initial updates do not occur in certain very optimized algorithms, like the
one in [?]. However, they are necessary to model generic graph traversal
strategies. In particular, they are intended to awake arcs whose evaluation
has been suspended.

Example 4.4 Suppose that we use a strategy Ω′′ ∈ QHS such that step
C in Ex. 3.1 is performed before B (i.e., the second rule is analyzed before
the first one). Then, when the answer for rectoy(N1, R) : 〈int, term〉 is
looked up, procedure get answer returns ⊥ and thus the processing of arc
A2,2 is suspended at this point in the sense that its continuation A2,3 is not
inserted in the queue (see L19 in Algorithm 1). Indeed, we can proceed with
the remaining arc A1,1 which is processed exactly as in step B. In this case,
the updated event U1 is not redundant for Ω′′, as there is a dependency
introduced by the former processing of arc A2,2 in the table. Therefore, the
processing of U1 introduces the suspended arc A2,2 again in the queue. The
important point is that the fact that U1 inserts A2,2 must not be considered
as a reprocessing, since A2,2 had been suspended and its continuation (A2,3

in this case) has not been handled by the algorithm yet. 2

Definition 4.5 [relevant update] In the conditions of Def. 4.1, we say that
an event updated(A : CP) is relevant iff it is not initial nor redundant.

The key idea is that those answer patterns whose computation has intro-
duced relevant updates should be available in the certificate.

Definition 4.6 [relevant entry] In the conditions of Def. 4.1, we say that
the entry A : CP 7→ AP in the answer table is relevant for Ω iff there has
been at least one relevant event updated(A : CP) during the analysis of P
for Sα.

The notion of reduced certificate allows us to remove irrelevant entries from
the answer table and produce a smaller certificate which can still be vali-
dated in one pass.

Definition 4.7 [reduced certificate] In the conditions of Def. 4.1, let FCert=
Analyze f(Sα, Ω) for P and Sα. We define the reduced certificate, RCert, as
the set of relevant entries in FCert for Ω.

Example 4.8 From now on, in our running example, we assume the strat-
egy Ω′ ∈ QHS which assigns the highest priority to redundant updates.

For this strategy, the entry E ′

1
rectoy(N, M) : 〈int, term〉 7→ 〈int, int〉 in

Example 3.1 is not relevant as there has been no relevant updated event

11

Puebla, Albert, Arenas, Hermenegildo

in the queue (U1 is redundant). Therefore, the reduced certificate for our
running example is empty. 2

2

For function rectoy in Example 3.1, lightweight bytecode verification [?]
sends, together with the program, the reduced non-empty certificate cert =
({30 7→ (ε, rectoy · int · int · int · ⊥)}, ε), which states that in the program
point 30, the stack does not contain information (first occurrence of ε), 3 and
variables N , M and R have type int, int and ⊥. The need of sending this
information is because rectoy, implemented in Java, contains an if -branch
(equivalent to the branching for selecting one of our two clauses for rectoy).
And cert has to inform the checker that it is possible that in the point 30,
variable R is undefined, if the if condition does not hold. Therefore, the
above example shows that our approach improves on state-of-the-art PCC
techniques by reducing the certificate even further while still keeping the
checking process one-pass.

5 Generation of Certificates without Irrelevant En-

tries

In this section, we proceed to instrument the analyzer of Algorithm 1 with
the extensions necessary for producing reduced certificates, as defined in
Def. 4.7. The resulting analyzer Analyze r is presented in Algorithm 2.
It uses the same procedures of Algorithm 1 except for the new definitions
of add dependent rules and insert answer info. They differ from the original
definitions in that:

(i) We count the number of relevant updates for each call pattern. To do
this, we associate to each entry in the answer table a new field “u”
whose purpose is to identify relevant entries. Concretely, u indicates
the number of updated events processed for the entry. u is initialized
when the (unique and first) initial updated event occurs for a call
pattern. The initialization of u is different for redundant and initial
updates as explained in the next point. When the analysis finishes,
if u > 1, we know that at least one reprocessing has occurred and
the entry is thus relevant. The essential point to note is that u has
to be increased when the event is actually extracted from the queue
(L3) and not when it is introduced in it (L14). The reason for this is
that when a non redundant updated event is introduced, if the priority
queue contains an identical event, then the processing is performed
only once. Therefore, our counter must not be increased.

2 It should be noted that, using Ω as in Example 3.1, the answer is obtained by per-
forming two analysis iterations over the arc associated to the second rule of rectoy(N, M)
(steps C and D) due to the fact that U1 has been delayed and become relevant for Ω.
3 The second occurrence of ε indicates that there are no backwards jumps.

12

Puebla, Albert, Arenas, Hermenegildo

(ii) We do not generate redundant updates. Our algorithm does not intro-
duce redundant updated events (L14). However, if they are initial (and
redundant), they have to be counted as if they had been introduced
and processed and, thus, the next update over them has to be consid-
ered always relevant. This effect is achieved by initializing the u-value
with a higher value (“1” in L12) than for initial updates (“0” in L11).
Indeed, the value “0” just indicates that the initial updated event has
been introduced in the priority queue but not yet processed. It will
be increased to “1” once it is extracted from the queue. Therefore, in
both cases, the next updated event over the call pattern will increase
the counter to “2” and will be relevant.

In Algorithm 2, a call (u,AP)=get from answer table(A : CP) looks up in
the answer table the entry for A : CP and returns its u-value and its answer
AP . A call set in answer table(A(u) : CP 7→ AP) replaces the entry for
A : CP with the new one A(u) : CP 7→ AP .

Algorithm 2 Analyze r: Analyzer instrumented for Certificate Reduction
1: procedure add dependent rules(A : CP,Ω)
2: (AP, u) =get from answer table(A : CP)
3: set in answer table(A(u + 1) : CP 7→ AP)
4: for all arc of the form Hk : CP0 ⇒ [CP1] Bk,i : CP2 in graph where there

exists renaming σ s.t. A : CP = (Bk,i : CP2)σ do

5: add event(arc(Hk : CP0 ⇒ [CP1] Bk,i : CP2),Ω)

6: procedure insert answer info(H : CP 7→ AP,Ω)
7: AP0 := lookup answer(H : CP,Ω)
8: AP1 := Alub(AP,AP0)
9: if AP0 6= AP1 then

10: if AP0 = ⊥ then % initial update

11: if DAT |H :CP 6= ∅ then u = 0
12: else u = 1
13: else (u,)=get from answer table(H : CP) % not initial update

14: if DAT |H :CP 6= ∅ then add event(updated(H : CP))
15: set in answer table(H(u) : CP 7→ AP1)

Example 5.1 Consider the four steps performed in the analysis of our run-
ning example. Step A is identical. In step B, the procedure insert answer info
detects an initial and redundant updated event (L12) and initializes the u-
value of E ′

1
to 1. No updated event is generated (L14). Step C remains

identical and step D does not occur. As expected, upon return, the value
of u for E ′

1
is 1. 2

Proposition 5.2 Let P ∈ Prog, Dα ∈ ADom, Sα ∈ AAtom, Ω ∈ QHS.
Let FCert be the answer table computed by Analyze r(Sα, Ω) for P in Dα.
Then, an entry A(u) : CPA 7→ AP ∈ FCert is relevant iff u > 1.

Note that, except for the control of relevant entries, Analyze f(Sα, Ω) and
Analyze r(Sα, Ω) have the same behaviour and they compute the same an-
swer table (see our technical report [?]). We use function remove irrelevant-

13

Puebla, Albert, Arenas, Hermenegildo

answers which takes a set of answers of the form A(u) : CP 7→ AP ∈ FCert
and returns, in RCert, the set of answers A : CP 7→ AP such that u > 1.

Definition 5.3 We define the function Certifier r: Prog ×ADom ×AA-
tom × AInt × QHS 7→ ACert , which takes P ∈ Prog, Dα ∈ ADom, Sα ∈
AAtom, Iα ∈ AInt , Ω ∈ QHS, and returns as certificate, RCert=remove irre-
levant answers(FCert) iff FCert v Iα, where FCert=Analyze r(Sα, Ω).

6 Discussion

In this paper we have proposed an extension of the ACC framework which
generates (and checks) reduced certificates by eliminating from certificates
the information which the checker can reproduce in a single pass. This
allows reducing transmission and storage costs for certificates without in-
creasing checking time.

6.1 Some Issues on Checking Reduced Certificates

In the ACC framework for full certificates, the checking algorithm [?] uses
a specific graph traversal strategy ΩC . This checker has been shown to be
very efficient but in turn its design is not generic with respect to this issue
(in contrast to the analysis design). 4 This is not problematic in the con-
text of full certificates as, even if the certifier uses a strategy ΩA different
from ΩC , it is ensured that all valid certificates get validated in one pass
by such specific checker. This result does not hold anymore in the case of
reduced certificates. In particular, completeness of checking is not guaran-
teed if ΩA 6= ΩC . This occurs because though the answer table is identical
for all strategies, the subset of redundant entries depends on the particular
strategy used. The problem is that, if there is an entry A : CP 7→ AP in
FCert such that it is relevant w.r.t. ΩC but it is not w.r.t. ΩA, then a single
pass checker will fail to validate the RCert generated using ΩA. Therefore,
it is essential in this context to design generic checkers which are not tied
to a particular graph traversal strategy. Upon agreeing on the appropri-
ate parameters 5 , the consumer uses the particular instance of the generic
checker resulting from application of such parameters. In our technical re-
port [?], we design a checker for reduced certificates which is correct, i.e., if
the checker succeeds in validating the certificate, then the certificate is valid

4 Note that both the analysis and checking algorithms are always parametric on the
abstract domain, with the resulting genericity, which allows proving a wide variety of
properties by using the large set of available domains, being one of the fundamental
advantages of ACC.
5 In a particular application of our framework, we expect that the graph traversal strat-
egy is agreed a priori between consumer and producer. But, if necessary, (e.g., the
consumer does not implement this strategy), it could be sent along with the transmitted
package.

14

Puebla, Albert, Arenas, Hermenegildo

for the program, no matter what the graph traversal strategy used is. We
also provide sufficient conditions for ensuring completeness of the checking
process. Concretely, if the checker uses the same strategy as the analyzer
then our proposed checker will succeed in validating any reduced certificate
which is valid.

6.2 On the Experimental Evaluation

As we have illustrated throughout the paper, the reduction achieved is di-
rectly related to the amount of updates (or iterations) performed during
analysis. Clearly, depending on the graph traversal strategy used, different
instances of the generic analyzer will generate reduced certificates of differ-
ent sizes. Important efforts have been made during the last years in order
to improve the efficiency of analysis. The most optimized analyzers aim at
reducing the number of updates necessary to reach the final fixpoint [?].
Interestingly, our framework greatly benefits from all these advances, since
the more efficient analysis is, the smaller the corresponding reduced certifi-
cates are. We have implemented the generator of reduced certificates as an
extension of the efficient, highly optimized, state-of-the-art analysis system
available in CiaoPP and which is part of a working compiler. Both, the
analysis and checker use the optimized depth-first new-calling QHS of [?].
We are now in the process of experimentally evaluating our approach. Pre-
liminary results are very encouraging. They show reductions in certificate
size of around 70% on average (see [?]).

6.3 Future Work

We plan to assess the influence that different strategies have on certificate
reduction. Also, we will consider and compare with the case of using the
fixed-point analyzers also on the checking side. In this case, since the cer-
tificate can be recreated at the receiving end as much as needed, there is
clearly a wide range of trade-offs between the size of the certificate and the
checking time. We also want to investigate ways of reducing the trusted base
code (see, e.g., [?,?]) in ACC. Additionally, we are studying the application
of incremental analysis algorithms in order to reduce both certificate size
and checking time in the context of modifications to a program for which a
certificate has already been checked at the consumer side [?].

Acknowledgments.

This work was funded in part by the Information Society Technologies pro-
gram of the European Commission, Future and Emerging Technologies un-
der the IST-15905 MOBIUS project, by the Spanish Ministry of Educa-
tion under the TIN-2005-09207 MERIT project, and the Madrid Regional
Government under the PROMESAS project. Manuel Hermenegildo is also

15

Puebla, Albert, Arenas, Hermenegildo

supported by the Prince of Asturias Chair in Information Science and Tech-
nology at UNM.

The Ciao/CiaoPP system is a collaborative effort of members of several
institutions, including UPM, UNM, U. Melbourne, Monash U., U.Arizona,
Linköping U., NMSU, K.U. Leuven, Roskilde U., Ben-Gurion U, and IN-
RIA. The system documentation and related publications contain more spe-
cific credits. The authors would also like to acknowledge the work all the
other current Ciao and CiaoPP team members, in particular: F. Bueno,
M. Carro, D. Cabeza, J. Correas, P. López-Garćıa, J. Morales, C. Ochoa,
D. Trallero, P. Pietrzak and C. Vaucheret, without whose collaboration this
work would not have been possible.

Finally, thanks are also due to the EAAI program committee members
for their generous invitation to present this work and demo the system at
the conference.

References

16

	Introduction
	A General View of Abstraction-Carrying Code
	Generation of Certificates in ACC
	The Analysis Algorithm
	Running Example
	Full Certificate

	The Notion of Reduced Certificate
	Generation of Certificates without Irrelevant Entries
	Discussion
	Some Issues on Checking Reduced Certificates
	On the Experimental Evaluation
	Future Work

	References

