
Functional Logic Programming with Failure and

Built-in Equality?

F. J. López-Fraguas and J. Sánchez-Hernández

Dep. Sistemas Informáticos y Programación, Univ. Complutense de Madrid
{fraguas,jaime}@sip.ucm.es

Abstract. Constructive failure has been proposed recently as a pro-
gramming construct useful for functional logic programming, playing a
role similar to that of constructive negation in logic programming. On
the other hand, almost any functional logic program requires the use of
some kind of equality test between expressions. We face in this work in a
rigorous way the interaction of failure and equality (even for non-ground
expressions), which is a non trivial issue, requiring in particular the use
of disequality conditions at the level of the operational mechanism of
constructive failure. As an interesting side product, we develop a novel
treatment of equality and disequality in functional logic programming,
by giving them a functional status, which is better suited for practice
than previous proposals.

1 Introduction

Functional logic programming (see [10]) attempts to amalgamate the best fea-
tures of functional and logic languages. Some works [19, 20, 15, 17, 16, 18] have
addressed the subject of failure of reduction as a useful programming construct
extending naturally to the functional logic setting the notion of negation as
failure [7, 4], of great importance in logic programming.

On the other hand, almost any real program needs to use some kind of
equality test between expressions. It is known [5, 14, 1] that a good treatment
of equality in presence of non-ground expressions requires the use of disequality
constraints. In this paper we address the combination of both issues: failure and
equality.

Let us clarify our contribution with respect to previous works: in [15, 17] we
extended CRWL [8, 9] –a well known semantic framework for functional logic
programming– to obtain CRWLF, a proof calculus given as a semantic basis for
failure in functional logic programming; those papers considered equality and
disequality constraints, which were lost in [16], where CRWLF was reformulated
by using a set oriented syntax to reflect more properly the set-valued nature
of expressions in presence of non-deterministic functions typical of CRWL and
CRWLF. The purely semantic, non executable approach of [16] was completed
in [18] with a narrowing-like procedure able to operate with failure in presence

? Work partially supported by the Spanish project TIC2002-01167 ‘MELODIAS’

of non-ground expressions (we call this constructive failure, due to its similarity
with constructive negation [23]); equality and disequality as specific features are
again absent in [18].

The combination of constructive failure with a good treatment of equality is
the main contribution of this paper. Equality is realized by means of a three-
valued function (==) returning as possible values true, false or F, (a specific
constructor to express the result of a failed computation). As we argue at the
end of the next section, this is better suited to practice than to have independent
equality and disequality constraints like in [5, 14, 15, 17].

The organization of the paper is as follows: the next section motivates the
interest of our work; Section 3 summarizes the basic concepts about the Set
Reduction Logic of [16] and extends it with the inclusion of the equality function
==; Section 4 is devoted to the operational mechanism, that extends the relation
SNarr presented in [18] with the inclusion of ==. This extension requires a
specialized calculus for ==, the manipulation of disequalities and some other
technical notions. We give correctness and completeness results, but proofs are
omitted due to lack of space. Finally, in Section 5 we present some conclusions
and the future lines of our work.

2 Failure & equality: motivation

We give here a small but not artificial example recalling the interest of con-
structive failure and showing that the operational treatment of equality of [18]
has some drawbacks. We use in this section the concrete syntax of T OY [13, 1].
The functions if then and if then else are defined as usual. The
results indicated in the example correspond, except for some pretty-printing, to
the real results obtained with a small prototype implementing the ideas of this
work.

The purpose of a computation is to evaluate a possibly non-ground expres-
sion, obtaining as answer a pair (S, C) where S is a set of values (constructor
terms) and C expresses a condition for the variables in the expression. To con-
sider sets of values instead of single values is the natural thing when dealing
with failure and non-deterministic functions, as shown in [15, 17]. When S is
a singleton, we sometimes skip the set braces. The condition C, in ‘ordinary’
functional logic programming, would be simply a substitution. In this paper, as
we will see soon, C can have in addition some disequality conditions.

Example: Failure can be used to convert predicates (i.e. true-valued functions)
into two-valued boolean functions giving values true or false. The latter are
more useful, while the former are simpler to define. As an example, consider the
following definition of a predicate prefix:

prefix [] Ys = true

prefix [X|Xs] [Y|Ys] = if (X==Y) then prefix Xs Ys

Here, == must be understood as strict equality (see e.g. [10]). To obtain from
prefix a two-valued boolean function fprefix is easy using failure:

fprefix Xs Ys = if fails (prefix Xs Ys) then false else true

The function fails is intended to return the value true if its argument
fails (in finite time) to be reduced to head normal form (variable or constructor
rooted expression), and the value false if a reduction to hnf exists. Furthermore,
failure should be constructive, which means that fails should operate soundly
in presence of variables1.

To see what happens with equality, assume first that == is seen as any other
function, an therefore defined by rules, like in [18] . Assume also, for simplicity,
that we are dealing with lists of natural numbers represented by the constructors
0 and suc. The rules for == would be:

0 == 0 = true 0 == (suc Y) = false

(suc X) == 0 = false (suc X) == (suc Y) = X == Y

With these rules an expression like fprefix Xs [Y] produces infinitely many
answers binding Xs to lists of natural numbers and Y to natural numbers.

In contrast, in this paper == has a specific evaluation mechanism involving
disequality conditions which can be a part of answers. The virtue of disequalities
is that one single disequality can encompass the same information as many sub-
stitutions. For fprefix Xs [Y] only four answers are obtained: (true,{Xs=[]});
(false,{Xs=[Y,Z|Zs]}); (true,{Xs=[Y]}); (false,{Xs=[Z|Zs],Y/=Z}). Notice the
disequality condition in the last answer.

Some final remarks about our treatment of equality: in [5, 14] we considered
equality and disequality as two independent constraints, to be used in conditional
rules. One constraint e == e’ or e /= e’ might succeed or fail. To use a two-
valued boolean equality function, say eq, requires to define it by means of two
conditional rules: X eq Y = true <== X==Y; X eq Y = false <== X /= Y

But this has a penalty in efficiency: to evaluate an equality e eq e’ when
e,e’ are in fact unequal (thus e eq e’ should return false), the first rule tries
to solve the equality, which requires to evaluate e and e’ (and that might be
costly); the failure of the first rule will cause backtracking to the second rule,
where a new re-evaluation of e,e’ will be done. The actual implementation of
T OY replaces the above naive treatment of the function eq by a more efficient
one where one equality is evaluated as far as possible without guessing in advance
the value to obtain; this is done in T OY in a very ad-hoc way lacking any formal
justification with respect to the intended semantics of equality. Here we fill the
gap in a rigorous way and in the more complex setting of constructive failure,
where a third value, F, must be considered for ==.

3 Set Reduction Logic with Failure and ==

In this section we summarize the basic concepts of [16] about the set oriented
syntax, set-expressions and the class of CIS-programs that we use to build the

1 From the point of view of implementation, failure is not difficult for ground expres-
sions. For instance, in the system Curry [11] one could use encapsulated search [12].
The problems come with constructive failure, as in the case of logic programs.

Set Reduction Logic (SRL for short) as a semantic basis for constructive failure.
In order to extend this proof calculus to deal with equality, we also use some syn-
tactical notions about strict equality, disequality and their failure for constructed
terms introduced in [17]. We remark that for the theoretical presentation we use
first order notation.

3.1 Technical Preliminaries

We assume a signature Σ = DCΣ∪FSΣ∪{fails, ==}, where DCΣ =
⋃

n∈N
DCn

Σ

is a set of constructor symbols containing at least the usual boolean ones true
and false, FSΣ =

⋃
n∈N

FSn
Σ is a set of function symbols, all of them with as-

sociated arity and such that DCΣ ∩FSΣ = ∅. The functions fails (with arity 1)
and == (infix and with arity 2) do not belong to DC ∪ FS, and will be defined
by specific rules in the SRL-calculus.

We also assume a countable set V of variable symbols. We write TermΣ for
the set of (total) terms (we say also expressions) built over Σ and V in the
usual way, and we distinguish the subset CTermΣ of (total) constructor terms
or (total) cterms, which only makes use of DCΣ and V . The subindex Σ will
usually be omitted. Terms intend to represent possibly reducible expressions,
while cterms represent data values, not further reducible.

The constant (nullary constructor) symbol F is explicitly used in our terms,
so we consider the signature ΣF = Σ∪{F}. This symbol F will be used to express
the result of a failed reduction to hnf. The sets TermF and CTermF are defined
in the natural way. The denotational semantics also uses the constant symbol
⊥, that plays the role of the undefined value. We define Σ⊥,F = Σ ∪ {⊥, F}; the
sets Term⊥,F and CTerm⊥,F of (partial) terms and (partial) cterms respectively,
are defined in the natural way. Partial cterms represent the result of partially
evaluated expressions; thus, they can be seen as approximations to the value
of expressions in the denotational semantics. As usual notations we will write
X, Y, Z, ... for variables, c, d for constructor symbols, f, g for functions, e for
terms and s, t for cterms.

The sets of substitutions CSubst, CSubstF and CSubst⊥,F are defined as
mappings from V into CTerm, CTermF and CTerm⊥,F respectively. We will
write θ, σ, µ for general substitutions and ε for the identity substitution. The
notation θσ stands for composition of substitutions. All the considered sub-
stitutions are idempotent (θθ = θ). We also write [X1/t1, ..., Xn/tn] for the
substitution that maps X1 into t1, ..., Xn into tn.

Given a set of constructor symbols D, we say that the terms t and t′ have a
D-clash if they have different constructor symbols of D at the same position. We
say that two tuples of cterms t1, ..., tn and t′1, ..., t

′
n have a D-clash if for some

i ∈ {1, ..., n} the cterms ti and t′i have a D-clash.

A natural approximation ordering v over Term⊥,F can be defined as the least
partial ordering over Term⊥,F satisfying the following properties:

• ⊥ v e for all e ∈ Term⊥,F,

• h(e1, ..., en) v h(e′1, ..., e
′
n), if ei v e′i for all i ∈ {1, ..., n}, h ∈ DC ∪ FS ∪

{fails , ==} ∪ {F}

The intended meaning of e v e′ is that e is less defined or has less information
than e′. Extending v to sets of terms results in the Egli-Milner preordering (see
e.g. [21]): given D, D′ ⊆ CTerm⊥,F, D v D′ iff for all t ∈ D there exists t′ ∈ D′

with t v t′ and for all t′ ∈ D′ there exists t ∈ D with t v t′.
Next we define the relations ↓, ↑, 6↓ and 6↑, expressing, at the level of cterms,

strict equality, disequality, failure of equality and failure of disequality, respec-
tively.

Definition 1. Relations over CTerm⊥,F

I t ↓ t′ ⇔def t = t′, t ∈ CTerm. I t ↑ t′ ⇔def t and t′ have a DC-clash.
I t 6↓ t′ ⇔def t or t′ contain F as subterm, or they have a DC-clash.
I 6↑ is defined as the least symmetric relation over CTerm⊥,F satisfying:

i) X 6↑ X, for all X ∈ V ii) F 6↑ t, for all t ∈ CTerm⊥,F

iii) if t1 6↑ t′1, ..., tn 6↑ t′n then c(t1, ..., tn) 6↑ c(t′1, ..., t
′
n), for c ∈ DCn

These relations will be extended to general expressions by means of the func-
tion ==, whose semantic meaning will be fixed in the proof calculus SRL of
Section 3.3. Notice that t ↑ t′ ⇒ t 6↓ t′ ⇒ ¬(t ↓ t′) and t ↓ t′ ⇒ t 6↑ t′ ⇒ ¬(t ↑ t′)
but the converse implications do not hold in general. Notice also that t 6↓ t′ and
t 6↑ t′ can be both true for the same t, t′, and in this case neither strict equality,
↓, nor disequality, ↑, stand for t, t′. This will be used in the SRL-calculus (Table
1) in the rule 12, which states when == fails. Such a situation happens, for
instance, with suc(0) and suc(F).

3.2 Set Oriented Syntax: Set-expressions and Programs

A set-expression is a syntactical construction designed for manipulating sets of
values. We extend the signature with a new countable set of indexed variables Γ
that will usually be written as α, β, ... A (total) set-expression S is defined as:

S ::= {t} | f(t) | fails(S1) | t == t′ |
⋃

α∈S1
S2 | S1 ∪ S2

where t, t′ ∈ CTermF, t ∈ CTermF × ... × CTermF, f ∈ FSn, S1,S2 are set-
expressions and α ∈ Γ . We write SetExp for the set of (total) set-expressions.
The set SetExp⊥ of partial set-expressions has the same syntax except that
the cterms t, t′, t can contain ⊥. With respect to [16] we have added here the
construction t == t′ to the syntax of set-expressions.

Given a set-expression S we distinguish two sets of variables in it: the set
PV (S) ⊂ Γ of produced variables (those of indexed unions of S), and the re-
maining FV (S) ⊂ V or free variables. In order to avoid variable renaming and
simplify further definitions, we always assume that produced variables of a set-
expression are indexed only once in the entire set-expression.

We will use substitutions mapping variables of V ∪ Γ into terms built up
over V ∪ Γ . When applying a substitution [. . . , Xi/ti, . . . , αj/sj , . . .] to a set-
expression S, it is ensured throughout the paper that it does not bind any

produced variable of S, i.e. {. . . , αj , . . .}∩PV (S) = ∅, and also that no produced
variable is captured, i.e. (. . .∪var(ti)∪ . . .∪var(sj)∪ . . .)∩PV (S) = ∅. It is easy
to achieve these conditions with an adequate variable renaming, if necessary, of
produced variables in S.

We will also use set-substitutions for set-expressions: given D = {s1, ..., sn} ⊆
CTerm⊥,F we write S[Y/D] as a shorthand for the distribution S[Y/s1] ∪ ... ∪
S[Y/sn]. Extending this notation, we also write S[X1/D1, ..., Xn/Dn] (where
D1, ..., Dn ⊆ CTerm⊥,F) as a shorthand for (...(S[X1/D1])...)[Xn/Dn].

It is easy to transform any expression e ∈ Term⊥,F into its corresponding
set-expression S ∈ SetExp⊥,F while preserving the semantics with respect to the
appropriate proof calculus (see [16] for details). As an example, if c is a construc-
tor symbol and f and g are function symbols, the set-expression corresponding
to f(c, g(X)) is

⋃
α∈g(X) f(c, α).

Programs consist of rules of the form: f(t1, . . . , tn)� S, where f ∈ FSn, ti ∈
CTerm (notice that F is not allowed to appear in ti), the tuple (t1, . . . , tn) is lin-
ear (each variable occurs only once), S ∈ SetExp and FV (S) ⊆ var((t1, . . . , tn)).

Like in [18], we require programs to be Complete Inductively Sequential
Programs, or CIS-programs for short ([16, 18, 2]). In this kind of programs the
heads of the rules must be pairwise non-overlapping and cover all the possible
cases of constructor symbols. The interesting point is that for any ground tuple
made of terms t ∈ CTerm there is exactly one program rule that can be used for
reducing a call f(t). Notice that this holds for t ∈ CTerm, but not necessarily
for t ∈ CTermF. If t contains F, which might happen in an intermediate step of
a computation, then there could be no applicable rule.

In [3, 16, 18] one can find algorithms to transform general programs into CIS-
programs while preserving their semantics. This transformation, as well as the
transformation to set oriented syntax, can be made transparent to the user in
a real implementation, as indeed happens with the small prototype we have
developed for this paper.

For instance, the program of the example in Section 2 becomes the following
when translated into a CIS-program with first order set oriented syntax:

prefix([],Ys)� {true} prefix ([X |Xs], [])� {F}

prefix([X |Xs], [Y |Ys])�
⋃

β∈X==Y

⋃
γ∈prefix(Xs,Ys) ifThen(β, γ)

fprefix (Xs ,Ys)�
⋃

α∈fails(prefix(Xs,Ys) ifThenElse(α, false , true)

The functions if then and if then else are translated as:

ifThen(true, X) � {X}
ifThen(false, X)� {F}

ifThenElse(true, X, Y) � {X}
ifThenElse(false, X, Y)� {Y }

Notice that the original definition of prefix is completed in order to cover
all the possible cases for the arguments. In particular, the second rule of prefix
corresponds to a ‘missing’ case in the original definition, thus giving failure (the
value F) in the completed one. Something similar happens with the second rule
of ifThen.

(1)
S / {⊥}

S ∈ SetExp⊥ (2)
{X} / {X}

X ∈ V

(3)
{t1} / C1 {tn} / Cn

{c(t1, ..., tn)} / {c(t
′
) | t

′
∈ C1 × ... × Cn}

c ∈ DC ∪ {F}

(4)
S / C

f(t) / C
(f(t)� S) ∈ {Rθ | R = (f(t)� S) ∈ P, θ ∈ CSubst⊥,F}

(5)
f(t) / {F}

for all (f(s)� S ′) ∈ P, t and s have a DC ∪ {F}-clash

(6)
S / {F}

fails(S) / {true}
(7)

S / C
fails(S) / {false}

if there is some t ∈ C
with t 6= ⊥, t 6= F

(8)
S1 / C1 S2[α/C1] / C

⋃
α∈S1

S2 / C
(9)

S1 / C1 S2 / C2

S1 ∪ S2 / C1 ∪ C2

(10)
t == t′ / {true}

if t ↓ t′ (11)
t == t′ / {false}

if t ↑ t′

(12)
t == t′ / {F}

if t 6↓ t′ and t 6↑ t′

Table 1. Rules for SRL-provability

3.3 The proof calculus SRL

Following a well established approach in functional logic programming, we fix the
semantics of programs by means of a proof calculus determining which logical
statements can be derived from a program. The starting point of this semantic
approach was the CRWL framework [8, 9], which included a calculus to prove
reduction statements of the form e → t, meaning that one of the possible reduc-
tions of an expression e results in the (possibly partial) value t. We extended
CRWL to deal with failure, obtaining in [15, 17] the calculus CRWLF; the main
insight was to replace single reduction statements by statements e / C, where C
are sets of partial values (called Sufficient Approximation Sets or SAS’s) corre-
sponding to the different possibilities for reducing e.

The calculus CRWLF was adapted to CIS-programs with set oriented syntax
in [16, 18], and the resulting calculus was called SRL (for Set Reduction Logic).
Here we extend SRL to cope with equality. The new calculus, commented below,
is presented in Table 1.

Rules 1 to 4 are “classical” in CRWL(F) [9, 17, 15, 16]. Notice that rule 4 uses
a c-instance of a program rule that is unique if it exists (CIS-programs ensure it).
If such c-instance does not exist, then by rule 5, the corresponding set-expression
reduces to {F}. As mentioned before when describing CIS-programs, this might
happen because of the presence of F at some position in f(t). Rules 6 and 7
establish the meaning of the function fails(S) and rules 8 and 9 are natural
to understand from classical set theory. Finally, rules 10, 11 and 12 define the
meaning of the function == as a a three-valued function: {true} for the case of

equality, {false} for disequality, and {F} if case of failure of both. Notice that
given t, s ∈ CTerm⊥,F the conjunction of t 6↓ s and t 6↑ s means that t and s are
identical except possibly at the positions (of which there must be at least one)
where t or s contain the symbol F.

Given a program P and S ∈ SetExp⊥ we write P `SRL S / C, or simply
S / C for sort, if the relation S / C is provable with respect to SRL and the
program P . The denotation of S (we also call it the semantics of S) is defined
as [[S]] = {C | S / C}. Then the denotation of a set-expression is a set of sets of
(possible partial) cterms.

4 Operational Procedure: Set Narrowing with Equality

In this section we enlarge the narrowing relation SNarr of [18] with the equality
function ==. First, set-expressions are enriched by adding sets of disequalities
to them. These disequalities must be manipulated at the operational level, so
we introduce a normalization function solve and appropriate semantic notions
that will be useful later. Then we fix the operational behavior of the equality

function == by means of a specific narrowing relation for it, �θ
, and we

give correctness and completeness results for it with respect to SRL. Finally,
making use of these new capabilities, we integrate the equality function into the
general narrowing relation SNarr, and we show the corresponding correctness
and completeness results, again with respect to SRL.

4.1 Disequality Manipulation

In order to introduce the equality function at the operational level we need an
explicit manipulation of disequalities. We will work with sets δ of disequalities of
the form t 6= s, where t, s ∈ CTerm. A first important notion is that of solution:

Definition 2. Given δ = {t1 6=s1, . . . , tn 6=sn} we say that σ ∈ CSubst⊥,F is a
solution for δ, and write σ ∈ Sol(δ), if t1σ↑s1σ, . . . , tnσ ↑snσ.

We are particularly interested in sets of solved forms of disequalities of the
form X 6= t (with X 6≡ t), where the variable X and those of t are all in V ,
i.e., there are not produced variables in them. We introduce a function solve
to obtain solved forms for sets of disequalities between cterms. As solved forms
are not unique in general, solve returns the set of solved forms from a set of
disequalities:

I solve(∅) = {∅} I solve({X 6= X} ∪ δ) = ∅
I solve({c 6= c} ∪ δ) = ∅, for any c ∈ DC0

I solve({c(t) 6= d(t
′
)} ∪ δ) = solve(δ), if c 6= d

I solve({X 6= t} ∪ δ) = {{X 6= t} ∪ δ′ | δ′ ∈ solve(δ)}
I solve({c(t1, . . . , tn) 6= c(t′1, . . . , t

′
n)}∪δ) = {δi∪δ′ | δi ∈ solve({ti 6= t′i}), δ

′ ∈
solve(δ)}

(1) ∅�ε
true (2) X == X, C�ε

C if X 6∈ Γ

(3) X == t, C�[X/t]
C[X/t]

if X 6= t, X 6∈ Γ ∪ var(t), Γ ∩ var(t) = ∅
and t does not contain F

(4) c(t1, . . . , tn) == c(s1, . . . , sn), C�ε
t1 == s1, . . . , tn == sn, C

(5) c(t) == d(s), C�ε
false

(6) X == t, C�ε
false |X 6=t

if X 6= t, X 6∈ Γ , Γ ∩ var(t) = ∅
and t does not contain F

(7) X == c(t1, . . . , tn), C �[X/c(Y)]
(Y1 == t1, . . . , Yn == tn, C)[X/c(Y)]

if X 6∈ Γ and var(t) ∪ Γ 6= ∅ or t contains F, Y fresh variables

(8) X == c(t1, . . . , tn), C �[X/d(Y)]
false

if X 6∈ Γ and var(t) ∪ Γ 6= ∅
or t contains F, Y fresh variables

(9) F == t1, . . . , F == tn�ε
F

Table 2. Rules for ==

The interesting property about this function is:

Proposition 1. If solve(δ)={δ1, . . . , δn}, then Sol(δ)=Sol(δ1)∪ . . .∪Sol(δn).

Now, the idea is to associate a set of disequalities δ to any set-expression S,
for which we use the notation S2δ. For such set-expressions with disequalities
we extend the notion of semantics in order to obtain a better way for establishing
semantics equivalence between set-expressions. Given S2δ, we are interested in
the semantics of S under total substitutions that also are solutions of δ. With
this aim we introduce the notion of hyper-semantics:

Definition 3. The hyper-semantics of a set-expression with disequalities S2δ
(with respect to a program P) is defined as: [[[S2δ]]] = λσ ∈ CSubst∩Sol(δ).[[Sσ]]

4.2 Operational behavior of ==

The mechanism for evaluating the function == is defined by means of the rela-

tion �θ
of Table 2. The substitution θ ∈ CSubst is the computed substitu-

tion. This relation works on a set of constraints of the form {t1 == s1, . . . , tn ==
sn}, where t1, . . . , tn, s1, . . . sn ∈ CTermF. As an abuse of notation we will write
t1 == s1, . . . , tn == sn, C for representing the set {t1 == s1, . . . , tn == sn}∪C,
where C is a set of constraints; it is not relevant any ordering on the constraints
and the relation == is symmetric. Some comments about the rules of Table 2:

Some comments about the rules:

– rule 2 erase a variable identity, 3 is for binding, 4 for decomposition and 7 is
an imitation rule. These are general rules that can be used in intermediate
steps of a�-derivation to obtain any result (true, false or F);

– the result true (equality) can be obtained by applying the general rules and
finally rule 1, that stands for the empty set of constraints;

– false (disequality) is reached by checking a clash of constructor symbols in
rule 5, or by introducing such a clash in rule 8;

– false|X/=u (conditional disequality) can be obtained in rule 6. In this case,
the value false is conditioned to the disequality X 6= t. This is the point
where an explicit disequality can be added as part of the solution;

– finally, F is obtained in rule 9 when all the equalities are of the form F == t.
In such case neither a equality nor a disequality can be proved.

Apart from the possible values that can return the calculus, it is possible that
no rule is applicable at a given step in the derivation. This happens when there
are produced variables of Γ that block the evaluation. Notice that the evaluation
of an equality t == s will be required from the narrowing relation SNarr, where
this equality is a part of the full set-expression. So, t == s can contain produced
variables indexed in the corresponding set-expression. For example, using the
function prefix of Section 2, the equality prefix 0 [0,X]== Y written as set-
expression is

⋃
α∈prefix(0,[0,X]) α == Y . The equality α == Y cannot be reduced

by the rules of � because α blocks the evaluation, i.e., it is associated to

an expression (prefix(0, [0, X])) that requires further evaluation.

We will use the relation ∗
�θ

for 0 or more steps of � , where θ

indicates the composition of θ’s in individual steps.
In order to simplify the relation SNarr of the next section we consider a

uniform shape (ω, δ) for the results provided by the rules for�, where ω is
the value and δ a set of disequalities (always empty, except for the case of con-
ditional false). So, with this format the possible results are: (true, ∅), (false , ∅),
(false , {X 6= u}) and (F, ∅).

4.3 The operational mechanism

For selecting a redex, SNarr uses the notion of context defined as:

C ::= S | [] | fails(C1) |
⋃

X∈C1
C2 | C1 ∪ C2

where S is a set-expression, and C1 and C2 are contexts.

For defining the operational behavior of fails and also for the completeness
result of Section 4.3 we need to consider the information set S∗ ⊆ CTerm⊥,F

for a set-expression S, defined as:

I (f(t))∗ = (fails(S))∗ = (t == s)∗ = {⊥} I ({t})∗ = {t}
I (

⋃
α∈S′ S)∗ = (S[α/⊥])∗ I (S1 ∪ S2)

∗ = S∗
1 ∪ S∗

2

Now, we can define one-narrowing-step relation: given a program P , two
set-expressions S,S ′ ∈ SetExp, θ ∈ CSubstF, and δ, δ′ sets of disequalities in

Cntx C [S]2δ θ
Cθ [S ′]2δ′ if S2δ θ

S ′
2δ′

Nrrw1 f(t)2δ θ |var(t)
Sθ2δ′

if (f(s)� S) ∈ P, θ ∈ CSubstF is a m.g.u. for s
and t with Dom(θ) ∩ Γ = ∅ and δ′ ∈ solve(δθ)

Nrrw2 f(t)2δ ε
{F}2δ

if for every rule (f(s)� S) ∈ P,
s and t have a DC ∪ {F}-clash

Nrrw3 t == s2δ θ |var(t)∪var(s)
{ω}2δ′ if t == s

∗
�θ

(ω, δ′′) and

δ′ ∈ solve(δθ ∪ δ′′)

Fail1 fails(S)2δ ε
{true}2δ if S∗ = {F}

Fail2 fails(S)2δ ε
{false}2δ if ∃t ∈ S∗ t 6= ⊥, t 6= F

Dist
⋃

α∈S1∪S2
S32δ ε

⋃
α∈S1

S3 ∪
⋃

α∈S2
S32δ

Bind
⋃

α∈{t} S2δ ε
S[α/t]2δ

Flat
⋃

α∈
⋃

β∈S1
S2

S32δ ε

⋃
β∈S1

⋃
α∈S2

S32δ

Elim
⋃

α∈S′ S2δ ε
S2δ if α 6∈ FV (S)

Table 3. Rules for SNarr

solved form, a narrowing step is expressed as S2δ θ
S ′

2δ′ where the relation

S2δ θ
S ′

2δ is defined in Table 3. In the following we use SNarr as the name

for this relation.
Rules are essentially those of [18], except for the disequality sets δ and for

the rule Nrrw3, specific for ==. This rule performs a subcomputation with the
rules for == and integrates the result in the current set-expression. With respect
to the other rules: Cntx select a redex in the set-expression, Nrrw1 evaluates
a function call by finding the appropriate (unique if it exists) applicable rule;
Nrrw2 returns a failure if such rule does not exist; rules Fail1,2 evaluate the
function fails according to the information set of the current set-expression. And
the rest of rules correspond to easy manipulations from the point of view of sets.

As an example of derivation, consider again the CIS-program containing the
functions prefix , fprefix , ifThen and ifThenElse of Section 3.2. We show one of
the four possible derivations for the expression fprefix (Xs , [Y]) in Table 4 (we
write iT for ifThen and iT e for ifThenElse). At each step we underline the redex
in use, and we point out the rule of SNarr used for the step. In the case of Nrrw1

we also point out the rule of the program used for the step.
Notice that the computed substitution is found at step (2), by applying

the second rule of prefix to narrow the redex prefix(Xs , [Y]). At step (3), the
rule Nrrw3 throws a subcomputation for the function ==. It succeeds with a
conditional false that inserts the disequality {Y 6= B} into the computation.
The function fails is reduced to true by means of Fail1 at step (7). At the end

(1) fprefix (Xs , [Y])2∅ ε
(Nrrw1-fprefix)

(2)
⋃

α∈fails(prefix(Xs,[Y])) iTe(α, false, true)2∅ Xs/[B|C]
(Nrrw1-prefix3)

(3)
⋃

α∈fails(
⋃

β∈B==Y

⋃
γ∈prefix(C,[]) iT(β,γ)) iTe(α, false, true)2∅ ε

(Nrrw3)

B == Y �ε
(false, {Y 6= B}) (by rule 6 of ==)

(4)
⋃

α∈fails(
⋃

β∈{false}

⋃
γ∈prefix(C,[]) iT(β,γ)) iTe(α, false, true)2{Y 6= B} ε

(Bind)

(5)
⋃

α∈fails(
⋃

γ∈prefix(C,[]) iT(false,γ)) iTe(α, false, true)2{Y 6= B} ε
(Nrrw1-iT2)

(6)
⋃

α∈fails(
⋃

γ∈prefix(C,[]){F}) iTe(α, false, true)2{Y 6= B} ε
(Elim)

(7)
⋃

α∈fails({F}) iTe(α, false, true)2{Y 6= B} (Fail1)

(8)
⋃

α∈{true} iTe(α, false, true)2{Y 6= B} (Bind)

(9) iTe(true , false, true)2{Y 6= B} (Nrrw1-iTe1)

(10) {false}2{Y 6= B}

Final answer: ({false}, {Xs = [B|C], Y 6= B})
Table 4. Derivation for fprefix Xs [Y]

we obtain the answer ({false}, {Xs = [B|C], Y/ = B}) as expected. The three
remaining answers showed in Section 2 can be obtained in a similar way.

The correctness of SNarr with respect to SRL is easy to formulate thanks to
the notion of hyper-semantics (Definition 3). Essentially it guarantees that the
hyper-semantics of a set-expression is preserved under SNarr derivations.

Theorem 1 (Correctness of SNarr). Let S, S ′ ∈ SetExp, θ ∈ CSubstF and

δ,δ′ sets of solved disequalities. Then: S2δ ∗
 θ

S ′
2δ′ ⇒ [[[Sθ2δ′]]] = [[[S ′

2δ′]]]

The completeness result is quite technical and ensures that the SAS’s ob-
tained by SRL are captured by the information provided by SNarr, that also
finds the appropriate substitutions.

Theorem 2 (Completeness of SNarr). Let S2δ be a set-expression with
disequalities and θ ∈ Sol(δ). If P `SRL Sθ / C then there exists a derivation

S2δ ∗
 θ′

S ′
2δ′, introducing a set of fresh variables Π, such that:

I θ = (θ′µ) |V−Π , for some µ ∈ CSubst I C v (S ′µ)∗ I µ ∈ Sol(δ′)

As a corollary we obtain the following result that essentially says that we have
reached our goal of devising an operational procedure for constructive failure.

Corollary 1. If P `SRL Sθ / {F}, then there exist θ′, µ ∈ CSubst such that

S2∅ ∗
 θ′

{F}2δ, θ = θ′µ and µ ∈ Sol(δ).

5 Conclusions and Future Work

We have addressed in a rigorous way in this paper the problem of how to realize
constructive failure in a functional logic language having a built-in equality func-
tion. The motivation was that both failure and equality are important expressive
resources in functional logic programs, but there was a lack of a convenient com-
bination of them in previous works. We were guided by the following two aims,
hopefully achieved:

– We wanted our work to be technically precise from the theoretical point of
view, not only at the semantic description level but also at the operational
level, with results relating both levels. For the first level we give a proof
calculus fixing the semantics of programs and expressions. Failure is used in
programs by means of a two-valued function fails giving true or false, while
for equality we use a three-valued function == giving as possible values true,
false or F.

– We wanted failure and equality to be well-behaved from a functional logic
programming perspective, which implies the ability to operate in presence
of non-ground expressions. Thus, following a usual terminology for negation
in logic programming, we expect failure to be constructive, and this, when
combined with equality, required to consider disequality constraints as a part
of the operational procedure, which essentially consists in set-narrowing (in
the spirit of [18]) combined with a (novel) evaluation mechanism for equality,
all proceeding in an ambient of disequality constraints, which can appear in
answers.

The operational procedure, although complex in its description, is amenable
for a quite direct implementation. We have a small prototype with which all the
examples in the paper have been executed. It includes the program transforma-
tion needed to convert programs in user-friendly T OY syntax into CIS-programs
with set oriented syntax. As a useful tool for experimentation the prototype in-
cludes also the possibility of tracing an execution by automatically generating
and compiling a TeX file with the sequence of performed steps. The derivation
in Table 4 has been obtained with the aid of this tool.

In the future, we plan to embed the prototype into the T OY system, and to
improve its efficiency.

References

1. M. Abengózar-Carneros et al. T OY: a multiparadigm declarative language, version
2.0. Technical report, Dep. SIP, UCM Madrid, January 2001.

2. S. Antoy. Definitional trees. In Proc. ALP’92, pages 143–157, Springer LNCS 632,
1992.

3. S. Antoy. Constructor-based conditional narrowing. In Proc. PPDP’01, pages
199–206, ACM Press, 2001.

4. K.R. Apt and R. Bol. Logic programming and negation: A survey. Journal of
Logic Programming, 19&20:9–71, 1994.

5. P. Arenas-Sánchez, A. Gil-Luezas, F. J. López Fraguas, Combining lazy narrowing
with disequality constraints. In Proc. PLILP’94, pages 385–399, Springer LNCS
844, 1994.

6. D. Chan. Constructive negation based on the completed database. In Proc. IC-
SLP’88, pages 111–125, 1988.

7. K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Data Bases, pages 293–322, Plenum Press, 1978.

8. J.C. González-Moreno, T. Hortalá-González, F.J. López-Fraguas, and
M. Rodŕıguez-Artalejo. A rewriting logic for declarative programming. In
Proc. ESOP’96, pages 156–172, Springer LNCS 1058, 1996.

9. J.C. González-Moreno, T. Hortalá-González, F.J. López-Fraguas, and
M. Rodŕıguez-Artalejo. An approach to declarative programming based on
a rewriting logic. Journal of Logic Programming, 40(1):47–87, 1999.

10. M. Hanus. The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming, 19&20:583–628, 1994.

11. M. Hanus (ed.). Curry: An integrated functional logic language. Available at
http://www.informatik.uni-kiel.de/~curry/report.html, 2000.

12. M. Hanus and F. Steiner Controlling search in declarative programs. In Proc.
PLILP/ALP’98, pages 374–390, Springer LNCS 1490, 1998.

13. F.J. López-Fraguas and J. Sánchez-Hernández. T OY : A multiparadigm declarative
system. In Proc. RTA’99, pages 244–247, Springer LNCS 1631, 1999.

14. F.J. López-Fraguas and J. Sánchez-Hernández. Disequalities may help to narrow.
Proc. APPIA-GULP-PRODE, pages 89–104, 1999.

15. F.J. López-Fraguas and J. Sánchez-Hernández. Proving failure in functional logic
programs. In Proc. CL’00, pages 179–193, Springer LNAI 1861, 2000.

16. F.J. López-Fraguas and J. Sánchez-Hernández. Functional logic programming with
failure: A set-oriented view. In Proc. LPAR’01, pages 455–469, Springer LNAI
2250, 2001.

17. F.J. López-Fraguas and J. Sánchez-Hernández. A proof theoretic approach to
failure in functional logic programming. To appear in TPLP.

18. F.J. López Fraguas and J. Sánchez Hernández. Narrowing failure in functional logic
programming. In Proc. FLOPS’02, pages 212–227, Springer LNCS 2441, 2002.

19. J.J. Moreno-Navarro. Default rules: An extension of constructive negation for
narrowing-based languages. In Proc. ICLP’94, pages 535–549, The MIT Press,
1994.

20. J.J. Moreno-Navarro. Extending constructive negation for partial functions in lazy
functional-logic languages. In Proc. ELP’96, pages 213–227, Springer LNAI 1050,
1996.

21. J.C. Reynolds. Theories of programming languages. Cambridge Univ. Press, 1998.
22. P.J. Stuckey. Constructive negation for constraint logic programming. In Proc.

LICS’91, pages 328–339, 1991.
23. P.J. Stuckey. Negation and constraint logic programming. Information and Com-

putation, 118:12–33, 1995.

