
PROLE 2006

Towards a Constraint Deductive Database
Language based on Hereditary Harrop Formulas

S. Nieva F. Sáenz-Pérez J. Sánchez-Hernández 1

Dept. Sistemas Informáticos y Programación, Universidad Complutense de Madrid
{nieva,fernan,jaime}@sip.ucm.es

Abstract

In the same way that Datalog and Datalog with constraints arise when modelling
databases inspired on Prolog and CLP (Constraint Logic Programming), respec-
tively, we introduce the constraint logic programming scheme HH(C) (Hereditary
Harrop formulas with Constraints) as the basis for a database language. We show
that HH(C) can fulfill all relational algebra operations but set difference, so that it
has to be extended with a limited form of negation. Since the underlying logic of
our system is an extension of Horn clauses, we will show that the resulting database
language is more powerful than both relational algebra and calculus. For instance,
it is possible to define recursive views. In addition, the use of constraints permits
of modelling infinite databases, as in Datalog with constraints. Moreover, our ap-
proach improves the expressivity of recursive Datalog with negation because, for
instance, hypothetical queries are allowed.

Key words: Constraint Databases, Deductive Databases,
Hereditary Harrop Formulas, Logic Programming

1 Introduction

The scheme HH(C) (Hereditary Harrop formulas with Constraints) [10,9,5]
extends HH by adding constraints, in a similar way to the extension of LP
(Logic Programming) with constraints gave rise to the CLP (Constraint Logic
Programming) scheme [6]. In both cases, a parametric domain of constraints
is assumed for which it is possible to consider different instances (such as
arithmetical constraints over real numbers or finite domain constraints). The
extension is completely integrated into the language: constraints are allowed
to appear in goals, bodies of clauses and answers.

As a programming language, HH(C) can still be viewed as an extension
to CLP in two main aspects. Firstly, the logic framework that supports HH

1 This work have been funded by projects TIN2005-09207-C03-03 and S-0505/TIC/0407.
This paper was generated using LATEX macros provided by

Electronic Notes in Theoretical Computer Science

Nieva, Sáenz-Pérez, and Sánchez-Hernández

allows to introduce new constructs in goals (and bodies of clauses), such as dis-
junction, implication and universal quantifiers. On the other hand, these logic
connectives are propagated to constraints enriching the constraint language
itself that will allow to express more complex conditions.

In this paper, we investigate the use of HH(C) not as a (general purpose)
programming language, but as the basis for database systems with constraints
[8]. The motivation is that in the same way that Datalog [13,14] and Datalog
with constraints [7] arise for modelling database systems inspired in Prolog and
CLP respectively, the language HH(C) can offer a suitable starting point for
the same purpose. We show by means of examples that the expressive power
of HH(C) can be translated into the database field improving the existing lan-
guages not only theoretically. In particular, implications can be used to write
hypothetical queries, and universal quantification allows the encapsulation of
information.

However, HH(C) lacks of negation which, as we will see, is needed for
our proposal to be complete with respect to relational algebra. As it is well-
known, the incorporation of negation into logic programming languages is a
difficult task (see [2] for a survey). Negation in the specific field of deductive
database systems has been also widely studied [1,3]. In our language, nega-
tion is even more complex due to the presence of implication and universal
quantification in goals. A proof-theoretic meaning of goals (queries) from pro-
grams (databases) is given, when a limited form of negation is used, in such a
way that the existence of constraints is exploited to represent answers and to
finitely model infinite databases. This is also the case of constraint databases,
but the syntax of our constraints is also more expressive than the used, for
instance, in Datalog with constraints.

We also study one of the principal problems that arise when dealing with
recursion and negation: termination. Following the ideas used in Datalog
to ensure termination [13], we adapt the notions of dependency graphs and
stratified negation to our context in order to establish syntactic conditions
that characterize the limited form of negation introduced.

2 Introducing HH(C) as a Query Language

This section is devoted to informally present HH(C) as a suitable language
for databases. Very close to a CLP program, a HH(C) program consists of
predicate definitions (clauses and facts) possibly including constraints. A goal
is a formula whose answer with respect to a program is a constraint.

2.1 Infinite Data as Finite Representations

One of the advantages of using constraints in the (general) context of LP is
that they provide a natural way for dealing with infinite data collections using
finite (intensional) representations. Constraint databases [8] have inherited
this feature. We illustrate this point with an example.

145

Nieva, Sáenz-Pérez, and Sánchez-Hernández

Example 2.1 Assume the instance HH (R), i.e., the domain of arithmetic
constraints over real numbers. We are interested in describing regions in the
plane. A region is a set of points identified by its characteristic function
(a Boolean function that evaluates to true over the points of such a region
and to false over the rest of points of the plane). For example, a rectangle
can be determined by its left-bottom corner (X1, Y1) and its right-top cor-
ner (X2, Y2) and its characteristic function can be defined as the intensional
relation rectangle(X1,Y1,X2,Y2,X,Y) :- X≥X1, X≤X2, Y≥Y1, Y≤Y2.

Notice that a rectangle contains (in general) an infinite set of points and
they are finitely represented in an easy way by means of real constraints.
From a database perspective, this is a very interesting feature: databases were
conceived to work with finite pieces of information, but introducing constraints
makes possible to manage (potentially) infinite sets of data.

The goal rectangle(0,0,4,4,X,Y), rectangle(1,1,5,5,X,Y) computes
the intersection of two rectangles and an answer can be represented by the
constraint (X ≥ 1) ∧ (X ≤ 4) ∧ (Y ≥ 1) ∧ (Y ≤ 4).

Example 2.2 Using also HH (R), a circle can be defined by its center and
radius, now using non-linear constraints:

circle(XC,YC,R,X,Y) :- ((X-XC)**2 + (Y-YC)**2) ≤ R**2.

We can ask, for instance, whether any pair (X,Y) such that X2 + Y 2 = 1
(the circumference centered in the origin and radius 1) is inside the circle with
center (0, 0) and radius 2 by means of the goal:

∀ X ∀ Y ((X**2+Y**2 ≈ 1) ⇒ circle(0,0,2,X,Y))

which cannot be written in standard deductive database languages. However,
HH(C) is not expressive enough as we show next.

2.2 Incompleteness

What a database user might want is to have the basic relational operations
available in this language. There are five basic relational algebra operators
(projection, selection, Cartesian product, union, and set difference). They
can be expressed within HH(C), except set difference, that needs some kind of
negation. There are some other situations, besides relational database appli-
cations, in which negation is quite interesting to be included in the language.

Example 2.3 Returning to Example 2.1, we find the region defined by the
inner region of a large rectangle and the outer region of a small rectangle
with the goal rectangle(0,0,4,4,X,Y), ¬ rectangle(1,1,3,3,X,Y), and
an answer can be represented by the constraint:
((Y > 3) ∧ (Y ≤ 4) ∧ (X ≥ 0) ∧ (X ≤ 4)) ∨ ((Y ≥ 0) ∧ (Y < 1) ∧
(X ≥ 0) ∧ (X ≤ 4)) ∨ ((Y ≥ 0) ∧ (Y ≤ 4) ∧ (X > 3) ∧ (X ≤ 4)) ∨
((Y ≥ 0) ∧ (Y ≤ 4) ∧ (X ≥ 0) ∧ (X < 1))

In this last example, we assume that negation can be effectively handled
by the constraint solver, an issue addressed in next sections.

146

Nieva, Sáenz-Pérez, and Sánchez-Hernández

3 Formalizing HH(C) with Negation

The original formalisms in which HH(C) is founded must be extended to in-
troduce negation to obtain a formal Constraint Deductive Database (CDDB)
language. The syntax of this language as well as the meaning of programs and
goals will be introduced next.

3.1 Syntax

We will consider that there are two distinguished types of predicate symbols:
defined predicate symbols that represent the names of database relations, and
non-defined (built-in) predicate symbols, that depend on the particular con-
straint system including at least the equality predicate symbol ≈. We will
also assume a set of constant and operator symbols of the constraint system,
and a set of variables to build terms, denoted by t.

The Constraint System C
The constraints we will consider belong to a generic system with a binary

entailment relation `C, where Γ `C C denotes that the constraint C is inferred
in the constraint system C by the set of constraints Γ. C is required to satisfy
some minimal conditions:

• Every first-order formula built up using > (true), ⊥ (false), built-in predi-
cate symbols, the connectives ∧,¬, the existential quantifier ∃, and possibly
other connectives or quantifiers (∨,⇒,∀) is in the constraint language LC.

• All the inference rules related to ∃,∧,¬,≈ and the considered additional
connectives, valid in intuitionistic logic with equality, are valid to infer en-
tailments in the sense of `C.

• Compactness: Γ `C C holds when Γ0 `C C for some finite Γ0 ⊆ Γ.

• If Γ′ `C Γ and Γ `C C, then Γ′ `C C. By convention, the notation Γ `C Γ′

will mean that Γ `C C holds for all C ∈ Γ′.

We say that Γ and Γ′ are C-equivalent if Γ `C Γ′ and Γ′ `C Γ.

Notice that C is required to deal with negation, because the incorporation
of ¬ to HH is propagated to the constraint system, which has the responsibility
of checking the satisfiability of answers in the constraint domain.

In previous examples, the considered system (R) is assumed to verify the
minimal conditions required to be a constraint system. Moreover, it also
includes the connective ∨, constants to represent numbers, arithmetical oper-
ators, and built-in predicates (≥, . . .).

The Query Language

Now we make precise the syntax of the formulas of HH(C) extended with
negation, showing how the usual notions of programs and goals of Logic Pro-
gramming can be translated into databases and queries, respectively.

147

Nieva, Sáenz-Pérez, and Sánchez-Hernández

The evaluation of a query to a deductive database can be seen as the com-
putation of a goal from a set of facts (ground atoms) defining the extensional
database, and a set of clauses, defining the intensional database. As it is com-
mon in deductive databases, the definition of a derived (intensional) predicate,
by means of clauses, in our language can be seen as the definition of a view in
relational databases.

Clauses D and goals G are recursively defined by the rules below.

D ::= A | G ⇒ A | D1 ∧ D2 | ∀xD

G ::= A |¬A | C | G1 ∧ G2 | G1 ∨ G2 | D ⇒ G | C ⇒ G| ∃xG | ∀xG

A represents an atom, i.e., a formula of the form p(t1, . . . , tn), where p is
a defined predicate symbol of arity n. The incorporation of negated atoms in
goals is the surplus to HH(C).

Any program ∆ can always be given as an equivalent set, elab(∆), of
implicative clauses with atomic heads in the way we precise now:

The elaboration of a program ∆ is the set elab(∆) =
⋃
D∈∆ elab(D), where

elab(D) is defined by:

elab(A) = {> ⇒ A} elab(D1 ∧ D2) = elab(D1) ∪ elab(D2)

elab(G ⇒ A) = {G ⇒ A} elab(∀xD) = {∀xD′ |D′ ∈ elab(D)}
We will assume that a view defining a predicate is a set of elaborated

clauses of the form ∀x1 . . .∀xn(G ⇒ A) and, in the examples (as before), we
will use the common notation A :- G, assuming that capital letters represent
variables that are implicitly universally quantified, and incorporating the new
connectives in goals. Negation is not allowed in the head of a clause, but
inside its body. The condition of defining negation only over atoms is not a
limitation, because A :- ¬G can be defined by A′ :- G, A :- ¬A′.

3.2 Semantics

Several kinds of semantics have been defined for HH(C) without negation,
including proof-theoretic, operational (both introduced in [10]) and fixed-point
semantics [4]. The simplest way for explaining the meaning of programs and
goals in the present framework is by using a proof-theoretic semantics. Queries
formulated to a database are interpreted by means of the inference system that
governs the underlying logic. This proof system, called UC (Uniform sequent
calculus handling Constraints), combines traditional inference rules with the
entailment relation of the generic constraint system C. It provides only uniform
proofs in the sense defined by Miller et. al. [11], which means goal-oriented
proofs. The rules are applied backwards and, at any step, the applied rule is
that including on the right the connective of the goal to be proved.

Provability in UC is defined as follows. Sequents have sets of programs and
constraints on the left, and goals on the right (see Figure 1).

The motivation for the rule (∃R) appears in [10]. It includes the fact
that substitutions can be simulated by equality constraints, but it is more

148

Nieva, Sáenz-Pérez, and Sánchez-Hernández

Γ `C C

∆; Γ ` C
(CR)

∆; Γ ` ∃x1 . . .∃xn((A′ ≈ A) ∧ G)
∆; Γ ` A

(Clause) (∗), where

∀x1 . . .∀xn(G ⇒ A′) is a variant of a formula of elab(∆)

∆; Γ ` Gi

∆; Γ ` G1 ∨ G2
(∨R) (i = 1, 2)

∆; Γ ` G1 ∆; Γ ` G2

∆; Γ ` G1 ∧ G2
(∧R)

∆, D; Γ ` G

∆; Γ ` D ⇒ G
(⇒R)

∆; Γ, C ` G

∆; Γ ` C ⇒ G
(⇒CR)

∆; Γ, C ` G[y/x] Γ `C ∃yC

∆; Γ ` ∃xG
(∃R)(∗)

∆; Γ ` G[y/x]
∆; Γ ` ∀xG

(∀R)(∗)

(*) x1, . . . , xn, y do not occur free in the sequent of the conclusion

Fig. 1. Rules of the Sequent Calculus UC

powerful because the use of constraints makes possible to find a proof for an
existentially quantified formula, representing the witness of the existentially
quantified variable by not necessarily a term, but with a constraint (e.g.,
(x ∗ x ≈ 2) represents

√
2, that cannot be written as a term).

The rule (Clause) represents backchaining. In order to obtain a proof
of an atomic goal, the body of a clause will be proved. However, it is not
required to unify the head of the clause with the atom to be proved, but to
solve an existential quantification that, as it was explained before, will search
for a constraint to be satisfied that makes equal the atom and the head of
the clause. The notation A′ ≈ A stands for t′1 ≈ t1 ∧ . . . ∧ t′n ≈ tn, where
A ≡ p(t1, . . . , tn) and A′ ≡ p(t′1, . . . , t

′
n).

The Meaning of Negated Atoms

Derivability in UC provides proof-theoretic semantics for HH(C). The in-
corporation of negation makes necessary to extend the notion of derivability,
because there is no rule for this connective in UC. An inference system that
extends UC with a new rule to incorporate derivability of negated atoms will
be considered. The idea of interpreting the query ¬A from a database ∆, by
means of an answer constraint C, is that whenever C ′ is a possible answer to
the query A from ∆, then C `C ¬C ′. This is formalized with the “metarule”:

Γ `C ¬Γ′ for any ∆;Γ′ ` A
∆;Γ ` ¬A

(¬R)

where Γ `C ¬Γ′ means Γ `C ¬C, for every C ∈ Γ′. We say that (¬R) is a
metarule since its premise considers any derivation ∆; Γ′ ` A of the atom A.

The inference system that combines the rules of UC with (¬R) is called
UC¬. The notation ∆;Γ `UC¬ G means that the sequent ∆; Γ ` G has a
proof using the rules of UC and (¬R).

149

Nieva, Sáenz-Pérez, and Sánchez-Hernández

Definition 3.1 If ∆;C `UC¬ G then C is called an answer constraint of G
from ∆. The meaning of a query G from a database ∆ can be defined as the
set of the answer constraints of G with respect to ∆ up to C-equivalence.

Due to the conditions imposed to a generic system C to produce a valid
instance of our scheme (for instance, it must be closed under ¬) and the defi-
nition of proof-theoretic semantics based on UC¬-derivations, we can say that
closed-form evaluation [12] is assured in HH(C), because output databases are
represented by answer constraints that belong to the same constraint system
used to define the input database.

Defining an operational semantics for HH(C) with negation can be tackled
by adapting the query solver procedure for HH(C) introduced in [10] (which
is complete w.r.t. UC) for computing goals including negated subgoals. In
particular, some finiteness conditions must be imposed to define the interpre-
tation of negated atoms. Assuming that, for an atom A and a program ∆, only
a finite number of different non-C-equivalent answer constraints C1, . . . , Cn are
obtained with such a mentioned procedure, the subgoal ¬A will success if the
current partially calculated answer C is such that C `C ¬C1 ∧ . . . ∧ ¬Cn.

What remains to do is to imposse conditions that guarantee to have only
a finite number of non-equivalent computed answer constraints for any atom
that occurs negated in some goal. In this way, it is possible to impose the
following syntactic restrictions as a strong condition: negation is not allowed
over predicates that depend on others that include recursion (the notion of
dependency is formalized in Section 5).

Note that, even in the case of adopting this strong syntactic restriction,
completeness with respect to relational algebra remains, since relational alge-
bra does not include recursion.

Theorem 3.2 (Completeness) HH(C) with negation is complete with re-
spect to relational algebra.

Proof (Sketch) The proof is similar to the completeness of Datalog [13]. 2

Note also that our use of constraints and disjunction, in particular, provides
a richer expressivity than common database languages, as we show next.

4 Expressiveness of HH(C) with Negation

We introduce several examples showing the advantages of our proposal w.r.t.
other common database languages. In these examples, a travel database is
defined using a hybrid constraint system FR that combines constraints over
finite and real numbers domains, ensuring domain independence. Instantiating
the scheme with mixed constraint systems will be very useful in the context
of databases. In [4], a hybrid instance subsuming FR is presented.

Example 4.1 An important benefit of our approach is the ability to formu-
late hypothetical and universally quantified queries. Consider the database:

150

Nieva, Sáenz-Pérez, and Sánchez-Hernández

flight(mad, par, 1.5).
flight(par, ny, 10).
flight(london, ny, 9).
travel(X,Y,T) :- flight(X,Y,D), T >= D.
travel(X,Y,T) :- flight(X,Z,T1), travel(Z,Y,T2), T >= T1+T2.

The predicate flight(O,D,T) represents an extensional database relation
among origin (O), destination (D) and duration (T). In turn, travel(X,Y,T)
represents an intensional database relation, expressing that a travel from X to
Y can be done in a time T, possibly concatenating some flights.

The next goal asks for the duration of a flight from Madrid to London in
order to be able to travel from Madrid to New York in 11 hours at most.

flight(mad, london, T) ⇒ travel(mad, ny, 11).

The answer constraint of this query will be 11 ≥ T + 9 that is FR-equivalent
to the final answer T ≤ 2.

Another hypothetical query to the previous database can be the question
that if it is possible to travel from Madrid to some place in any time greater
than 1.5. The goal formulation ∀ T (T > 1.5 ⇒ ∃ Y travel(mad,Y,T))

includes also universal quantification, and the corresponding answer is true.

Example 4.2 Assume now a more realistic situation in which flight delays
may happen, which is represented by the following definition.

deltravel(X,Y,T) :- flight(X,Y,T1), delay(X,Y,T2), T ≥ T1+T2.
deltravel(X,Y,T) :- flight(X,Z,T1), delay(X,Z,T2),

deltravel(Z,Y,T3), T ≥ T1+T2+T3.

Tuples of delay may be in the extensional database or may be assumed
when the query is formulated. For instance, the goal:

(∀ X delay(par,X,1),delay(mad,par,0.5)) ⇒ deltravel(mad,ny,T)

represents the query: What is the time needed to travel from Madrid to New
York assumed that every flight from Paris has a delay of one hour and the flight
from Madrid to Paris is half an hour delayed? According to its proof-theoretic
interpretation, the clauses delay(par,X,1) and delay(mad,par,0.5)will be
added locally to the database in order to solve the goal deltravel(mad,ny,T),
and they will not be considered any more once it is solved.

Since flights may or may not be delayed, a more general view can be defined
in order to know the expected time of a trip:

trip(X,Y,T) :- nondeltravel(X,Y,T) ; deltravel(X,Y,T).
nondeltravel(X,Y,T) :- ¬ delayed(X,Y), travel(X,Y,T).
delayed(X,Y) :- ∃T delay(X,Y,T).

5 Stratified Negation and Dependency Graphs

In order to obtain an operational semantics equivalent to the proof-theoretic
one, it is needed to guarantee that for any ¬A in a goal, A has a finite number

151

Nieva, Sáenz-Pérez, and Sánchez-Hernández

of answer constraints. Even so, another well known problem arises in deductive
database languages when negation and recursive programs are considered.
This is the case of non-terminating proofs under the operational semantics. In
Datalog, this problem has been undertaken introducing the notions of stratified
negation, which is based on the definition of a dependency graph for a program
(see [14] for details). Here, we adapt these notions as an useful starting point
of an operational semantics for our language.

The construction of dependency graphs must consider the fact that im-
plications may occur not only between the head and the body of a clause,
but also inside the goals, and therefore in any clause body. This feature
will be taken into account in the following way: an implication of the form
F ⇒ p(s1, . . . , sm) is interpreted as p depends on every defined predicate sym-
bol inside the formula F . Quantifiers and constraints in goals must also be
treated. However, as constraints do not include defined predicate symbols,
they cannot produce dependencies, which means that they are not relevant
for determining the graph.

Given a set of clauses and goals Φ, the corresponding dependency graph
DGΦ =<N,E> is a directed graph whose nodes N are the defined predicate
symbols in Φ. The edges E of the graph are determined by the implication
symbols of the clauses.

The function dp defined in Figure 2 computes dependencies (in the previous
sense) of any formula of HH (C) with negation. It returns a pair <E,L>, where
E is a set of edges and L is a set of link-nodes. Edges in the graph can be of the
form p → q (which means that q has a dependency on p, or, alternatively, that
q depends on p) and p

¬→ q (q has a negative dependency on p, or q negatively
depends on p). The set L of link-nodes is just an auxiliary structure used
to link subgraphs obtained by recursion to the total graph; it can contain
“negated” nodes of the form ¬p that will be transformed into a node p and
negative labelled outcoming edges of the form

¬→. Using this function, it is
straightforward to calculate the dependency graph of a set of clauses and goals
as the union of the edges obtained for each element in the set.

It is easy to check that our algorithm for calculating the dependency graph,
when applied to Datalog programs, produces the same dependency graph de-
fined for that language.

Example 5.1 Consider a program ∆ consisting of the predicates defined in
the examples of Section 4. The dependency graph for ∆ is:

delayflight

deltravel delayed

nondeltravel

travel

trip

152

Nieva, Sáenz-Pérez, and Sánchez-Hernández

• dp(C) =<∅, ∅>

• dp(A) =<∅, {pred(A)}>

• dp(¬A) =<∅, {¬pred(A)}>

• dp(Qx ϕ) = dp(ϕ), where Q ∈ {∀, ∃}

• dp(ϕ∧ψ) =<Eϕ∪Eψ, Nϕ∪Nψ>, if dp(ϕ)=<Eϕ, Nϕ> and dp(ψ)=<Eψ, Nψ>

• dp(ϕ∨ψ) =<Eϕ∪Eψ, Nϕ∪Nψ>, if dp(ϕ)=<Eϕ, Nϕ> and dp(ψ)=<Eψ, Nψ>

• dp(ϕ⇒ ψ) =<Eϕ∪Eψ∪
⋃
m∈Nψ(

⋃
n∈Nϕ{n→ m}∪

⋃
¬n∈Nϕ{n

¬→ m}, Nψ>,
if dp(ϕ) =<Eϕ, Nϕ> and dp(ψ) =<Eψ , Nψ>

Notation:
pred(A): Predicate symbol of atom A; ϕ, ψ: Formulas of HH (C) with negation

Fig. 2. Dependency Graph for Clauses and Goals

The goal G ≡ ∃ T (deltravel(X,Y,T) ⇒ delayed(X,Y)) would introduce
the new edge deltravel → delayed into the previous graph. Another inter-
esting example is G′ ≡ ∀ T ∃ T’ ((trip(mad,lon,T) ⇒ delay(mad,lon,T’))

⇒ (trip(mad,lon,T) ⇒ ¬delayed(mad,lon))). Both parts of the main im-
plication are recursively evaluated according to the last case in Figure 2, ob-
taining: <{trip → delay}, {delay}> and <{trip ¬→ delayed}, {¬delayed}>.
Finally, using the link-nodes the algorithm produces:

<{trip → delay, trip
¬→ delayed, delay

¬→ delayed}, {¬delayed}>

The dependency graph is used to define stratification in HH(C). Our con-
cept of stratifiable program gives a syntactic condition ensuring finite compu-
tations for negated atoms.

Definition 5.2 Given a set of formulas Φ, its corresponding dependency
graph DGΦ, and two predicates p and q, we say:

• q depends on p if there is a path from p to q in DGΦ.

• q negatively depends on p if there is a path from p to q in DGΦ with at least
one negatively labelled edge.

• q strongly negatively depends on p if q negatively depends on p and p belongs
to a cycle in DGΦ.

Definition 5.3 A set of formulas Φ is stratifiable if DGΦ does not contain
any predicate that strongly negativelly depends on any other.

It is easy to see that the program of Example 5.1 is stratifiable because its
dependency graph does not contain any strong negative dependency. More-
over, it is also stratifiable when adding the edges generated by the goals G
and G′ of such an example. But the goal:

153

Nieva, Sáenz-Pérez, and Sánchez-Hernández

G′′ ≡ deltravel(mad,lon,T) ⇒ delayed(mad,lon,T)

adds the dependency deltravel → delayed. Then, nondeltravel strongly
negativelly depends on deltravel.

Definition 5.4 Let Φ be a set of stratifiable formulas and P = {p1, . . . , pn}
the set of defined predicate symbols of Φ. A stratification of Φ is any mapping
s : P → {1, . . . , n} such that s(p) ≤ s(q) if q depends on p, and s(p) < s(q) if
q negativelly depends on p.

A stratification for the program of Example 5.1 will collect all the pred-
icates in the stratum 1 except nondeltravel, which will be in stratum 2.
Intuitively, this means that for evaluating nondeltravel, the rest of predi-
cates should be evaluated before (in particular, delayed). If the previous goal
G′′ is considered, the finiteness condition to evaluate ¬ delayed might not be
satisfied, because of the strong negative dependency it introduces.

6 Conclusions and Future Work

We have presented a suitable constraint deductive database query language
based on HH(C) that, with such end, has been adequately extended to in-
corporate negation. We claim that the resulting extension subsumes known
database query languages as relational algebra and calculus, Datalog, and Dat-
alog with constraints w.r.t. basic operations (for instance, we do not deal with
aggregates up to now). Our proposal includes constructs to define databases
and queries not found in such known languages. The expressivity of HH(C)
as a CDDB language has been shown by means of examples.

We have defined a proof-theoretic semantic framework such that the mean-
ing of a database query is represented by the set of constraints that can be
derived.

Regarding operational semantics, it is well-known that stratified negation
is a good setting for deductive databases with recursion and negation. Fol-
lowing this approach, we have defined our particular concept of dependency
graph and stratified program.

As future work, we plan to devise a fixed-point semantics whose fix-point
operator is applied stratum by stratum over any stratified program. An im-
plementation is expected to be developed in the near future including the
proposal presented here in connection with an adequate constraint solver.

References

[1] Abiteboul, S., R. Hull and V. Vianu, “Foundations of Databases,” Addison-
Wesley, 1995.

[2] Apt, K. and R. Bol, Logic Programming and Negation: A Survey, Journal of
Logic Programming 19&20 (1994), pp. 9–71.

154

Nieva, Sáenz-Pérez, and Sánchez-Hernández

[3] Benedikt, M. and L. Libkin, Safe constraint queries, in: PODS ’98: Proceedings
of the Seventeenth ACM SIGACT-SIGMOD-SIGARTSymposium on Principles
of Database Systems (1998), pp. 99–108.

[4] Garćıa-Dı́az, M. and S. Nieva, Solving Constraints for an Instance of an
Extended CLP Language over a Domain based on Real Numbers and Herbrand
Terms, Journal of Functional and Logic Programming 2003 (2003).

[5] Garćıa-Dı́az, M. and S. Nieva, Providing Declarative Semantics for HH
Extended Constraint Logic Programs, in: Proceedings of the 6th ACM
SIGPLAN International Conference on Principles and Practice of Declarative
Programming, Verona, Italy, 2004, pp. 55 – 66.

[6] Jaffar, J. and J.-L. Lassez, Constraint Logic Programming, in: 14th ACM Symp.
on Principles of Programming Languages (POPL’87) (1987), pp. 111–119.

[7] Kanellakis, P. C., G. M. Kuper and P. Z. Revesz, Constraint Query Languages,
in: Symposium on Principles of Database Systems, 1990, pp. 299–313.

[8] Kuper, G., L. Libkin and J. Paredaens, editors, “Constraint Databases,”
Springer, 2000.

[9] Leach, J. and S. Nieva, A Higher-Order Logic Programming Language with
Constraints, in: H. Kuchen and K. Ueda, editors, Proc. Fifth International
Symposium on Functional and Logic Programming (FLOPS’01), LNCS 2024
(2001), pp. 108–122.

[10] Leach, J., S. Nieva and M. Rodŕıguez-Artalejo, Constraint Logic Programming
with Hereditary Harrop Formulas, Theory and Practice of Logic Programming
1 (2001), pp. 409–445.

[11] Miller, D., G. Nadathur, F. Pfenning and A. Scedrov, Uniform Proofs as a
Foundation for Logic Programming, Annals of Pure and Applied Logic 51
(1991), pp. 125–157.

[12] Revesz, P. Z., Safe query languages for constraint databases, ACM Trans.
Database Syst. 23 (1998), pp. 58–99.

[13] Ullman, J., “Database and Knowledge-Base Systems Vols. I (Classical Database
Systems) and II (The New Technologies),” Computer Science Press, 1995.

[14] Zaniolo, C., S. Ceri, C. Faloutsos, R. T. Snodgrass, V. S. Subrahmanian and
R. Zicari, “Advanced Database Systems,” Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1997.

155

	Introduction
	Introducing HH(C) as a Query Language
	Infinite Data as Finite Representations
	Incompleteness

	Formalizing HH(C) with Negation
	Syntax
	Semantics

	Expressiveness of HH(C) with Negation
	Stratified Negation and Dependency Graphs
	Conclusions and Future Work
	References

