
Narrowing Failure in Functional Logic

Programming

F. J. López-Fraguas and J. Sánchez-Hernández

Dep. Sistemas Informáticos y Programación, Univ. Complutense de Madrid
{fraguas,jaime}@sip.ucm.es

Abstract. Negation as failure is an important language feature within
the logic programming paradigm. The natural notion generalizing nega-
tion as failure in a functional logic setting is that of finite failure of
reduction. In previous works we have shown the interest of using such
programming construct when writing functional logic programs, and we
have given a logical status to failure by means of proof calculi designed to
deduce failures from programs. In this paper we address the problem of
the operational mechanism for the execution of functional logic programs
using failure. Our main contribution is the proposal of a narrowing re-
lation able to deal with failures, which is constructive in the usual sense
of the term in the context of negation, that is, narrowing is able to find
substitutions for variables even in presence of failures. As main technical
results, we prove correctness and completeness of the narrowing relation
with respect to the proof-theoretic semantics.

1 Introduction

Motivation Functional logic programming (FLP for short) tries to combine
the nicest properties of functional and logic programming (see [9] for a now
‘classical’ survey on FLP). Theoretical aspects of FLP are well established (e.g.
[8]) and there are also practical implementations such as Curry [10] or T OY [1,
11]. Disregarding syntax, both pure Prolog and (a wide subset of) Haskell are
subsumed by those systems. The usual claim is then that by the use of an FLP
system one can choose the style of programming better suited to each occasion.

There is nevertheless a very important feature in the logic programming (LP
for short) paradigm, namely negation as failure [6], yet not available in FLP
systems. Negation is a major issue in the LP field, both at the theoretical and
the practical levels. There are hundreds of papers about negation in LP (see e.g.
[4] for a survey), and almost all real Prolog programs use negation at some point.

This situation poses some problems to FLP, since logic programs using nega-
tion cannot be directly seen as FLP programs. This would be a not very serious
inconvenience if other features of FLP could easily replace the use of failure.
This happens in some cases, when the possibility of defining two-valued boolean
functions is a good alternative to the use of negation in a logic program.

But there are problems where the use of failure as a programming construct
is a real aid to the writing of concise declarative programs. We give an example –

to be used several times throughout the paper – of that situation in the context
of FLP. Some other examples can be found in [15].
Example Consider the problem of determining if there is a path connecting
two nodes of an acyclic directed graph. A typical way of representing a graph
in current FLP languages is by means of a non-deterministic function next, with
rules of the form next(N) → N ′, indicating that there is an arc from N to N ′.
A concrete graph with nodes a, b, c and d could be given by the rules:

next(a) → b next(b) → c
next(a) → c next(b) → d

And to determine if there is a path from X to Y we can define:

path(X, Y) → if eq(X, Y) then true else path(next(X), Y)

where eq stands for strict equality, which can be defined by the rules eq(a, a) →
true, eq(a, b) → false and so on.

Notice that path behaves as a semidecision procedure recognizing only the
positive cases, and there is no clear way (in ‘classical’ FLP) of completing its
definition with the negatives ones, unless we change from the scratch the repre-
sentation of graphs. Therefore we cannot, for instance, program in a direct way
a property like

safe(X) ⇔ X is not connected with d

To this purpose, something like negation as failure would be very useful.
Since predicates can be programmed in FLP systems like true-valued functions,
a natural FLP generalization of negation as failure is given by the notion of
failure of reduction to head normal form. This could be expressed by means of
a ‘primitive’ function fails, with the following intended behavior:

fails(e) ::=

{

true if e fails to be reduced to hnf
false otherwise

Using this primitive it is now easy to define the property safe:

safe(X) → fails(path(X, d))

With this definition and the previous graph, safe(X) becomes true for X = c
and false for X = a, X = b and X = d.

Previous and related work. Aim of the paper In some previous works
[12, 15, 13] we addressed the problem of failure within FLP, from the point of
view of its semantic foundations. Our starting point was CRWL [7, 8], a gen-
eral framework for FLP, based on a Constructor-based ReWriting Logic. From
the point of view of programming, a fundamental notion of CRWL (as well as
for existing FLP systems like Curry [10] or T OY [11, 1]) is that of non-strict
non-deterministic function, for which call-time choice semantics is considered.
Programs in CRWL have a logical semantics given by the logical consequences

of the program according to a proof calculus able to prove reduction statements
of the form e → t, meaning that one of the possible reductions of an expression
e results in the (possibly partial) value t.

Our first step [12, 15] for dealing with failure in FLP, was to extend the
rewriting logic CRWL to CRWLF (CRWL “with failure”). The main insight was
to replace statements e → t by statements e / C, where C are sets of partial
values (called Sufficient Approximation Sets or SAS’s) corresponding to the dif-
ferent possibilities for reducing e. In [13] we realized the benefits of making more
explicit the set nature of non deterministic functions, and therefore we reformu-
lated CRWLF by giving a set-oriented view of programs. This was done even at
the syntactic level, by introducing classical mathematical set notation, like union
or indexed unions; union is useful to transform programs to an inductively se-
quential format [2], and indexed unions turn to be useful for expressing call-time
choice semantics and sharing.

One of the motivations for the set-oriented view adopted in [13] was our
thought that such approach, by reflecting better the meaning of programs, would
be an appropriate semantic basis upon which develop a suitable operational se-
mantics for functional logic programs using failure. This is exactly the purpose of
this paper. We propose an operational mechanism given by a narrowing relation
which can operate with failure, that is, which is able to narrow expressions of
the form fails(e). Since we start from a precise semantic interpretation of failure,
we are able to prove correctness and completeness of narrowing with respect to
the semantics.

A major feature of our proposal is that the narrowing relation is constructive
in the usual sense given to the term in the context of negation [5, 19, 20]: if an
expression fails(e) contains variables, it can still be narrowed to obtain appro-
priate substitutions for them. For instance, in the example of the graph, our
narrowing relation is able to narrow the expression safe(X) to obtain the value
true together with the substitution X =c and the value false together with the
substitutions (corresponding to different computations) X =a, X =b and X =d.

There are very few works about negation in FLP. In [16] the work of Stuckey
about constructive negation [19, 20] is adapted to the case of FLP with strict
functions and innermost narrowing as operational mechanism. In [17] a similar
work is done for the case of non-strict functions and lazy narrowing. This ap-
proach, apart from being in the technical side very different from ours, does not
take into account non-determinism of functions, an essential aspect in our work.

The organization of the paper is as follows: Section 2 contains some technical
preliminaries. In Section 3 we present (a slight variant of) the set-oriented se-
mantic framework for failure of [13], including the proof calculus, together with
some new results which are needed for subsequent sections. Section 4 is the core
of the paper, where we define the narrowing relation and prove the results of
correctness and completeness with respect to the logical semantics. Finally, Sec-
tion 5 summarizes some conclusions and hints for future work. Due to lack of
space, proofs are omitted, but can be found in [14].

2 Technical Preliminaries

We assume a signature Σ = DCΣ ∪FSΣ ∪ {fails} where DCΣ =
⋃

n∈N
DCn

Σ is
a set of constructor symbols containing at least the usual boolean ones true and
false, FSΣ =

⋃

n∈N
FSn

Σ is a set of function symbols, all of them with associated
arity and such that DCΣ ∩ FSΣ = ∅, and fails 6∈ DC ∪ FS (with arity 1). We
also assume a countable set V of variable symbols. We write TermΣ for the set
of (total) terms (we say also expressions) built over Σ and V in the usual way,
and we distinguish the subset CTermΣ of (total) constructor terms or (total)
cterms, which only make use of DCΣ and V . The subindex Σ will usually be
omitted. Terms intend to represent possibly reducible expressions, while cterms
represent data values, not further reducible.

The constant (0-arity constructor) symbol F is explicitly used in our terms,
so we consider the signature ΣF = Σ ∪ {F}. This symbol F will be used to
express failure of reduction. The sets TermF and CTermF are defined in the
natural way. The denotational semantics also uses the constant symbol ⊥, that
plays the role of the undefined value. We define Σ⊥,F = Σ ∪ {⊥, F}; the sets
Term⊥,F and CTerm⊥,F of (partial) terms and (partial) cterms respectively, are
defined in a natural way. Partial cterms represent the result of partially evaluated
expressions; thus, they can be seen as approximations to the value of expressions
in the denotational semantics.

As usual notations we will write X, Y, Z, ... for variables, c, d for constructor
symbols, f, g for functions, e for terms and s, t for cterms. In all cases, primes
(’) and subindices can be used.

The sets of substitutions CSubst, CSubstF and CSubst⊥,F are defined as ap-
plications from V into CTerm, CTermF and CTerm⊥,F respectively. We will
write θ, σ, µ for substitutions and ε for the identity substitution. The notation
θσ stands for the usual composition of substitutions. All the considered substi-
tutions are idempotent (θθ = θ). We write [X1/t1, ..., Xn/tn] for the substitution
that maps X1 into t1, ..., Xn into tn.

Given a set of constructor symbols D, we say that the terms t and t′ have a
D-clash if they have different constructor symbols of D at the same position. We
say that two tuples of cterms t1, ..., tn and t′1, ..., t

′
n have a D-clash if for some

i ∈ {1, ..., n} the cterms ti and t′i have a D-clash.
A natural approximation ordering v over Term⊥,F can be defined as the least

partial ordering over Term⊥,F satisfying the following properties:

• ⊥ v e for all e ∈ Term⊥,F,
• h(e1, ..., en) v h(e′1, ..., e

′
n), if ei v e′i for all i ∈ {1, ..., n}, h ∈ DC ∪ FS ∪

{fails} ∪ {F}

The intended meaning of e v e′ is that e is less defined or has less information
than e′. Two expressions e, e′ ∈ Term⊥,F are consistent if they can be refined to
obtain the same information, i.e., if there exists e′′ ∈ Term⊥,F such that e v e′′

and e′ v e′′. Notice that according to this F is maximal. This is reasonable
from an intuitive point of view, since F represents ‘failure of reduction’ for an
expression and this gives a no further refinable information about the result of

the evaluation of such expression. This contrasts with the status given to failure
in [17], where F is chosen to verify F v t for any t different from ⊥. We also use
the relation v referred to substitutions: σ v σ′ iff Xσ v Xσ′ for all X ∈ V . And
for tuples of cterms: t v t

′
iff the ordering relation is pairwise satisfied.

Extending v to sets of terms results in the Egli-Milner preordering (see e.g.
[18]): given D, D′ ⊆ CTerm⊥,F we say that D′ is more refined than D and write
D v D′ iff for all t ∈ D there exists t′ ∈ D′ with t v t′ and for all t′ ∈ D′ there
exists t ∈ D with t v t′. The sets D and D′ are consistent iff there exists D′′

such that D v D′′ and D′ v D′′.

3 A Semantic Framework for FLP with Failure

3.1 Set expressions

A set-expression is a syntactical construction designed for manipulating sets of
values. A (total) set-expression S is defined as:

S ::= {t} | f(t) | fails(S1) |
⋃

X∈S1
S2 | S1 ∪ S2

where t ∈ CTermF, t ∈ CTermF × ... × CTermF, f ∈ FSn, and S1,S2 are
set-expressions. We write SetExp for the set of (total) set-expressions. The set
SetExp⊥ of partial set-expressions is analogous but t, t can contain ⊥.

Indexed unions bind variables in a similar way to other more familiar con-
structs like first order quantifications or λ-abstraction. The set PV (S) of bound
or produced variables of a set-expression S can be formally defined as:

• PV ({t}) = PV (f(t)) = ∅ • PV (
⋃

X∈S1
S2) = {X} ∪ PV (S1) ∪ PV (S2)

• PV (fails(S)) = PV (S) • PV (S1 ∪ S2) = PV (S1) ∪ PV (S2)

We can also define the set FV (S) of free variables of a set-expression S as:

• FV ({t}) = var(t) • FV (f(t)) = var(t) • FV (fails(S1)) = FV (S1)
• FV (

⋃

X∈S1
S2) = (FV (S2) − {X}) ∪ FV (S1)

• FV (S1 ∪ S2) = FV (S1) ∪ FV (S2)

In order to avoid variable renamings and simplify further definitions, we
add an admissibility condition to set expressions: for

⋃

X∈S1
S2 we require X 6∈

var(S1)∪PV (S2) and PV (S1)∩PV (S2) = ∅; and S1 ∪S2 must verify PV (S1)∩
FV (S2) = ∅ and PV (S2) ∩ FV (S1) = ∅. Notice that with this conditions, the
sets PV (S) and FV (S) define a partition over var(S). In the following we always
assume this admissibility condition over set-expressions.

As an example, if f ∈ FS2 and c ∈ DC2, then

S =
⋃

A∈
⋃

B∈f(X,Y){B}{c(A, X)} ∪
⋃

C∈{X} f(C, Y)

is an admissible set-expression with PV (S)={A, B, C} and FV (S)={X, Y }.
We assume also some admissibility conditions over substitutions: given a set-

expression S we say that σ is an admissible substitution for S, if Dom(σ) ∩
PV (S) = ∅ and Ran(σ) ∩ PV (S) = ∅. In such case, the set-expression Sσ is
naturally defined as:

• {t}σ = {tσ} • f(t)σ = f(tσ) • fails(S)σ = fails(Sσ)
• (

⋃

X∈S1)
S2)σ =

⋃

X∈S1σ S2σ • (S1 ∪ S2)σ = S1σ ∪ S2σ

Notice that produced variables are not affected by the substitution due to the
condition Dom(σ)∩PV (S) = ∅; and we avoid capture of produced variables with
the condition Ran(σ)∩PV (S) = ∅. We will also use (admissible) set-substitutions
for set-expressions: given a set D = {s1, ..., sn} ⊆ CTerm⊥,F we write S[Y/D]
as a shorthand for the distribution S[Y/s1] ∪ ... ∪ S[Y/sn]. Extending this no-
tation, we also write S[X1/D1, ..., Xn/Dn] (where D1, ..., Dn ⊆ CTerm⊥,F) as
a shorthand for (...(S[X1/D1])...)[Xn/Dn]. In the following all the substitutions
we use are admissible.

The ordering v defined in Section 2 for terms and sets of terms can be
extended also to set expressions: the relation vSetExp⊥

is the least reflexive and
transitive relation satisfying:

1. {⊥} vSetExp⊥
S, for any S ∈ SetExp⊥

2. {t} vSetExp⊥
{t′}, if t v t′

3. f(t) vSetExp⊥
f(t

′
), if f(t) v f(t

′
)

4. fails(S) vSetExp⊥
fails(S ′), if S vSetExp⊥

S ′

5.
⋃

X∈S1
S2 vSetExp⊥

⋃

X∈S′
1
S ′

2, if S1 vSetExp⊥
S ′

1 and S2 vSetExp⊥
S ′

2

6. S1 ∪ ... ∪ Sn vSetExp⊥
S ′

1 ∪ ... ∪ S ′
m, if for all i ∈ {1, ..., n} there exists some

j ∈ {1, ..., m} such that Si v S ′
j and conversely, for all j ∈ {1, ..., m} there

exists some i ∈ {1, ..., n} such that Si v S ′
j

In the following the subindex of vSetExp⊥
will be omitted.

3.2 Programs

A program is a set of rules of the form: f(t1, . . . , tn) � S, where f ∈ FSn,
ti ∈ CTerm, the tuple (t1, . . . , tn) is linear (each variable occurs only once),
S ∈ SetExp and FV (S) ⊆ var((t1, . . . , tn)).

Notice that we allow F to appear in S, but not in t1, . . . , tn. This is not
essential, and is done only for technical convenience. Notice also that known
definitions which refer only to heads of rules, like that of definitional tree or
inductively sequential program [2], can be applied also to our programs. Con-
cretely, we are interested in the class of Complete Inductively Sequential Pro-
grams (CIS-programs for short), introduced in [2]. ‘Complete’ means that at
every case distinction in the definitional tree of a function there is a branch
for every constructor symbol from DC. By considering CIS-programs we en-
sure that, for any ground t1, . . . , tn ∈ CTerm, exactly one program rule can
be used to reduce a call f(t1, . . . , tn). And there is no loss of generality: in [3,
13] it is shown how to convert programs into overlapping inductively sequential
programs, where several rules might have the same head; as mentioned in [13],
by using ∪ it straightforward to achieve inductive sequentiality, just by merging
with ∪ several body rules; in [13] it is also shown how to translate ‘classical’

syntax for expressions in bodies into set-oriented syntax; finally, to achieve com-
pleteness we only need to add, for every ‘missing’ constructor in a case distinction
of a definitional tree, a rule with {F} as body.

As an example, the CIS-program corresponding to the program of Sect. 1 is:

next(a)� {b, c} next(c)� {F}
next(b)� {c, d} next(d)� {F}

path(X, Y)�
⋃

A∈eq(X ,Y)

⋃

B∈
⋃

C∈next(X) path(C ,Y) ifThenElse(A, true,B)

safe(X)� fails(
⋃

A∈eq(X ,d)

⋃

B∈
⋃

C∈next(X) path(C ,d) ifThenElse(A, true,B))

In practice, this syntax can be obtained by automating the translation.

3.3 Proof calculus for programs and set-expressions

Table 1 shows the Set Reduction Logic that determines the semantics of set-
expressions with respect to CIS-programs, by defining the provability relation
S / C between set-expressions S and sets C of partial cterms. When S / C is
provable we say that C is a sufficient approximation set (SAS) for S.

Table 1. Rules for SRL-provability

(1)
S / {⊥}

S ∈ SetExp⊥ (2)
{X} / {X}

X ∈ V

(3)
{t1} / C1 {tn} / Cn

{c(t1, ..., tn)} / {c(t
′
) | t

′
∈ C1 × ... × Cn}

c ∈ DC ∪ {F}

(4)
S / C

f(t) / C
(f(t)� S) ∈ [P]⊥,F

(5)
f(t) / {F}

for all (f(s)� S ′) ∈ P,
t and s have a DC ∪ {F}-clash

(6)
S / {F}

fails(S) / {true}

(7)
S / C

fails(S) / {false}
there is some t ∈ C, t 6= ⊥, t 6= F

(8)
S1 / C1 S2[X/C1] / C

⋃

X∈S1
S2 / C

(9)
S1 / C1 S2 / C2

S1 ∪ S2 / C1 ∪ C2

Rules 1 to 4 are “classical” in CRWL(F) [8, 13, 12]. Rule 4 uses a c-instance
of a program rule; the set of such c-instances is defined as: [P]⊥,F = {Rθ | R =
(f(t)� S) ∈ P , θ ∈ CSubst⊥,F}. Notice that this c-instance is unique if it exists

(due to the non-overlapping condition imposed to programs). If such c-instance
does not exist then, by rule 5, the corresponding set-expression reduces to {F}.

Rules 6 and 7 establish the meaning of the function fails(S): we must reduce
S; if we achieve {F} as a SAS for it, this means that any attempt to reduce
S effectively fails. On the other hand, if we obtain a SAS with a cterm of the
form c(...) or X , then there is a possible reduction of S to a cterm. This is a
“constructive” way of proving failure. Moreover, the only SAS’s for S that do
not provide enough information for reducing fails(S) are {⊥} or {⊥, F}. Finally,
rules 8 and 9 have a natural set-theoretic reading.

Given a program P and S ∈ SetExp we write P `SRL S / C if the relation
S / C is provable with respect to SRL and the program P . The denotation of S
is defined as [[S]] = {C | S / C}. Then the denotation of a set-expression is a set
of sets of (possible partial) cterms.

It is easy to check that the symbol ∪ is associative and commutative, i.e.,
[[(S1 ∪S2)∪S3]] = [[S1 ∪ (S2 ∪S3)]] and [[S1 ∪S2]] = [[S2 ∪S1]]. So, in the following
we avoid unnecessary parentheses and consider the expression S1 ∪ ... ∪ Sn as
equivalent to Si1 ∪ ... ∪ Sin

, where (i1, ..., in) is any permutation of (1, ..., n).
Moreover, S1 ∪ ... ∪ Sn / C iff S1 / C1, ...,Sn / Cn, where C = C1 ∪ ... ∪ Cn.

In order to prove the results of Section 4 we have needed to generalize some
results of [13] and to prove new ones. In particular, Theorem 1 below is a key
technical result about the SRL calculus.

Lemma 1 (Lifting). Let σ, σ′ ∈ CSubst⊥,F with σ v σ′. If Sσ / C then there
exist a proof in SRL for Sσ′ / C with the same length and structure.

Theorem 1 (Refinement). Let S1, ...,Sn,S be set-expressions such that S1 v
S, ..., Sn v S. Then

S1 / C1, ...,Sn / Cn ⇒ S / C

for some C such that C1 v C, ..., Cn v C.

The next two properties can be easily proved from the previous theorem.

Proposition 1 (Consistency). If S and S ′ are consistent and S / C, S ′ / C′,
then C and C′ are also consistent.

As a consequence of this property we have consistency of failure: if S / {F},
then [[S]] = {{⊥}, {F}}.

Proposition 2 (Monotonicity). If S v S ′ and S / C, then S ′ / C′ for some C′

with C v C′.

4 Operational Semantics

The narrowing relation to be defined in 4.2 makes an extensive use of a partic-
ular notion of context. The next section is devoted to formalize contexts in our
framework and some other related aspects.

4.1 Contexts

A context is a set-expression with some holes in the places of subexpressions.
Syntactically a context is:

C ::= S | [] | fails(C1) |
⋃

X∈C1
C2 | C1 ∪ C2

where S is a set-expression, and C1 and C2 are contexts. A principal context is:

C ::= f(t) | [] | fails(S) |
⋃

X∈S C1 | C1 ∪ C2

where S is a set-expression, and C1 and C2 are principal contexts. Intuitively, a
principal context is a context without indexed holes, i.e., it has all its holes at
the highest level.

Analogous to the case of set-expressions, we consider both total (principal)
contexts when S ∈ SetExp and partial (principal) contexts if S ∈ SetExp⊥. From
the definitions of produced variables and free variables of a set-expression it is
direct to define produced variables PV (C) and free variables FV (C) of a context
C. As in the case of set-expressions, for contexts we also impose admissibility
conditions: contexts of the form

⋃

X∈C1
C2 must satisfy X 6∈ var(C1) ∪ PV (C2)

and PV (C1) ∩ PV (C2) = ∅; and contexts of the form C1 ∪ C2 must satisfy
PV (C1) ∩ FV (C2) = ∅ and PV (C2) ∩ FV (C1) = ∅. How to apply substitutions
to contexts is defined in a natural way.

The arity of a context C, written |C|, is the number of its holes. A context
C of arity n can be understood as a function that takes n contexts C1, ..., Cn as
arguments and returns another context resulting of fulfilling the holes with the
contexts of the arguments. Formally, the application of a context C to the tuple
of arguments C1, ..., Cn, notated as C [C1, ..., Cn], is defined as:

• [] [C] = C
• fails(C) [C1, ..., Cn] = fails(C [C1, ..., Cn])
• (

⋃

X∈C C ′) [C1, ..., Cn, C ′
1, ..., C

′
m] =

⋃

X∈C [C1,...,Cn] C
′ [C ′

1, ..., C
′
n], where

|C| = n and |C ′| = m
• (C ∪ C ′) [C1, ..., Cn, C ′

1, ..., C
′
m] = (C [C1, ..., Cn]) ∪ (C ′ [C ′

1, ..., C
′
m]), where

|C| = n and |C ′| = m

In the rest of the paper all context applications are done in such a way that
admissibility conditions are satisfied by the resulting context.

Notice that the application of a context C of arity n to a tuple of contexts
C1, ..., Cn of arities m1, ..., mn results in another context of arity m1 + ... + mn.
And of course, if we apply this context C to a tuple of set-expressions (contexts
with arity 0) the resulting context has arity 0, that is, a set-expression. With
respect to substitutions its is easy to check that for any σ ∈ CSubst⊥,F we have
(C [S1, ...,Sn])σ = Cσ [S1σ, ...,Snσ].

Given a set-expression S, it is possible to determine a principal context CS

and a tuple of cterms t1, ..., tn such that S = CS [{t1}, ..., {tn}]. We can see it
reasoning on the structure of S:

• if S = {t}, then clearly S = [] [{t}]
• if S = f(t) or S = fails(S ′), then CS = S (a 0-arity principal context) and

the tuple of arguments is empty.

• if S =
⋃

X∈S1
S2, we can assume, inductively, that S2 is of the form

CS2 [{t1}, ..., {tn}] (where CS2 is a principal context). Then, clearly S =
(
⋃

X∈S1
CS2) [{t1}, ..., {tn}], and (

⋃

X∈S1
CS2) is a principal context.

• if S = S1∪S2, then if S1 = CS1 [{t1}, ..., {tn}] and S2 = CS2 [{s1}, ..., {sm}],
we have S = (CS1 ∪ CS2) [{t1}, ..., {tn}, {s1}, ..., {sm}].

We say that CS [{t1}, ..., {tn}] is the principal contextual form (in short
p.c.f) of S. In the following, we frequently refer to a set-expression by its p.c.f.
Moreover, as an abuse of notation we will omit the braces ’{’, ’}’ and write
CS [t1, ..., tn] or simply CS [t].

Notice that the equality S = CS [t1, ..., tn], viewed as a context application, is
a trivial identity. The important point of such format is that the cterms t1, ..., tn
reflect the skeleton or constructed part of the set-expression. With this idea, if
CS [t1, ..., tn] is the p.c.f. for S, the information set S∗ of S is defined as:

• {⊥} if n = 0;
• {t1τ, ..., tnτ} if n > 0, where Xτ = ⊥ if X ∈ PV (S) and Xτ = X otherwise

For example, consider the set-expression introduced in Sect. 3

S =
⋃

A∈
⋃

B∈f(X,Y){B}{c(A, X)} ∪
⋃

C∈{X} f(C, Y)

The context CS of the p.c.f. has only a hole in the place of {c(A, X)}, which is
the only argument of the p.c.f., that is:

(
⋃

A∈
⋃

B∈f(X,Y){B} [] ∪
⋃

C∈{X} f(C, Y)) [c(A, X)]

In this case S∗ = {c(⊥, X)} (obtained by replacing the variable A by ⊥).

Proposition 3. The information set of a set-expression is a SAS for S, i.e.,
S / S∗. Moreover, this SAS can be obtained by using rules 1, 2, 3, 8 and 9 of
SRL (in other words, no function rule is needed to obtain S∗).

4.2 A Narrowing Relation for Set-Expressions

The rewriting logic SRL showed in Sect. 3 fixes the denotational semantics of
set-expressions. Now we are interested in a operational mechanism for narrowing
set-expressions into simplified or normal forms, while finding appropriate values
for the variables of the expressions.

The syntactic structure of a normal form is: {t1}∪ ...∪ {tn}, with t1, ..., tn ∈
CTermF. According to this, {F} is a normal form itself. Notice also that a normal
form cannot contain any function symbol or indexed union. On the other hand,
the undefined value ⊥ has not any sense in the operational mechanism that deals
only with total set-expressions.

One-narrowing-step relation: Given a program P , two set-expressions
S,S ′ ∈ SetExp, θ ∈ CSubstF and Γ ⊆ V , a narrowing step is expressed as:

S
Γ

 θ
S ′ where the relation S

Γ

 θ
S ′ is defined in the Table 2. The set

Γ is the set of protected variables: produced variables of the external scope are
stored into Γ in order to avoid to apply substitutions for them. For narrowing a

Cntx C [S]
Γ
 θ

Cθ [S ′] if S
Γ ∪ PV (C)
 θ

S ′

Nrrw1 f(t)
Γ
 θ |var(t)

Sθ if (f(s)� S) ∈ P, θ ∈ CSubstF is a

m.g.u. for s and t with Dom(θ) ∩ Γ = ∅

Nrrw2 f(t)
Γ
 ε

{F} if for every rule (f(s)� S1) ∈ P,

s and t have a DC ∪ {F}-clash

Fail1 fails(S)
Γ
 ε

{true} if S∗ = {F}

Fail2 fails(S)
Γ
 ε

{false} if ∃t ∈ S∗ t 6= ⊥, t 6= F

Flat
⋃

X∈
⋃

Y ∈S1
S2

S3
Γ
 ε

⋃

Y ∈S1

⋃

X∈S2
S3

Dist
⋃

X∈S1∪S2
S3

Γ
 ε

⋃

X∈S1
S3 ∪

⋃

X∈S2
S3

Bind
⋃

X∈{t} S
Γ
 ε

S[X/t]

Elim
⋃

X∈S′ S
Γ
 ε

S if X 6∈ FV (S)

Table 2. SNarr relation

set-expression S we must take Γ such that Γ ∩FV (S) = ∅; in fact, the simplest
choice is Γ = ∅. The calculus itself will protect the appropriate variables in
derivations. In the following we use SNarr as a name for this narrowing relation,
and refer to it as set-narrowing.

Some comments about the rules in Table 2:

• Cntx performs a sub-derivation on a sub-set-expression and then replaces
the original by the resulting one. Notice that it ensures the protection of pro-
duced variables of the context by adding them to Γ .

• The rule Nrrw1 narrows a function call f(t) using a rule of the program.
The m.g.u. θ used for the parameter passing is not allowed to affect to protected
variables due to the condition Dom(θ)∩Γ = ∅. It is also clear that Ran(θ)∩Γ = ∅
because the variables of the rule are fresh variables. Notice also that, for technical
convenience, the substitution θ is projected over the variables of the narrowed
expression. Notice finally that this is the rule which really binds variables, since
Cntx is merely a contextual rule and the rest produce an empty substitution.

• Nrrw2 operates only in the case that Nrrw1 cannot find an applicable rule
of the program, i.e., all of them have a clash. As our programs are DC-complete
this situation is only possible if the call f(t) has F at a position in which the
heads of program rules have a constructor symbol c ∈ DC (the transformation
to CIS-programs does not introduce F in heads).

• Rules Fail1 and Fail2 are direct counterpart of rules 6 and 7 of SRL.

• Rules Flat, Dist, Bind and Elim directly reflect some properties of sets
in the mathematical sense. From an intuitive point of view, they all reduce the
structural complexity of the set-expression.

The closure S
Γ ∗
 θ

S ′ is defined in the usual way:

S = S0
Γ

 θ1

S1
Γ

 θ2

...
Γ

 θn

Sn = S ′, with θ = θ1θ2...θn

It is easy to see that at any step Siθi = Si and also S ′θ = S ′.

Example Consider the CIS-program of graphs of Sect. 3. The node c is
safe according to definitions, so SNarr must be able to narrow the expression
safe(X) to true with the substitution X = c. Table 3 shows the steps of such
derivation; we underline the redex at each step and annotate the rule of SNarr
applied. The applications of Cntx are omitted for simplicity. We assume the
function ifThenElse defined by the natural rules, and we shorten ifThenElse by
iTe . We recall that the function eq is defined by the rules eq(a, a) � {true},
eq(a, b) � {false} and so on. The answer substitution [X/c] is found in the
third step by Nrrw1 applied to the expression eq(X, d).

safe(X) (Nrrw1)

fails(path(X, d)) (Nrrw1)

fails(
⋃

A∈eq(X,d)

⋃

B∈
⋃

C∈next(X) path(C,d) iTe(A, true , B)) X/c (Nrrw1)

fails(
⋃

A∈{false}

⋃

B∈
⋃

C∈next(c) path(C,d) iTe(A, true , B)) (Bind)

fails(
⋃

B∈
⋃

C∈next(c) path(C,d) iTe(false, true , B)) (Nrrw1)

fails(
⋃

B∈
⋃

C∈next(c) path(C,d){B}) (Flat)

fails(
⋃

C∈next(c)

⋃

B∈path(C,d){B}) (Nrrw1)

fails(
⋃

C∈next(c)

⋃

B∈
⋃

D∈eq(C,d)

⋃

E∈
⋃

F∈next(C) path(F,d) iTe(D,true,E){B}) (Flat)

fails(
⋃

C∈next(c)

⋃

D∈eq(C,d)

⋃

B∈
⋃

E∈
⋃

F∈next(C) path(F,d) iTe(D,true,E){B}) (Flat)

fails(
⋃

C∈next(c)

⋃

D∈eq(C,d)

⋃

E∈
⋃

F∈next(C) path(F,d)

⋃

B∈iTe(D,true,E){B}) (Nrrw2)

fails(
⋃

C∈{F}

⋃

D∈eq(C,d)

⋃

E∈
⋃

F∈next(C) path(F,d)

⋃

B∈iTe(D,true,E){B}) (Bind)

fails(
⋃

D∈eq(F,d)

⋃

E∈
⋃

F∈next(F)
path(F,d)

⋃

B∈iTe(D,true,E){B}) (Nrrw2)

fails(
⋃

D∈{F}

⋃

E∈
⋃

F∈next(F)
path(F,d)

⋃

B∈iTe(D,true,E){B}) (Bind)

fails(
⋃

E∈
⋃

F∈next(F)
path(F,d)

⋃

B∈iTe(F,true,E){B}) (Nrrw2)

fails(
⋃

E∈
⋃

F∈next(F)
path(F,d)

⋃

B∈{F}{B}) (Elim)

fails(
⋃

B∈{F}{B}) (Bind)

fails({F}) (Fail1)

{true}
Table 3. A narrowing derivation for safe(X)

This derivation has been performed by a little prototype that implements the
relation SNarr with an appropriate criterion for selecting the redex. In fact this
prototype provides four possible reductions for the expression safe(X): false
with [X/a]; false with [X/b]; true with [X/c] and false with [X/d].

4.3 Correctness and completeness of Snarr

A desirable property is the preservation of semantics under context application:
consider two set-expressions S and S ′ with [[S]] = [[S ′]] and a 1-arity context
C; then, we would like [[C [S]]] = [[C [S ′]]]. But this is not true in general.
For example, assume the rules f(z) � {z} and g(z) � {s(z)}. Then, for the
set-expressions f(X) and g(X), [[g(X)]] = [[f(X)]] = {⊥}. But if we consider
C =

⋃

X∈{z}[] then C [f(X)] =
⋃

X∈{z} f(X) and C [g(X)] =
⋃

X∈{z} g(X),

whose denotations are {{⊥}, {z}} and {{⊥}, {s(z)}} resp. What is true is:

Lemma 2. Let S and S ′ be set-expressions such that [[Sσ]] = [[S ′σ]] for any
σ ∈ CSubst⊥,F admissible for S and S ′. Then [[(C [S])σ′]] = [[(C [S ′])σ′]], for
any context C of arity 1 and any σ′ ∈ CSubst⊥,F admissible for C [S] and C [S ′].

Notice that in the example above, the hypothesis [[g(X)θ]] = [[f(X)θ]] does not
hold, for instance taking θ = [X/z]. This lemma is used for proving correctness:

Theorem 2 (Correctness of SNarr). Let S, S ′ ∈ SetExp, θ ∈ CSubstF,
Γ ⊆ V any set of variables, and σ ∈ CSubst⊥,F any admissible substitution for

Sθ and S ′. Then: S
Γ ∗
 θ

S ′ ⇒ [[Sθσ]] = [[S ′σ]]. In particular, taking σ = ε we

have: S
Γ ∗
 θ

S ′ ⇒ [[Sθ]] = [[S ′]]

We split completeness in two simpler lemmas. First, the relation SNarr can
refine the information of any SAS obtained by SRL.

Lemma 3 (Completeness I). If P `SRL S/C then for any Γ with Γ∩FV (S) =

∅ we can derive S
Γ ∗
 ε

S ′ such that C v (S ′)∗

Here we see the relation SNarr as a pure rewriting relation: the answer sub-
stitution is ε. Lemma 4 shows that any substitution θ making reducible a set-
expression S is captured or generalized by a narrowing derivation from S. For

example, for the rule f(z)� {s(z)}, SNarr can derive f(z)
Γ ∗
 ε

{s(z)}. Then,

there is a derivation f(X)
Γ ∗
 [X/z]

{s(z)}, i.e., the value z for X can be found.

Lemma 4 (Completeness II). Let S ∈ SetExp, θ ∈ CSubst and Γ such that

Γ ∩ PV (S) = ∅. If Sθ
Γ ∗
 ε

S ′ then there exists θ′, µ ∈ CSubst, with θ = θ′µ,

such that S
Γ ∗
 θ′

S ′′ with S ′ = S ′′µ.

Theorem 3 (Completeness). If P `SRL Sθ /C and Γ ∩FV (S) = ∅, then there

exists a derivation S
Γ ∗
 θ′

S ′ such that, for some µ, θ = θ′µ (i.e. θ′ is more

general than θ) and C v (S ′µ)∗.

Corollary 1. If P `SRL Sθ / {F}, then S
∅ ∗
 θ′

{F} for some θ′ more general

than θ.

This result shows that we have achieved our goal of devising an operational
mechanism for failure, which is constructive, in the sense that in presence of
variables is able to find appropriate substitutions for them.

5 Conclusions and Future Work

We have defined a narrowing relation for functional logic programs which can
make use of failure as programming construct, by means of a function fails(e),
which is a computable approximation to the property ‘e cannot be reduced to
head normal form’. Programs are written in a set-oriented syntax where ex-
pressions can use unions and indexed unions. Thus the syntax directly reflects
non-determinism of functions and call-time choice semantics in a suitable way
as to facilitate the definition of narrowing of set-expressions.

The set-narrowing relation serves to the purpose of computing failures, since
the failure of an expression e corresponds to the fact that the expression can be
narrowed to the set {F}, where F is a constant introduced to represent failure.
An important feature of our notion of narrowing is that it can operate to com-
pute failures even in presence of variables, for which appropriate bindings are
obtained. Using a frequent terminology in the context of logic programming and
negation, our narrowing relation realizes constructive failure for functional logic
programs. Nothing similar can be found in existing FLP systems like Curry or
T OY .

The definition of set-narrowing is quite amenable for implementation, and
we have indeed implemented a first prototype for it, with which the examples in
the paper have been executed.

In this paper we have not addressed the issue of strategies for set-narrowing.
Nevertheless, for the implementation we have used some kind of ‘demand driven
strategy’ close to the usual one in existing systems. It this sense it is interesting
to remark that, in contrast to other notions of narrowing proposed for non-
determinism with call-time choice [7, 8], which has been criticized [3] as being too
far from real computations, our definition of set-narrowing seems better suited
to the adoption of strategies. Notice that, in particular, the rule Nrrw1 performs
exactly a narrowing step in the classical sense, just with some conditions imposed
about what variables can be bound.

The theoretical investigation of set-narrowing strategies, as well as the in-
tegration of our implementation in the system T OY are the main subjects of
future work.

References

1. M. Abengózar-Carneros et al. T OY: a multiparadigm declarative language, version
2.0. Technical report, Dep. SIP, UCM Madrid, January 2001.

2. S. Antoy. Definitional trees. In Proc. ALP’92, pages 143–157. Springer LNCS 632,
1992.

3. S. Antoy. Constructor-based conditional narrowing. In Proc. PPDP’01, pages
199–206. ACM Press, 2001.

4. K.R. Apt and R. Bol. Logic programming and negation: A survey. Journal of

Logic Programming, 19&20:9–71, 1994.
5. D. Chan. Constructive negation based on the completed database. In Proc. IC-

SLP’88, pages 111–125, 1988.
6. K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and

Data Bases, pages 293–322. Plenum Press, 1978.
7. J.C. González-Moreno, T. Hortalá-González, F.J. López-Fraguas, and

M. Rodŕıguez-Artalejo. A rewriting logic for declarative programming. In
Proc. ESOP’96, pages 156–172. Springer LNCS 1058, 1996.

8. J.C. González-Moreno, T. Hortalá-González, F.J. López-Fraguas, and
M. Rodŕıguez-Artalejo. An approach to declarative programming based on
a rewriting logic. Journal of Logic Programming, 40(1):47–87, 1999.

9. M. Hanus. The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming, 19&20:583–628, 1994.

10. M. Hanus (ed.). Curry: An integrated functional logic language. Available at
http://www-i2.informatik.rwth-aachen.de/~hanus/curry/report.html,
February 2000.

11. F.J. López-Fraguas and J. Sánchez-Hernández. T OY : A multiparadigm declarative
system. In Proc. RTA’99, Springer LNCS 1631, pages 244–247, 1999.

12. F.J. López-Fraguas and J. Sánchez-Hernández. Proving failure in functional logic
programs. In Proc. CL’00, Springer LNAI 1861, pages 179–193, 2000.

13. F.J. López-Fraguas and J. Sánchez-Hernández. Functional logic programming with
failure: A set-oriented view. In Proc. LPAR’01, Springer LNAI 2250, pages 455–
469, 2001.

14. F.J. López-Fraguas and J. Sánchez-Hernández. Narrowing failure in func-
tional logic programming (long version). Available at http://www.ucm.es/info/

dsip/jaime/flopsExt.ps, 2002.
15. F.J. López-Fraguas and J. Sánchez-Hernández. A proof theoretic approach to fail-

ure in functional logic programming. Draft available at http://www.ucm.es/info/
dsip/jaime/tplp.ps, 2002.

16. J.J. Moreno-Navarro. Default rules: An extension of constructive negation for
narrowing-based languages. In Proc. ICLP’94, pages 535–549. MIT Press, 1994.

17. J.J. Moreno-Navarro. Extending constructive negation for partial functions in lazy
functional-logic languages. In Proc. ELP’96, pages 213–227. Springer LNAI 1050,
1996.

18. J.C. Reynolds. Theories of Programing Languages. Cambridge Univ. Press, 1998.
19. P.J. Stuckey. Constructive negation for constraint logic programming. In Proc.

LICS’91, pages 328–339, 1991.
20. P.J. Stuckey. Negation and constraint logic programming. Information and Com-

putation, 118:12–33, 1995.

