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Abstract In this paper we propose a new generic scheme CFLP(D), intended as a logical
and semantic framework for lazy Constraint Functional Logic Programming over a para-
metrically given constraint domain D . As in the case of the well known CLP(D) scheme
for Constraint Logic Programming, D is assumed to provide domain specific data values
and constraints. CFLP(D) programs are presented as sets of constrained rewrite rules that
define the behavior of possibly higher order and/or non-deterministic lazy functions over
D . As a main novelty w.r.t. previous related work, we present a Constraint Rewriting Logic
CRWL(D) which provides a declarative semantics for CFLP(D) programs. This logic relies
on a new formalization of constraint domains and program interpretations, which allows a
flexible combination of domain specific data values and user defined data constructors, as
well as a functional view of constraints.
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1 Introduction

The idea of Constraint Functional Logic Programming arose around 1990 as an attempt to
combine two lines of research in declarative programming, namely Constraint Logic Pro-
gramming and Functional Logic Programming.

Constraint logic programming was started by a seminal paper published by J. Jaffar and
J.L. Lassez in 1987 [54], where the CLP scheme was first introduced. The aim of the scheme
was to define a family of constraint logic programming languages CLP(D) parameterized
by a constraint domain D , in such a way that the well established results on the declarative
and operational semantics of logic programs [62,5] could be lifted to all the CLP(D) lan-
guages in an elegant and uniform way. The best updated presentation of the classical CLP
semantics can be found in [56]. In the course of time, CLP has become a very successful
programming paradigm, supporting a clean combination of logic programming and domain-
specific methods for constraint satisfaction, simplification and optimization, and leading to
practical applications in various fields [99,100,55,77].

On the other hand, functional logic programming refers to a line of research started in the
1980s and aiming at the integration of the best features of functional programming and logic
programming. As far as we know, the first attempt to combine functional and logic languages
was done by J.A. Robinson and E.E. Sibert when proposing the language LOGLISP [86].
Some other early proposals for the design of functional + logic languages are described in
[29]. A more recent survey of the operational principles and implementation techniques used
for the integration of functions into logic programming can be found in [46]. Narrowing, a
natural combination of rewriting and unification, originally proposed as a theorem proving
tool [93,61,35,50], has been used as a goal solving mechanism in functional logic languages
such as Curry [47,48] and TOY [69,1]. Under various more or less restrictive conditions,
several narrowing strategies are known to be complete for goal solving [31,46,80].

To our best knowledge, the first attempt of combining constraint logic programming and
functional logic programming was the CFLP(D) scheme proposed by J. Darlington, Y.K.
Guo and H. Pull [27,28]. The idea behind this approach can be roughly described by the
equation CFLP(D) = CLP(FP(D)), intended to mean that a CFLP language over the con-
straint domain D is viewed as a CLP language over an extended constraint domain FP(D)
whose constraints include equations between expressions involving user defined functions,
to be solved by narrowing. Other proposals concerning the combination of constraints with
functional programming, equational deduction and lambda-calculus appeared around the
same time [25,26,58,83,73].

The CFLP scheme proposed by F.J. López-Fraguas in [64,65] tried to provide results
on the declarative semantics of CFLP(D) programs closer to those known for CLP. In the
classical approach to CLP semantics a constraint domain is viewed as a first order structure
D , and constraints are viewed as first order formulas that can be interpreted in D . In [64,65]
programs were built as sets of constrained rewrite rules. In order to support a lazy semantics
for the user defined functions, constraint domains D were formalized as continuous struc-
tures, with a Scott domain [91,45] as carrier, and a continuous interpretation of function
and predicate symbols. The resulting semantics had many pleasant properties, but also some
limitations. In particular, defined functions had to be first order and deterministic, and the
use of patterns in function definitions had to be simulated by means of special constraints.

More recently, yet another CFLP scheme has been proposed in the Phd Thesis of M.
Marin [74]. This work introduces CFLP(D , S, L), a family of languages parameterized by
a constraint domain D , a strategy S which defines the cooperation of several constraint
solvers over D , and a constraint lazy narrowing calculus L for solving constraints involving
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functions defined by user given constrained rewrite rules. This approach relies on solid work
on higher order lazy narrowing calculi and has been implemented on top of Mathematica
[75,76]. Its main limitation from our viewpoint is the lack of declarative semantics.

Our aim in this paper is to propose a new CFLP scheme which provides a clean declara-
tive semantics for CFLP(D) languages, as in the CLP scheme, and also overcomes the
limitations of the older CFLP scheme in [64,65]. The main novelties of the current proposal
are a new formalization of constraint domains for CFLP, a new notion of interpretation
for CFLP programs, and a new Constraint Rewriting Logic CRWL(D) parameterized by a
constraint domain, which provides a logical characterization of program semantics.

CRWL(D) is a natural extension of the Constructor-based ReWriting Logic CRWL,
originally proposed in [41,42] as a logical framework for first order functional logic pro-
gramming languages based on lazy and possibly non-deterministic functions, whose seman-
tics cannot be directly described in terms of equational logic. Early work on CRWL was
inspired by Hussmann’s work on nondeterminism in algebraic specifications and programs
[51–53]. In comparison to Meseguer’s Rewriting Logic [79,78], originally aimed as a uni-
fied logic and semantic framework for concurrent languages and systems, CRWL shows
clear differences in objectives and motivation. A careful comparison of both approaches has
been worked out by M. Palomino in [84,85], showing that the semantics of both logics,
when viewed as institutions, are formally incomparable.

In the last years, various extensions of CRWL have been devised, to account for various
features of functional logic languages, such as higher order functions [43], polymorphic
types [44], algebraic data constructors [10–12], an ad-hoc treatment of certain kinds of con-
straints [8,9], and finite failure [70,71]. A survey of previous work on CRWL can be found
in [87]. A generic extension of CRWL with constraint reasoning was missing up to now.

Constraint functional logic programming obviously falls within the wider field of Mul-
tiparadigm Constraint Programming. Giving a survey of the many interesting research ac-
tivities in this area lies outside the scope of the present paper. Here we just mention Concur-
rent Constraint Programming [88–90] as a particularly relevant subject which arose from
the interplay between concurrent extensions of logic programming languages and the CLP
scheme, and has inspired the design of various declarative languages [49,103,102]. Our
CFLP scheme, however, does not deal with concurrency issues.

Operational semantics is another important topic which lies outside the scope of this
paper. However, the very short Subsection 3.2 has been included in order to provide a few
essential pointers to the literature.

The reader is assumed to have some knowledge on the foundations of logic program-
ming [62,5] and term rewriting [30,59,13]. The rest of the paper is organized as follows:
Section 2 presents a new formalization of constraint domains D , tailored to the needs of
constraint functional logic programming. Section 3 presents CFLP(D) programs and their
interpretations, along with results concerning the existence of least program models. Sec-
tion 4 introduces the constraint rewriting logic CRWL(D), presenting an inference system
as well as correctness results w.r.t. the model-theoretic semantics given in the previous sec-
tion. The short Section 5 summarizes the results of the paper and points to some possible
lines of future work. Appendix A illustrates the practical realizability of the CFLP paradigm
by presenting a small collection CFLP(D) programs written in the concrete syntax of the
TOY language, for several choices of the constraint domain D . This appendix can be safely
skipped by readers who are interested only in the more theoretical stuff dealt with in the
main core of the paper. Finally, Appendix B includes some technical proofs that have been
moved away from the main text in order to ease reading.
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This article is a carefully revised and expanded version of the WRLA’2004 paper [66].
The main novelties w.r.t. the WRLA paper can be summarized as follows: Subsection 2.2
includes a new example, showing that finite domain constraints can be formalized as a con-
straint domain FD in our framework. New programming examples using this domain have
been inserted in Section 3 and Appendix A. A new Subsection 3.2 has been introduced,
providing some essential pointers to the literature on goal solving methods. References to
this new subsection have been added at several places, in order to provide better motivation
for various notions and results. Subsection 3.4 includes a new theorem which characterizes
the relationship between the least weak models and the least strong models of CFLP(D)
programs. This new theorem has been used for improving the proofs of the Correctness
Results for Weak Semantics presented in Subsection 4.2. Finally, Subsection 4.1 includes a
new example which provides a detailed illustration of proof trees in CRWL(D).

2 Constraint Domains

As already explained, one main aim in this paper is to overcome the limitations of our older
CFLP(D) scheme [64,65]. As a first step in this direction, we propose a new view of con-
straint domains D as structures with carrier set GPat⊥(U ), consisting of ground patterns
built from the symbols in a universal signature Σ and a set of urelements U . Urelements
are intended to represent some domain specific set of values, as e.g. the set R of the real
numbers used in the well-known CLP language CLP(R) [57], while symbols in Σ are in-
tended to represent data constructors (e.g. the list constructor), domain specific primitive
functions (e.g. addition and multiplication over R), and user defined functions. Assuming a
unique universal signature rather than various domain-dependent signatures turns out to be
convenient for technical reasons.

Another important limitation of our older CFLP(D) scheme [64,65], namely the lack of
a type system, can be easily overcome by adopting the approach of [44], which shows how
to refine a CRWL-based semantics for untyped programs with a polymorphic type system in
Damas-Milner’s style [81,24]. In this paper, however, we refrain from an explicit treatment
of types, except for showing type declarations in some concrete programming examples.

The rest of this section gives a formal presentation of constraint domains. We begin by
introducing the syntax of applicative expressions and patterns, which is needed for under-
standing our construction of constraint domains.

2.1 Applicative Expressions, Patterns and Substitutions

We assume a universal signature Σ = 〈DC,FS〉, where DC =
⋃

n∈NDCn and FS =
⋃

n∈NFSn

are families of countably infinite and mutually disjoint sets of data constructors resp. evalu-
able function symbols, indexed by arities. As we will see later on, evaluable functions can
be further classified into domain dependent primitive functions and user given defined func-
tions. We write Σ⊥ for the result of extending DC0 with the special symbol ⊥, intended to
denote an undefined data value. As notational conventions, we use c,d ∈ DC, f ,g ∈ FS and
h ∈ DC∪FS, and we define the arity of h ∈ DCn ∪FSn as ar(h) = n. We also assume that
DC0 includes the three constants true, f alse and success, which are useful for representing
the results returned by various primitive functions. In a typed language, success would rep-
resent the single data value in a singleton datatype (such as the unit type in SML or Haskell);
while true and f alse would represent the two data values in a boolean datatype.
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Next we assume a countably infinite set V of variables X ,Y, . . . and a set U of ure-
lements u,v, . . ., mutually disjoint and disjoint from Σ⊥. Partial expressions e ∈ Exp⊥(U )
have the following syntax:

e ::= X (X ∈ V ) | ⊥ | u (u ∈U ) | h (h ∈ DC∪FS) | (ee1)

These expressions are usually called applicative, because (ee1) stands for the appli-
cation operation (represented as juxtaposition) which applies the function denoted by e to
the argument denoted by e1. Applicative syntax is common in higher order functional lan-
guages. The usual first order syntax for expressions can be translated to applicative syntax
by means of so-called curried notation. For instance, f (X ,g(Y )) becomes ( f X (gY )). Fol-
lowing a usual convention, we assume that application associates to the left, and we use the
notation (een) to abbreviate (ee1 . . .en).

The set of variables occurring in e is written var(e). An expression e is called linear iff
there is no X ∈ var(e) having more than one occurrence in e. The following classification
of expressions is also useful: (X em), with X ∈ V and m≥ 0, is called a flexible expression,
while u ∈ U and (hem) with h ∈ DC∪FS are called rigid expressions. Moreover, a rigid
expression (hem) is called active iff h ∈ FS and m ≥ ar(h), and passive otherwise. Any
pattern is either a variable or a passive rigid expression. Intuitively, reducing an expression
at the root makes sense only if the expression is active. This idea will play a role in the
semantics presented in sections 3 and 4.

Some interesting subsets of Exp⊥(U ) are:

– GExp⊥(U ), the set of the ground expressions e such that var(e) = /0.
– Exp(U ), the set of the total expressions e with no occurrences of ⊥.
– GExp(U ), the set of the ground and total expressions GExp⊥(U )∩Exp(U ).

Another important subclass of expressions is the set of partial patterns s, t ∈ Pat⊥(U ),
whose syntax is defined as follows:

t ::= X (X ∈ V ) | ⊥ | u (u ∈U ) |
(ctm) (c ∈ DCn, m≤ n) | ( f tm) ( f ∈ FSn, m < n)

Note that expressions ( f tm) with f ∈ FSn, m ≥ n, are not allowed as patterns, because
they are potentially evaluable using a primitive or user given definition for function f . Pat-
terns of the form ( f tm) with f ∈ FSn, m < n, are used in CRWL [43,44] as a convenient re-
presentation of higher order values. The subsets Pat(U ), GPat⊥(U ), GPat(U )⊆ Pat⊥(U )
consisting of the total, ground and ground and total patterns, respectively, are defined in the
natural way.

Following the spirit of denotational semantics [91,45], we view Pat⊥(U ) as the set of
finite elements of a semantic domain, and we define the information ordering v as the least
partial ordering over Pat⊥ satisfying the following properties: ⊥ v t for all t ∈ Pat⊥(U ),
and (htm)v (ht ′m) whenever these two expressions are patterns and ti v t ′i for all 1≤ i≤m.
In the sequel, tm v t ′m will be understood as meaning that ti v t ′i for all 1≤ i≤m. Note that
a pattern t ∈ Pat⊥(U ) is maximal w.r.t. the information ordering iff t is a total pattern, i.e.
t ∈ Pat(U ).

Any partially ordered set (shortly, poset), can be converted into a semantic domain by
means of a technique called ideal completion; see e.g. [82]. Therefore, in the rest of this
paper we will use the poset GPat⊥(U ) as an implicit representation of the semantic domain
resulting from its ideal completion. This is consistent with the use of Scott domains in the
semantics of the older CFLP(D) scheme [64,65].
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For some purposes it is useful to extend the information ordering to the set of all partial
expressions. This extension is simply defined as the least partial ordering over Exp⊥(U )
which verifies⊥v e for all e ∈ Exp⊥(U ), and (ee1)v (e′ e′1) whenever ev e′ and e1 v e′1.

As usual, we define substitutions σ ∈ Sub⊥(U ) as mappings σ : V → Pat⊥(U ) ex-
tended to σ : Exp⊥(U )→ Exp⊥(U ) in the natural way. Similarly, we consider total sub-
stitutions σ ∈ Sub(U ) given by mappings σ : V → Pat(U ), ground substitutions σ ∈
GSub⊥(U ) given by mappings σ : V → GPat⊥(U ), and ground total substitutions σ ∈
GSub(U ) given by mappings σ : V → GPat(U ). By convention, we write ε for the iden-
tity substitution, eσ instead of σ(e), and σθ for the composition of σ and θ , such that
e(σθ) = (eσ)θ for any e ∈ Exp⊥(U ). We define the domain and the variable range of a
substitution in the usual way, namely:

dom(σ) = {X ∈ V | σ(X) 6= X} ran(σ) =
⋃

X∈dom(σ) var(σ(X))

As usual, a substitution σ such that dom(σ)∩ ran(σ) = /0 is called idempotent. For any
set of variables X ⊆ V we define the restriction σ ¹ X as the substitution σ ′ such that
dom(σ ′) = X and σ ′(X) = σ(X) for all X ∈X . We use the notation σ =X θ to indicate
that σ ¹ X = θ ¹ X , and we abbreviate σ =V \X θ as σ =\X θ . Finally, we consider two
different ways of comparing given substitutions σ , σ ′ ∈ Sub⊥(U ):

– σ is said to be less particular than σ ′ over X ⊆V (in symbols, σ ≤X σ ′) iff σθ =X σ ′
for some θ ∈ Sub⊥(U ). The notation σ ≤ σ ′ abbreviates σ ≤V σ ′.

– σ is said to bear less information than σ ′ over X ⊆ V (in symbols, σ vX σ ′) iff
σ(X)v σ ′(X) for all X ∈X . The notation σ v σ ′ abbreviates σ vV σ ′.

2.2 A New Formalization of Constraint Domains

Intuitively, a constraint domain is expected to provide a set of specific data elements, along
with certain primitive functions and predicates operating upon them. Primitive predicates
can be viewed as primitive functions returning boolean values. Therefore, we just consider
primitive functions, and we formalize the notion of constraint domain as follows:

Definition 1 Constraint Domains.

1. A constraint signature is any family Γ =
⋃

n∈NPFn
Γ of primitive function symbols p

indexed by arities, such that PFn
Γ ⊆ FSn for each n ∈ N. We will usually write PFn in

place of PFn
Γ , leaving Γ implicit.

2. A constraint domain of signature Γ is any structure

D = 〈DU , {pD | p ∈ PF}〉
such that the carrier set DU = GPat⊥(U ) coincides with the set of ground patterns
for some set of urelements U , and the interpretation pD of each p ∈ PFn satisfies the
following requirements:
(a) pD ⊆Dn

U ×DU , which boils down to pD ⊆DU in the case n = 0. In the sequel we
always write pD tn → t to indicate that (tn, t) ∈ pD . In the case n = 0, this notation
boils down to pD → t.

(b) pD behaves monotonically in its arguments and antimonotonically in its result; i.e.,
whenever pD tn → t, tn v t ′n and t w t ′ one also has pD t ′n → t ′.

(c) pD behaves radically in the following sense: whenever pD tn → t and t 6=⊥, there is
some total t ′ ∈ DU such that pD tn → t ′ and t ′ w t.
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Items 2.(a),(b) in the previous definition are intended to ensure that pD encodes the
behavior of a monotonic and continuous mapping from DU

n, the nth power of the semantic
domain obtained from DU by ideal completion [82] into Hoare’s Powerdomain HP(DU )
[91,104,45]. Intuitively, one can think of pD just as describing the behavior of a possibly
non-deterministic function over finite data elements. The kind of non-determinism involved
here is borrowed from our previous work on the CRWL framework [42,44,12], which in
turn was inspired by ideas from Hussmann [51–53].

Item 2.(c), requiring primitive functions to be radical, is more novel and important for
our present purposes. Requiring primitives to be radical just means that for given arguments,
they are expected to return a total result, unless the arguments bear too little information for
returning any result different from ⊥. As far as we know, all the primitive functions used in
practical constraint domains are radical in this sense.

Let us illustrate the previous definition by means of some examples. First we present
two primitives for equality comparisons. They make sense for any constraint domain D
built over any set of urelements U , and are obviously radical:

Example 1 Two equality primitives:

1. eqU , equality primitive for urelements, interpreted to behave as follows:
eqD

U u u → true for all u ∈ U ; eqD
U u v → f alse for all u, v ∈ U , u 6= v; eqD

U t s →⊥
otherwise.

2. seq, strict equality primitive for ground patterns, interpreted to behave as follows:
seqD t t → true for all total t ∈ GPat(U ); seqD t s → f alse for all t, s ∈ GPat⊥(U )
such that t, s have no common upper bound w.r.t. the information ordering; seqD t s →
⊥ otherwise.

In the sequel we write Hseq to denote the constraint domain built over the empty set
of urelements, and having seqD as its only primitive. The language CFLP(Hseq) can be
seen as a new foundation for our previous work on functional logic programming with dise-
quality constraints [60,7,68]. On the other hand, Hseq bears some analogy to the extension
of the Herbrand domain with disequality constraints, introduced by A. Colmerauer [22,23]
as one of the first constraint extensions of logic programming, and later investigated by
M. J. Maher [72]. Some important differences must be noted, however. Firstly, the carrier
set of Hseq is a poset of ground partial patterns, including representations of higher order
values; while the carrier set in Colmerauer’s approach consists of possibly infinite rational
trees which cannot be interpreted as higher order values. Secondly, equality and disequali-
ty constraints were based on two different predicates in Colmerauer’s approach, while in
Hseq one single boolean valued primitive function allows to express strict equality and di-
sequality constraints, as we will see in the next subsection. More generally, constraints in
the CFLP(D) scheme are always expressed by means of primitive functions with radical
semantics.

The next example presents a constraint domain R similar to the one used in the well
known constraint logic language CLP(R) [57,55,77]. In the CLP case, the carrier set of R is
defined as the set of all possible ground terms built from real numbers and data constructors,
while we use a strictly bigger poset of partial ground patterns.

Example 2 The constraint domain R has the carrier set DR = GPat⊥(R) and the radical
primitives defined below. We apply some of them in infix notation for convenience.

1. eqR, equality primitive for real numbers, interpreted as in Example 1.
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2. seq, strict equality primitive for ground patterns over the real numbers, interpreted as in
Example 1.

3. +, ∗, for addition and multiplication, interpreted to behave as follows:
x +R y→ x+R y for all x, y∈R; t +R s→⊥ whenever t /∈R or s /∈R; and analogously
for ∗R .

4. <,≤, >,≥, for numeric comparisons, interpreted to behave as follows:
x <R y→ true for all x, y∈Rwith x <R y; x <R y→ f alse for all x, y∈Rwith x≥R y;
t <R s→⊥ whenever t /∈ R or s /∈ R; and analogously for ≤R , >R ,≥R .

Other constraint domains known for their practical value in constraint programming
include feature tree constraints [4,94,14,15], which can be viewed as an extension of Col-
merauer’s rational trees [22,23], and finite domain constraints [99–102]. These two kinds
of constraints play an important role in the multiparadigm programming language Oz [49,
103].

Finite domain constraints have been recently used for solving combinatorial problems
in constraint functional logic programming [36], using an extension of the TOY system [37,
38]. The following example is intended as a formalization of the constraint domain used in
[36].

Example 3 The constraint domain FD has the carrier set DZ = GPat⊥(Z) and the radical
primitives defined below. We apply some of them in infix notation for convenience.

1. eqZ, equality primitive for integer numbers, interpreted as in Example 1.
2. seq, strict equality primitive for ground patterns over the integer numbers, interpreted as

in Example 1.
3. +, ∗, for addition and multiplication, interpreted to behave as follows:

x +FD y→ x+Z y for all x, y∈Z; t +FD s→⊥whenever t /∈Z or s /∈Z; and analogously
for ∗FD .

4. <,≤, >,≥, for numeric comparisons, interpreted to behave as follows:
x <FD y → true for all x, y ∈ Z with x <Z y; x <FD y → f alse for all x, y ∈ Z with
x≥Z y; t <FD s→⊥ whenever t /∈ Z or s /∈ Z; and analogously for ≤FD , >FD ,≥FD .

5. domain, finite domain primitive interpreted to behave as follows:
domainFD x [x1, . . . ,xn]→ true if x and all the xi (1≤ i≤ n) are integers, xi <Z xi+1 for
all 1≤ i < n and x =Z xi for some 1≤ i≤ n; domainFD x [x1, . . . ,xn]→ f alse if x and all
the xi (1≤ i≤ n) are integers, xi <Z xi+1 for all 1≤ i < n and x 6=Z xi for all 1≤ i≤ n;
domainFD t s→⊥ otherwise.

6. indomain, labeling primitive interpreted to behave as follows:
indomainFD x→ success for all x ∈ Z; indomainFD t →⊥ whenever t /∈ Z.

In practice, the domain primitive is used for constraining the possible values of an inte-
ger variable to be members of a finite domain, represented as an increasing list of integers.
On the other hand, the indomain primitive corresponds to the so-called labeling predicate
[99,77,92]; it is used for constraining an integer variable to take concrete values from its
domain, thereby allowing for search. The clever combination of labeling with the propaga-
tion techniques used by finite domain solvers in order to prune variable domains, is crucial
for the success of finite domain applications.
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2.3 Constraints over a given Constraint Domain

Assuming an arbitrarily fixed constraint domain D built over a certain set of urelements U ,
we will now define the syntax and semantics of constraints. As in the CLP case, we view
constraints as logical formulas. In contrast to CLP, our constraints can include occurrences
of user defined functions. In the sequel, we will write DF = FS \PF for the set of user
defined function symbols, and DFn = FSn \PFn for the set of user defined function symbols
of arity n. The following definition distinguishes primitive constraints without any active
occurrence of defined function symbols, from user defined constraints that can have such
occurrences. For the sake of brevity, we sometimes write simply ‘constraints’ instead of
‘user defined constraints’.

Definition 2 Syntax of Constraints.

1. Atomic Primitive Constraints have the syntactic form ptn →! t , with p ∈ PFn, ti ∈
Pat⊥(U ) for all 1 ≤ i ≤ n, and t ∈ Pat(U ). The special constants ♦ and ¨ are also
atomic primitive constraints.

2. Primitive Constraints are built from atomic primitive constraints by means of logical
conjunction ∧ and existential quantification ∃.

3. Atomic Constraints have the syntactic form pen →! t , with p ∈ PFn, ei ∈ Exp⊥(U ) for
all 1≤ i≤ n, and t ∈ Pat(U ). The special constants ♦ and ¨ are also atomic constraints.

4. Constraints are built from atomic constraints by means of logical conjunction ∧ and
existential quantification ∃.

In the sequel we use the following notations:

– PCon⊥(D), the set of all the primitive constraints π over D .
– PGCon⊥(D), the set of all the primitive ground constraints over D , defined as {π ∈

PCon⊥(D) | f var(π) = /0}, where f var(π) is defined as the set of all variables which
have some free occurrence in π .

– PCon(D), the set of all the total primitive constraints over D , defined as {π ∈PCon⊥(D)
| π has no occurrences of⊥}.

– PGCon(D), the set of all the primitive ground and total constraints, PGCon⊥(D) ∩
PCon(D).

We also write DCon⊥(D) for the set of all the user defined constraints δ over D , as
well as DGCon⊥(D), DCon(D) and DGCon(D) for the subsets of DCon⊥(D) consisting
of ground, total, and ground and total constraints, respectively. We reserve the capital greek
letters Π resp. ∆ for sets of primitive resp. user defined constraints, usually interpreted as
conjunctions. The notations f var(Π) resp. f var(∆) will refer to the set of free variables
occurring in such sets. The semantics of user defined constraints depends on the interpre-
tation of user defined functions, and will be investigated in the next section as part of the
semantics of CFLP(D)-programs. The semantics of primitive constraints depends on the
notion of solution, presented in the next definition.

Definition 3 Solutions of Primitive Constraints.

1. The set of valuations resp. the set of total valuations over D is defined as Val⊥(D) =
GSub⊥(U ) resp. Val(D) = GSub(U ).

2. The set of solutions of π ∈ PCon⊥(D) is a subset SolD (π) ⊆ Val⊥(D) recursively de-
fined as follows:
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(a) SolD (♦) = Val⊥(D).
(b) SolD (¨) = /0.
(c) SolD (ptn →! t) = {η ∈Val⊥(D) | tη is total and pD tnη → tη}.
(d) SolD (π1∧π2) = SolD (π1)∩SolD (π2).
(e) SolD (∃Xπ) = {η ∈Val⊥(D) | η ′ ∈ SolD (π) for someη ′ =\{X} η}

3. The set of solutions of a set of constraints Π ⊆ PCon⊥(D) is defined as SolD (Π) =⋂
π∈Π SolD (π), corresponding to a logical reading of Π as the conjunction of its mem-

bers. In particular, SolD ( /0) =Val⊥(D), corresponding to the logical reading of an empty
conjunction as the identically true constraint ♦.

According to item 2.(c) in this definition, the solutions of a primitive atomic constraint
ptn →! t are those valuations for which ptn can return a total value which matches the total
pattern t. For instance, η ∈ SolR(X +Y →! 5) holds iff η(X) = x ∈ R, η(Y ) = y ∈ R, and
x+R y = 5. The other items in the definition are quite standard.

The semantics of atomic constraints ptn →! t just discussed shows that atomic con-
straints in our framework are related to the behavior of primitive functions, which may be
boolean or not. In the case of a boolean primitive p, a constraint of the form ptn →!R (where
R is a variable) imposes a relationship between the value of R and the result returned by ptn,
which may be true or f alse. This could be viewed as a formal analogy between constraints
of the form ptn →!R and reified constraints of the form c#⇔ R, used in several constraint
languages for relating the value of a boolean variable R to the entailment or disentailment
of a constraint c (see [92] for an explanation of the use of reified constraints in SICStus
Prolog). The analogy, however, is misleading; in our setting, the constraint ptn →!R cannot
be understood as relating the value of variable R to the behavior of another constraint ptn.
In fact, ptn standing by itself is not a constraint, but a functional expression. Moreover, the
CFLP scheme presented in this paper is not intended to capture the operational behavior of
reified constraints.

In any case, our atomic constraints ptn →! t based on the behavior of primitive func-
tions are more expressive than purely relational atomic constraints. This has been argued
elsewhere [70] for the particular case of strict equality and disequality constraints over con-
structor terms. In order to clarify this matter, let us consider the example of equality and
disequality constraints over the real numbers. According to the traditional (relational) view
one would use two different primitive predicates, say =R and /=R, for writing atomic con-
straints such as X =R Y or X/=R Y . In CFLP(R) these atomic constraints can be written
as eqRX Y →! true and eqRX Y →! f alse, respectively. Moreover, one can also write the
atomic constraint eqRX Y →! R, whose use in programs can lead to greater expressivity. An
improvement of efficiency can also be expected in computations depending on the value
obtained for R by constraint solving, because it will be possible to solve the constraint
eqRX Y →! R one single time instead of checking which of the two constraints X =R Y
and X/=R Y succeeds. Similar considerations apply to the various inequality primitives in
R and to the strict equality primitive seq in any constraint domain where it is available.

In the sequel we allow some useful shorthands for writing atomic constraints, primitive
or not:

– pen abbreviates pen →! success.
– e1 =U e2 abbreviates eqU e1 e2→! true. As particular case, e1# = e2 abbreviates e1=Ze2.
– e1/=U e2 abbreviates eqU e1 e2 →! f alse.
– e1 == e2 abbreviates seqe1 e2 →! true.
– e1/= e2 abbreviates seqe1 e2 →! f alse.
– e1 < e2 abbreviates e1 < e2 →! true (and analogously for other comparison primitives).
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– e1 ≥ e2 abbreviates e1 < e2 →! f alse (and analogously for other comparison primitives).
– e∈ d abbreviates domained→! true and e1, . . . ,en ∈ d abbreviates e1 ∈ d ∧ . . . ∧ en ∈ d.
– e /∈ d abbreviates domained →! f alse and e1, . . . ,en /∈ d abbreviates e1 /∈d∧ . . .∧en /∈d.
– labeling l [e1, . . . ,en] abbreviates indomain e1 ∧ . . . ∧ indomain en, using as additional

parameter a list l of items which allows to specify different labeling strategies. The
choice of a particular labeling strategy has an effect on the operational behavior and
therefore on efficiency; see [38,92] for details. However, any labeling strategy computes
the same solutions set, by constraining integer variables to take concrete values from
their domains in all possible ways.

Using the notion of solution given in Definition 3, some useful semantic notions related
to primitive constraints are easily introduced:

Definition 4 Primitive Semantic Notions.
Assuming a finite set Π ⊆ PCon⊥(D) of primitive constraints, a primitive constraint π ∈
PCon⊥(D), expressions e, e′ ∈ Exp⊥(U ), patterns tn, t ∈ Pat⊥(U ), and a primitive func-
tion symbol p ∈ PFn, we define:

1. π is called satisfiable in D (in symbols SatD (π)) iff SolD (π) 6= /0. Otherwise π is called
unsatisfiable (in symbols UnsatD (π)). Analogously for constraint sets Π .

2. π is a consequence of Π in D (in symbols, Π |=D π) iff SolD (Π) ⊆ SolD (π). π is
valid in D (in symbols, |=D π) iff /0 |=D π , which is obviously equivalent to SolD (π) =
Val⊥(D).

3. ev e′ is a consequence of Π in D (in symbols, Π |=D ev e′) iff eη v e′η holds for all
η ∈ SolD (Π). e v e′ is valid in D (in symbols, |=D e v e′) iff /0 |=D e v e′, which is
obviously equivalent to requiring eη v e′η to hold for all η ∈ Val⊥(D). Π |=D e w e′

and |=D ew e′ are defined analogously.
4. ptn → t is a consequence of Π in D (in symbols, Π |=D ptn → t) iff pD tnη → tη holds

for all η ∈ SolD (Π). ptn → t is valid in D (in symbols, |=D ptn → t) iff /0 |=D ptn → t
iff pD tnη → tη holds for all η ∈ Val⊥(D). Π |=D ptn →! t and |=D ptn →! t are
defined analogously.

Items 3 and 4 in the previous definition will be needed for defining some logical infe-
rence rules in sections 3.3 and 4.1. Note that the statement ptn → t used in item 4 (not to
be confused with a primitive atomic constraint ptn →! t , which has a different semantics)
is intended to mean that evaluation of the primitive function call ptn is able to return a
result t. In sections 3.3 and 4.1 this idea will be generalized to production statements of the
form e→ t (with e ∈ Exp⊥(U ) and t ∈ Pat⊥(U )), intended to mean that evaluation of the
expression e can return the value t.

3 A New CFLP(D) Scheme

The CLP scheme, originally introduced by Jaffar and Lassez [54], served the purpose of
defining a family of constraint logic programming languages CLP(D) parameterized by a
constraint domain D , in such a way that the well established results on the semantics of
logic programs could be lifted to all the CLP(D) languages in an elegant and uniform way;
see [56] for an updated presentation. Previous work on CFLP schemes, including our old
scheme CFLP(D) [64,65] had similar aims w.r.t. functional logic programming, differing
mainly in the kind of semantic framework provided.



12

We will now complete the presentation of the new CFLP(D) scheme, assuming that
constraint domains are as discussed in the previous section. As in other previous approaches,
we introduce programs as sets of constrained rewrite rules for defined function symbols. We
provide a semantics for CFLP(D)-programs by defining a class of interpretations and a
model relationship between interpretations and programs. The main results in the section
concern the existence of least models and their characterization as least fixpoints of conti-
nuous operators.

3.1 CFLP(D)-Programs and Goals

In the sequel we assume an arbitrarily fixed constraint domain D built over a set of ure-
lements U . As CFLP(D)-program we allow any set P of constrained rewrite rules for
defined function symbols, also called program rules. More precisely, a program rule R for
f ∈ DFn has the form

R : f tn → r ⇐ P2∆

and is required to satisfy the conditions listed below:

1. The left-hand side f tn is a linear expression, and for all 1≤ i≤ n, ti ∈ Pat(U ) are total
patterns.

2. The right-hand side r ∈ Exp(U ) is a total expression.
3. ∆ ⊆ DCon(D) is a finite set of total atomic constraints, intended to be interpreted as

conjunction, and possibly including occurrences of defined function symbols.
4. P is a finite set of so-called productions ei → si (1≤ i≤ k) also intended to be interpreted

as conjunction, and fulfilling the following admissibility conditions:
(a) For all 1 ≤ i ≤ k, ei ∈ Exp(U ) is a total expression, si ∈ Pat(U ) is a total linear

pattern, and var(si)∩ var( f tn) = /0.
(b) For all 1≤ i≤ j ≤ k, var(ei)∩ var(s j) = /0.
(c) For all 1≤ i < j ≤ k, var(si)∩ var(s j) = /0.

The left-linearity condition required in item 1 is quite common in functional and func-
tional logic programming. As in constraint logic programming, the conditional part of a
program rule needs no explicit occurrences of existential quantifiers, because a program
rule like R above is logically equivalent to

R′ : f tn → r ⇐∃Y (P2∆)

where Y = var(P2∆)\var( f tn → r). The admissibility conditions 4.(a), (b) and (c) are best
understood by thinking of each production ei → si as a local definition, expected to work by
obtaining values for the variables in the pattern si by matching the result of evaluating ei to
si. Admissibility just means that the locally defined variables must be fresh w.r.t. the left-
hand side of the program rule, and also that the local definitions are not recursive. Placing
P2∆ as conditional part in the program rule means that the productions in P and also the
constraints in ∆ must succeed for the rewrite rule to be applicable.

The following example illustrates the previous points by showing some constrained
rewrite rules which could be part of a CFLP(R)-program. The main function split is in-
tended to receive a list Xs of real numbers as parameter and to return a pair (Ys, Zs) of lists,
where the members of Ys are the positive members of Xs and the members of Zs are the
other members of Xs. We assume that (Ys, Zs) corresponds to the application of a binary
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constructor in mixfix notation, and we also use a Prolog-like syntax for list constructors.
The program rules for function case shows that an empty conditional part can be omitted for
the sake of simplicity.

Example 4 Splitting a list of numbers in CFLP(R):

split [ ] → ([ ], [ ])
split [X |Xs] → case R X Ys Zs⇐ split Xs → (Ys,Zs)

2X > 0 →! R
case true X Ys Zs → ([X |Ys],Zs)
case f alse X Ys Zs → (Ys, [X |Zs])

Goals for CFLP(D)-programs have the same form as the conditional part of program
rules. Computed answers for a goal G : P2∆ are expected to be pairs of the form S2σ ,
where σ is an idempotent substitution, S is a set of primitive constraints verifying dom(σ)
∩ var(S) = /0, and any valuation η which is a solution of S is also a solution of Gσ (in
symbols, SolD (S) ⊆ SolP(Gσ)).

For instance, in the case of Example 4, the expected computed answers for the goal G :
split [1.2, X , −0.25] == (Ys,Zs) are

S1 2σ1 = {X > 0}2{Ys 7→ [1.2, X ],Zs 7→ [−0.25]}
S2 2σ2 = {X ≤ 0}2{Ys 7→ [1.2],Zs 7→ [X ,−0.25]}

Note that in this case SolR(S1) ⊆ SolP(Gσ1) amounts to SolR(X > 0) ⊆ SolP(split
[1.2, X , −0.25] == ([1.2, X ], [−0.25]), which is intuitively true; and analogously for the
second computed answer.

In general, correctly computed answers are expected to satisfy the requirement SolD (S)
⊆ SolP(Gσ), whose meaning depends on the declarative semantics of programs. The rest
of this paper provides a formal framework for declarative semantics. Another very important
issue is operational semantics, dealing with the formal specification of goal solving methods
which take care of computing answers. Goal solving lies outside the scope of this paper, but
the brief Subsection 3.2 has been included below in order to provide a few essential pointers
to the literature.

In the rest of this subsection we present two further program fragments to illustrate other
interesting features of CFLP(D)-programming. Example 5 illustrates the use of infinite data
structures and higher-order programming facilities in CFLP(R):

Example 5 Higher-order Programming in CFLP(R):

inInterval A B X → and (A≤ X) (X ≤ B)

f rom X D → [ X | f rom (X +D) D ]

takeWhile P [ ] → [ ]
takeWhile P [X |Xs] → i f (PX) [ X | takeWhile P Xs ] [ ]

i f true L R → L
i f f alse L R → R

and true X → X
and f alse X → f alse
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Here, the function f rom is intended to generate an infinite list of real numbers whose
members form an arithmetic sequence, and the higher-order function takeWhile can be used
for computing a prefix of a given list, up to the point where some element fails to satisfy
a given property. Function inInterval is defined by means of the comparison primitives
and can be used to build defined constraints asserting membership between numbers and
intervals.

One possible goal for a program including the function definitions of Example 5 is

takeWhile(inInterval 01)( f romX 0.5) == [X ]

Note the use of the pattern (inInterval 01) within the goal for expressing a functional
value, namely the boolean function that decides membership for the interval of real numbers
lying between 0 and 1. The expected computed answer for this goal is

S2σ = {X > 0.5, X ≤ 1}2{}

which can be written more simply as the set of constraints {X > 0.5, X ≤ 1}. The compu-
tation of this answer in a practical CFLP(R) system would require a combination of lazy
evaluation and constraint solving.

The next (and last) example illustrates the combination of lazy evaluation and constraint
solving in CFLP(FD):

Example 6 Lazy evaluation of infinite lists in CFLP(FD):

take N Xs → [ ] ⇐ N ≤ 0
take N [ ] → [ ] ⇐ N > 0
take N [X | Xs] → [X | take (N−1) Xs] ⇐ N > 0

generate N → [ ] ⇐ N ≤ 0
generate N → [X | generate N] ⇐ N > 0, X ∈ (interval 0 (N−1))

interval L U → i f R [L | interval (L+1) U ] [ ] ⇐ L≤U →!R

A possible goal for a program including the functions defined in this example could be

take3(generate10) == List

which asks for the 3 first elements of an infinite list of integers, generated under the con-
straint that each of its elements must be an integer value belonging to the interval [0..9]. This
explains the variable bindings and the constraints occurring in the computed answer

S2σ = {X1,X2,X3 ∈ [0,1,2,3,4,5,6,7,8,9]}2{List 7→ [X1,X2,X3]}

whose computation in a practical CFLP(D) system would require a combination of lazy
evaluation and constraint solving, as in Example 5.

More practical examples of CFLP(FD)-programming can be found in [36]. Appendix
A includes more small examples of CFLP programs over the constraint domains Hseq, R
and FD , which can be executed in the TOY system [1,38] and are written in TOY’s concrete
syntax.
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3.2 Goal Solving

This short Subsection is intended to provide a few essential pointers to the literature on
goal solving methods which can be used as a formal basis for the operational semantics of
CFLP(D)-programs.

As explained in the Introduction, the CFLP scheme proposed in this paper is intended to
provide a clean declarative semantics for the combination of functional logic programming
and constraint logic programming. During the last 20 years, a great variety of goal solving
methods for functional logic programming have been investigated. Many of them are based
on narrowing, a combination of rewriting and unification, originally proposed as a theo-
rem proving tool [93,61,35,50]. The literature on narrowing as a goal solving method for
functional logic programming includes results establishing the soundness and completeness
of different variants of narrowing, with respect to different formalizations of the intended
declarative semantics of programs; see the references [31,46,80] for detailed information.

Results on narrowing methods which can be proved sound and complete with respect
to the rewriting logic CRWL [42,44,12] are particularly relevant for the CFLP(D) scheme,
since the declarative semantics for CFLP(D)-programs presented in this paper can be for-
mally characterized by means of the constraint rewriting logic CRWL(D), a natural exten-
sion of CRWL which is presented in Section 4 below. Many narrowing methods are con-
veniently presented as formal calculi consisting of transformation rules for transforming an
initial goal into different goals in solved form that represent different computed answers.
This is the case for the Constructor-based Lazy Narrowing Calculus CLNC [42] and its
higher-order extension HOLNC [43], which are both sound and complete w.r.t. CRWL se-
mantics. The interested reader is referred to [87] for a tutorial presentation of these calculi
and a comparison to other related narrowing methods.

In addition to being logically sound and complete, a narrowing method must satisfy
other additional properties in order to be a good guideline for the efficient implementation
of goal solving systems. Narrowing methods with the property of performing only needed
steps are particularly interesting in this regard. Intuitively, needed narrowing steps are those
narrowing steps which are demanded for the successful completion of the overall compu-
tation. This idea was investigated in a pragmatic, implementation-oriented way in [63] and
formalized in [2,3], where the so-called needed narrowing strategy was proved to enjoy a
number of optimality properties. Needed narrowing, as presented in [2,3] does not conform
to the declarative semantics given by CRWL, but the Demand-driven Narrowing Calculus
DNC presented more recently in [97] maintains the optimality properties of needed narrow-
ing while being sound and complete w.r.t. CRWL semantics.

Still more recently, CLNC and DCN have been taken as a starting point for designing
constraint narrowing calculi that are sound and complete w.r.t. CRWL(D) semantics, the
declarative semantics for CFLP(D) programs which is one main contribution of this paper.
Firstly, CLNC was extended to the Constraint Lazy Narrowing Calculus CLNC(D) [67]
which does not incorporate a needed narrowing strategy; and later DNC was extended to the
Constraint Demand-driven Narrowing Calculus CDNC(D) [98] which enjoys the optimality
properties of needed narrowing. Both [67] and [98] use the CRWL(D) logic from Section
4 below for defining solution sets SolP(Gσ) of instantiated goals, which are needed for
the formulation of soundness and completeness properties. Both CLNC(D) and CDNC(D)
combine lazy resp. needed narrowing with constraint solving, postulating a solver for the
constraint domain D which must satisfy some assumptions needed for proving soundness
and completeness of the calculi. The proper assumptions for solvers have been obtained by
generalizing ideas from previous works [64,7,70]. We believe that the calculus CDNC(D)
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is quite adequate for formalizing the behavior of actual CFLP(D) programming systems.
Some support for this claim in the particular case of finite domain constraints can be found
in [32], where CDNC(FD) computations have been shown to provide a faithful modelling
of actual computations in the TOY(FD) system [37,38].

3.3 Interpretations and Models for CFLP(D)-Programs

In order to interpret CFLP(D)-programs, the constraint domain D has to be extended with
interpretations for the defined function symbols. The D-algebras defined below achieve this
aim in a simple and straightforward way:

Definition 5 D-algebras.
Assume a constraint domain D with set of urelements U . A D-algebra is any structure of
the form

A = 〈D , { f A | f ∈ DF}〉
conservatively extending D with an interpretation f A of each f ∈ DFn, which must satisfy
the following requirements:

1. f A ⊆Dn
U ×DU , which boils down to f A ⊆DU in the case n = 0. The notation f A tn →

t indicates that (tn, t) ∈ f A . In the case n = 0, this notation boils down to f A → t.
2. f A behaves monotonically in its arguments and antimonotonically in its result; i.e.,

whenever f A tn → t, tn v t ′n and t w t ′ one also has f A t ′n → t ′.

Similarly to Definition 1, the monotonicity conditions in item 2 are intended to capture
the behavior of a possibly non-deterministic function over finite data elements. The radicali-
ty condition in Definition 1 is omitted here, because user defined functions which return
potentially infinite data structures as results are useful for programming and obviously not
radical.

A full-fledged semantics for CFLP(D)-programs could be developed on the basis of D-
algebras. This approach would be analogous to the D-interpretations used in the traditional
semantics of CLP(D)-programs [56], and also formally similar to the structures used as
interpretations for functional logic programs in our previous CFLP(D) scheme [64,65] and
previous work based on the logic CRWL [42,44,12].

We have nevertheless decided to abandon D-algebras in favor of a more expressive
approach, motivated by the π-interpretations for CLP(D)-programs proposed in [39,40].
Roughly speaking, π-interpretations in the CLP setting are sets of facts of the form ptn ⇐
Π , intended to mean that the user defined atom ptn is valid for any valuation which is a
solution of the primitive constraints Π . As shown in [39,40], π-interpretations can be used
as a basis for three different program semantics Si (i = 1,2,3), characterizing valid ground
goals, valid answers for goals and computed answers for goals, respectively. In fact, the Si
semantics are the CLP counterpart of previously known semantics for logic programming,
namely the least ground Herbrand model semantics [5,62], the open Herbrand model se-
mantics, also known as C-semantics [21,34] and the S-semantics [33,16]. A very concise
and readable overview of these semantics can be found in [6].

In order to generalize π-interpretations to CFLP(D) languages, we consider sets of
facts of the form f tn → t ⇐ Π , intended to describe the behavior of user defined functions
f ∈ DFn. We will use this class of interpretations for defining two different semantics, cor-
responding to S1 and S2, which we will call the weak and strong semantics, respectively.
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The strong semantics is intended to provide a characterization of valid answers for goals,
including computed answers as a particular case.

As shown by the rest of this paper and some recent results cited in the last paragraph of
Subsection 3.2, weak and strong semantics have a natural declarative characterization and
are a useful tool for proving soundness and completeness of various operational semantics.
Note that a CFLP(D) analogous of the S3 semantics would aim at characterizing exactly the
computed answers. In the pure CLP setting, there is wide agreement on a unique formaliza-
tion of operational semantics which gives rise to a well-defined class of computed answers
[56]. On the other hand, as explained in Subsection 3.2, a variety of narrowing strategies
have been proposed as a basis for operational semantics in the CFLP setting, giving rise to
different classes of computed answers. For this reason, we have made no attempt of deve-
loping a S3-like semantics for CFLP(D) programs.

Our next step is to define an analog to π-interpretations for CFLP(D)-programs. To this
purpose, we need some preliminary notions.

Definition 6 Constrained Statements and D-entailment.
Let D be any fixed constraint domain over a set of urelements U . In what follows we
assume partial patterns t, ti ∈ Pat⊥(U ), partial expressions e, ei ∈ Exp⊥(U ), and a finite
set Π ⊆ PCon⊥(D) of primitive constraints.

1. We consider three possible kinds of constrained statements (c-statements):
(a) c-productions e → t ⇐ Π , with e ∈ Exp⊥(U ). In the case that Π is empty they

boil down to unconstrained productions written as e → t. A c-production is called
trivial iff t =⊥ or UnsatD (Π).

(b) c-facts f tn→ t ⇐ Π , with f ∈ DFn. They are just a particular kind of c-productions.
In the case that Π is empty they boil down to unconstrained facts written as f tn → t.
A c-fact is called trivial iff t =⊥ or UnsatD (Π).

(c) c-atoms pen →! t ⇐ Π , with p ∈ PFn and t total. In the case that Π is empty they
boil down to unconstrained atoms written as pen →! t . A c-atom is called trivial iff
UnsatD (Π).

In the sequel we use ϕ and similar symbols to denote any c-statement of the form
e →? t ⇐ Π , where the symbol →? must be understood as →! in case that ϕ is a
c-atom; otherwise →? must be understood as →.

2. Given two c-statements ϕ and ϕ ′, we say that ϕ D-entails ϕ ′ (in symbols, ϕ <D ϕ ′) iff
one of the two following cases holds:
(a) ϕ = e → t ⇐ Π , ϕ ′ = e′ → t ′ ⇐ Π ′, and there is some σ ∈ Sub⊥(U ) such that

Π ′ |=D Πσ , Π ′ |=D e′ w eσ , Π ′ |=D t ′ v tσ .
(b) ϕ = pen →! t ⇐ Π , ϕ ′ = pe′n →! t ′ ⇐ Π ′, and there is some σ ∈ Sub⊥(U ) such

that Π ′ |=D Πσ , Π ′ |=D pe′n w (pen)σ , Π ′ |=D t ′ w tσ .

The intuitive idea behind D-entailment is that, whenever ϕ <D ϕ ′, the c-statement ϕ ′
can be accepted as a consequence of ϕ for any possible interpretation of the defined function
symbols. This is indeed reasonable because the definition of the D-entailment relation does
rely only on assumptions concerning the monotonic behavior of both primitive and defined
functions, as well as on the radical behavior of primitive functions.

The next definition generalizes the idea of π-interpretation [39,40] to our CFLP(D)
setting:



18

Definition 7 For any given constraint domain D :

1. A c-interpretation over D is any set I of c-facts including all the trivial c-facts and
closed under D-entailment. Equivalently, a c-interpretation is any set I of c-facts such
that clD (I) ⊆ I, where clD (I) is defined as follows:

clD (I) = {ϕ ′ | ϕ ′ is a trivial c-fact, or else∃ϕ ∈ I(ϕ <D ϕ ′)}
2. The ground kernel of a c-interpretation I is defined as

gkD (I) = {ϕ ∈ I | ϕ is a ground c-fact}
3. The D-grounding of a c-interpretation I is defined as the closure of its ground kernel

w.r.t. trivial c-facts and D-entailment, i.e.:

[I]D = clD (gkD (I))

Note that the ground kernel gkD (I) is technically not a c-interpretation, although it repre-
sents the ground information given by I; while the grounding [I]D is the least c-interpretation
which includes the ground information given by I. Clearly, two different c-interpretations
can have the same kernel, and thus the same grounding.

The next definition assumes a constraint domain D with urelements U , and a given
c-interpretation I over D . The purpose of the calculus is to infer the semantic validity of
arbitrary c-statements in I.

Definition 8 Semantic Calculus.
We write I `̀D ϕ to indicate that the c-statement ϕ can be derived from I using the following
inference rules:

TI Trivial Inference:

ϕ

If ϕ is a trivial c-statement.

RR Restricted Reflexivity:

t → t ⇐ Π

If t ∈ U ∪V .

SP Simple Production:

s → t ⇐ Π

If s ∈ Pat⊥(U ), s ∈ V or t ∈ V , and Π |=D s w t.

DC Decomposition:

e1 → t1 ⇐ Π , · · · , em → tm ⇐ Π
hem → htm ⇐ Π

If hem is passive.
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IR Inner Reduction:

e1 → t1 ⇐ Π , · · · , em → tm ⇐ Π
hem → X ⇐ Π

If hem is passive but not a pattern, X ∈ V and Π |=D htm w X .

DFI I-Defined Function:

e1 → t1 ⇐ Π , · · · , en → tn ⇐ Π
f en → t ⇐ Π

If f ∈ DFn, ( f tn → t ⇐ Π) ∈ I.

e1 → t1 ⇐ Π , · · · , en → tn ⇐ Π , sak → t ⇐ Π
f enak → t ⇐ Π

If f ∈ DFn, k > 0, ( f tn → s ⇐ Π) ∈ I, s ∈ Pat⊥(U ).

PF Primitive Function:

e1 → t1 ⇐ Π , · · · , en → tn ⇐ Π
pen → t ⇐ Π

If p ∈ PFn, ti ∈ Pat⊥(U ) for each 1≤ i≤ n, and Π |=D ptn → t.

AC Atomic Constraint:

e1 → t1 ⇐ Π , · · · , en → tn ⇐ Π
pen →! t ⇐ Π

If p ∈ PFn, ti ∈ Pat⊥(U ) for each 1≤ i≤ n, and Π |=D ptn →! t.

By convention, we agree that no inference rule of the semantic calculus is applied in
case that some textually previous rule can be used. In particular, no rule except TI can be
used to infer a trivial c-statement, and SP is not applied whenever RR is applicable.

Any derivation in the semantic calculus can be represented as a proof tree whose nodes
are labelled by c-statements, where each node has been inferred from its children by means
of the inference rules. In the sequel, we will use the following notations:

1. For each label RL ∈ {TI, RR, · · ·, PF, AC }, we write T = RL(ϕ, [T1, · · · , Tp]) for
representing a proof tree whose root c-statement ϕ is inferred with the inference rule
labelled RL, taking as premises p previously derived c-statements with proof trees Ti
(1≤ i≤ p).

2. T : I `̀D ϕ indicates that I `̀D ϕ is witnessed by the proof tree T .
3. T is called an easy proof tree iff T makes no use of the inference rules DFI, PF and AC.
4. ‖T‖ denotes the full size of the proof tree T , defined as the total number of nodes in T .
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5. | T | denotes the restricted size of the proof tree T , defined as the number of nodes in T
which are inferred with some of the rules DFI, PF or AC. Obviously, | T |≤ ‖T‖ and
| T |= 0 iff T is an easy proof tree.

The next lemma states several useful properties of the semantic calculus. The proof is
rather technical and can be found in Appendix B.1.

Lemma 1 Properties of the Semantic Calculus.

1. Compactness Property: I `̀D ϕ implies clD (I0) `̀D ϕ for some finite subset I0 ⊆ I.
2. Extension Property: I `̀D ϕ and I⊆ I′ implies I′ `̀D ϕ .
3. Approximation Property: For any e ∈ Exp⊥(U ), t ∈ Pat⊥(U ): Π |=D e w t iff there

is some easy proof tree T such that T : `̀D e → t ⇐ Π (derivation from the trivial
c-interpretation ⊥⊥= clD ( /0)).

4. Primitive c-atoms: For any primitive atom ptn →! t , I `̀D ptn →! t ⇐ Π iff Π |=D

ptn →! t .
5. Entailment Property: T : I `̀D ϕ and ϕ <D ϕ ′ implies T ′ : I `̀D ϕ ′ with proof tree T ′

such that | T ′ |≤| T |.
6. Conservation Property: For any c-fact ϕ , I `̀D ϕ iff ϕ ∈ I.
7. Grounding Property: For any ground c-statement ϕ , I `̀D ϕ iff [I]D `̀D ϕ .

Using the semantic calculus, solutions of user defined constraints can be easily defined.
The next definition generalizes Definition 3, assuming a given c-interpretation I over a con-
straint domain D with urelements U :

Definition 9 Solutions of User Defined Constraints.

1. The set of solutions of δ ∈ DCon⊥(D) is a subset SolI(δ ) ⊆ Val⊥(D) recursively de-
fined as follows:
(a) SolI(♦) = Val⊥(D).
(b) SolI(¨) = /0.
(c) SolI(δ ) = {η ∈ Val⊥(D) | I `̀D δη}, for any atomic constraint δ ∈ DCon⊥(D) \

{♦, ¨}.
(d) SolI(δ1∧δ2) = SolI(δ1)∩SolI(δ2).
(e) SolI(∃Xδ ) = {η ∈Val⊥(D) | η ′ ∈ SolI(δ ) for someη ′ =\{X} η}

2. The set of solutions of a set of constraints ∆ ⊆ DCon⊥(D) is defined as SolI(∆) =⋂
δ∈∆ SolI(δ ), corresponding to a logical reading of ∆ as the conjunction of its mem-

bers. In particular, SolI( /0) = Val⊥(D), corresponding to the logical reading of an empty
conjunction as the identically true constraint ♦.

For primitive constraints one can easily check that SolI(π) = SolD (π) and SolI(Π) =
SolD (Π), using the obvious correspondence between Definitions 9 and 3.

The semantic calculus also allows to define the denotation of arbitrary expressions in a
given interpretation, as follows:

Definition 10 Denotation of Expressions.
Assume a given c-interpretation I over a constraint domain D . The denotation of any ex-
pression e ∈ Exp⊥(U ) in I under a valuation η ∈ Val⊥(D) is defined as the set [[e]]Iη =
{t ∈ DU | I `̀D eη → t}. For the case of a ground expression e ∈ GExp⊥(U ) we will
abbreviate [[e]]Iε as [[e]]I.
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Using Lemma 1, it is easy to prove that [[e]]Iη ⊆ DU includes the undefined element

⊥ and is downwards closed w.r.t. the information ordering v; i.e., t ′ ∈ [[e]]Iη holds when-

ever t ∈ [[e]]Iη for some t w t ′. Due to these properties, [[e]]Iη turns out to be an element of
Hoare’s Powerdomain HP(DU ) [91,104,45], corresponding to so-called call-time choice
semantics for non-determinism. This kind of semantics is inspired by Hussmann’s work on
nondeterministic algebraic specifications and programs [51–53] and shown to be convenient
for programming in previous work on CRWL; see [42,87].

Definitions 9 and 10 just rely on the ground facts provided by the ground kernel of
c-interpretations. On the contrary, the first item in the next definition really exploits the
non-ground information provided by c-interpretations.

Definition 11 Strong and Weak Models.
For any given CFLP(D)-program P and c-interpretation I we say

1. I is a strong model of P (in symbols I |=s
D P) iff

for any ( f tn → r ⇐ P2∆) ∈ P , θ ∈ Sub⊥(U ), Π ⊆ PCon⊥(D) and t ∈ Pat⊥(U )
such that I `̀D (P2∆)θ ⇐ Π and I `̀D rθ → t ⇐ Π one has (( f tn)θ → t ⇐ Π) ∈ I.

2. I is a weak model of P (in symbols I |=w
D P) iff

for any ( f tn → r ⇐ P2∆) ∈ P , η ∈ GSub⊥(U ) and t ∈ GPat⊥(U ) such that
( f tn → r ⇐ P2∆)η is ground, I `̀D (P2∆)η and I `̀D rη → t one has (( f tn)η →
t) ∈ I.

Roughly speaking, the weak model semantics I |=w
D P means that all the individual

instances of program rules from P must be valid in I. Therefore, a technical variant of
weak semantics could be also defined using the D-algebras from Definition 5. On the other
hand, the strong model semantics would not make sense for D-algebras. The rough mean-
ing of the strong model relationship I |=s

D P is that all those c-facts that are “immediate
consequences” from c-facts belonging to I via program rules from P must belong to I. In
comparison with previous works, the weak model semantics is roughly similar to the model
notion used for CRWL in [42,44,12], to the semantics in our older CFLP(D) scheme [64,
65], and to the more traditional CLP(D) semantics in [54–56]; while the strong model se-
mantics is analogous to the S2-semantics for CLP(D)-programs proposed in [39,40].

The next proposition establishes a natural relationship between strong and weak models:

Proposition 1 Strong versus Weak Models.
For any CFLP(D)-program P and any c-interpretation I one has: I |=s

D P ⇒ I |=w
D P .

The reciprocal is false in general.

Proof Any strong model of a given CFLP(D)-program P is also a weak model of P ,
because item 2 in Definition 11 is a particular case of item 1 obtained when θ is a ground
substitution, Π is empty and t is a ground pattern. As a counterexample for the reciprocal,
consider the CFLP(R)-program P consisting of one single program rule notZeroX →
true ⇐ X /=R 0 and the following c-interpretation over R:

I =de f clR({notZeroX → true ⇐ X > 0,
notZeroX → true ⇐ X < 0})

For this particular program and c-interpretation the following holds:

1. I |=w
R P , because item 2 in Definition 11 holds. Indeed, for any η ∈ GSub⊥(R) which

gives a ground instance of the program rule, I `̀R (X /=R 0)η iff η(X) ∈ R \ {0}.
Therefore, for such η one also has ((notZeroX)η → true) ∈ I, since I is closed under
R-entailment.
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2. I 6|=s
R P , because item 1 in Definition 11 fails when choosing ε as θ and X /=R 0 as Π .

Indeed, I `̀R X /=R 0 ⇐ X /=R 0, I `̀R true → true ⇐ X /=R 0, and (notZeroX →
true ⇐ X /=R 0) 6∈ I, since this c-fact does not follow by R-entailment from the c-facts
used to define I.

The two kinds of models naturally give rise to different notions of logical consequence:

Definition 12 Strong and Weak Consequence.
For any given CFLP(D)-program P and c-statement ϕ we say

1. ϕ is a strong consequence of P (in symbols P |=s
D ϕ) iff I `̀D ϕ holds for every

strong model I |=s
D P .

2. ϕ is a weak consequence of P (in symbols P |=w
D ϕ) iff I `̀D ϕη holds for every

weak model I |=w
D P and every valuation η ∈ Val⊥(D) such that ϕη is ground.

As we will prove in Section 4.2, strong consequence always implies weak consequence;
but the reciprocal is false in general.

3.4 A Fixpoint Characterization of Least Models

In this subsection we prove the existence of least models for CFLP(D)-programs and we
characterize them as least fixpoints, exploiting the lattice structure of the family of all c-
interpretations. Similar results are well-known in logic programming [5,62] and constraint
logic programming [56,39,40], as well as in our older CFLP(D) scheme [64,65]. In our
current CFLP(D) scheme, the lattice structure is revealed by the following result:

Proposition 2 Interpretation Lattice.
ID , defined as the set of all possible c-interpretations I over the constraint domain D , is a
complete lattice w.r.t. the set inclusion ordering. Moreover, the bottom element ⊥⊥ and the
top element >> of this lattice can be characterized as follows:

⊥⊥ = clD ({ϕ | ϕ is a trivial c-fact})
>> = {ϕ | ϕ is any c-fact}

Proof >> is trivially the top element of ID w.r.t. to the set inclusion ordering. Moreover,⊥⊥ is
the bottom element because any c-interpretation is required to include all the trivial c-facts
and to be closed under clD . It only remains to show that any subset I ⊆ ID has a least upper
bound tI and a greatest lower bound uI w.r.t. the set inclusion ordering. Let us see why
this is true:

– tI = clD (
⋃

I), which is obviously the smallest set of c-facts closed under clD and
including all I ∈ I as subsets. Note that t /0 =⊥⊥ and tI =

⋃
I (which is already closed

under clD ) for non-empty I.
– uI =

⋂
I (understood as >> if I is empty), which is closed under clD and the greatest

set of c-facts included as a subset in all I ∈ I.

The strong and weak interpretation transformers defined below are intended to formalize
the computation of strong resp. weak “immediate consequences” from the c-facts belonging
to a given c-interpretation.

Definition 13 Interpretation Transformers.
For any given CFLP(D)-program P and c-interpretation I we define:
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1. STP(I) =de f clD (preSTP(I)), where: preSTP(I) =de f {( f tn)θ → t ⇐ Π | ( f tn →
r ⇐ P2∆) ∈ P, θ ∈ Sub⊥(U ), Π ⊆ PCon⊥(D), t ∈ Pat⊥(U ), I `̀D (P2∆)θ ⇐
Π , I `̀D rθ → t ⇐ Π}

2. WTP(I) =de f clD (preWTP(I)), where: preWTP(I) =de f {( f tn)η → t | ( f tn → r ⇐
P2∆) ∈ P, η ∈ GSub⊥(U ), with( f tn → r ⇐ P2∆)η ground, t ∈ GPat⊥(U ), I
`̀D (P2∆)η , I `̀D rη → t}

The crucial properties of the interpretation transformers are given in the next proposi-
tion, whose proof can be found in Appendix B.1:

Proposition 3 Properties of the Interpretation Transformers.
For any fixed CFLP(D)-program P , the transformers STP , WTP : ID → ID are well
defined continuous mappings, whose pre-fixpoints are the strong resp. weak models of P .
More precisely, for any I∈ ID one has STP(I)⊆ I iff I |=s

D P , and WTP(I)⊆ I iff I |=w
D P .

Using the previous proposition, the desired characterization of least models is easy to
obtain:

Theorem 1 Least Program Models.
For every CFLP(D)-program P there exist:

1. A least strong model SP = l f p(STP) =
⋃

k∈N STP ↑k (⊥⊥).
2. A least weak model WP = l f p(WTP) =

⋃
k∈NWTP ↑k (⊥⊥).

Proof Due to a well known theorem by Knaster and Tarski [95], a monotonic mapping from
a complete lattice into itself always has a least fixpoint which is also its least pre-fixpoint.
In the case that the mapping is continuous, its least fixpoint can be characterized as the lub
of the sequence of lattice elements obtained by reiterated application of the mapping to the
bottom element. Combining these results with Proposition 3 trivially proves the theorem.

In the rest of this subsection we investigate the relationship between the two least models
SP and WP of a given program P . Obviously, WP ⊆ SP , because SP is a weak model
of P due to Proposition 1, and therefore SP must include the least weak model. A sharper
characterization of WP as a subset of SP follows from the following result, whose proof is
given in Appendix B.1:

Proposition 4 Relationship between both Interpretation Transformers.
For any given CFLP(D)-program P and any c-interpretation I over D:
WTP([I]D ) = [STP(I)]D .

Using this proposition, we can prove:

Theorem 2 Relationship between both Least Models.
For every CFLP(D)-program P , the least weak model is the grounding of the least strong
model, i.e. WP = [SP ]D .

Proof Due to Theorem 1, it is sufficient to prove that WTP ↑k (⊥⊥) = [STP ↑k (⊥⊥)]D holds
for all k ∈ N. We reason by induction on k.

1. Base case: the equation holds for k = 0, since
WTP ↑0 (⊥⊥) =⊥⊥= [⊥⊥]D = [STP ↑0 (⊥⊥)]D .
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2. Inductive step: let us assume as induction hypothesis that the desired equation holds for
k. Then:

WTP ↑k+1 (⊥⊥) = WTP(WTP ↑k (⊥⊥))
= WTP([STP ↑k (⊥⊥)]D )
= [STP(STP ↑k (⊥⊥))]D
= [STP ↑k+1 (⊥⊥)]D

where the second equation holds by induction hypothesis, and the third equation holds
by Proposition 4.

In Section 4.2 we will present an example showing that the inclusion WP ⊆ SP can be
strict for some programs.

4 A Logical Framework for CFLP(D)

In this section we generalize the CRWL approach [42,44,12,87] to a new rewriting logic
CRWL(D), parameterized by a constraint domain D , and aimed as a logical framework for
CFLP(D) programming. We start by presenting a logical calculus for CRWL(D) and inves-
tigating its main proof theoretical properties. Next, we investigate the relationship between
formal derivability in this calculus and the model theoretic semantics studied in the subsec-
tions 3.3 and 3.4. The relevance of CRWL(D) w.r.t. past work and planned future work will
be briefly discussed in the concluding section 5.

4.1 The Constraint Rewriting Logic CRWL(D): Proof Theory

The next definition assumes a constraint domain D with urelements U , and a given D-
program P . The purpose of the calculus is to infer the semantic validity of arbitrary c-
statements from the program rules in P .

Definition 14 Constrained Rewriting Calculus.
We write P `D ϕ to indicate that the c-statement ϕ can be derived from P in the con-
strained rewriting calculus CRWL(D), which consists of the inference rules TI, RR, SP,
DC, IR, PF and AC already presented in the semantic calculus from Definition 8, plus the
following inference rule:

DFP P-Defined Function:

e1 → t1 ⇐ Π , · · · , en → tn ⇐ Π , P2∆ ⇐ Π , r → t ⇐ Π
f en → t ⇐ Π

If f ∈ DFn, ( f tn → r ⇐ P2∆) ∈ [P]⊥.

e1 → t1 ⇐Π , · · · ,en → tn ⇐Π , P2∆ ⇐Π , r → s⇐Π , sak → t ⇐Π
f enak → t ⇐ Π

If f ∈ DFn, k > 0, ( f tn → r ⇐ P2∆) ∈ [P]⊥, s ∈ Pat⊥(U ).
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The crucial difference between CRWL(D) and the semantic calculus is that CRWL(D) in-
fers the behavior of defined functions from a given program P , rather than from a given
interpretation I. This is clear from the formulation of rule DFP , where [P]⊥ denotes the
set {Rθ | R ∈ P, θ ∈ Sub⊥(U )} consisting of all the possible instances of the function
defining rules belonging to P .

As in the semantic calculus, we agree that no inference rule is applied in case that some
textually previous rule can be used. Moreover, we also agree that the premise P2∆ ⇐ Π
in rule DFP must be understood as a shorthand for several premises α ⇐ Π , one for each
atomic statement α occurring in P2∆ . This harmless convention allows to dispense with
an explicit inference rule for conjunctions.

CRWL(D)-derivations can be represented as proof trees whose nodes are labelled by c-
statements, where each node has been inferred from its children by means of some CRWL(D)
inference rule. Concerning proof trees and their sizes, we will use the same notation and
terminology already introduced for the semantic calculus in subsection 3.3, modulo the re-
placement of rule DFI by rule DFP . In particular, T : P `D ϕ will indicate that P `D ϕ
is witnessed by the proof tree T .
The results in the next Subsection show a natural correspondence between CRWL(D)-
derivations, logical consequence from a given CFLP(D)-program as presented in Subsec-
tion 3.3, and least models of a given CFLP(D)-program as presented in Subsection 3.4.
Therefore, CRWL(D)-derivations of the form T : P `D Gσ ⇐ S can be expected to exist
iff the pair S2σ is a declaratively correct answer (in the sense of the CFLP(D) framework)
for the goal G w.r.t. the program P . For this reason, proof trees witnessing such deriva-
tions play an important role in the mathematical proofs of soundness and completeness for
the goal solving calculi cited in the last paragraph of Subsection 3.2. The next example is
related to these ideas:

Example 7 The proof tree T displayed below corresponds to a CRWL(R)-derivation

T : P `R takeWhile (inInterval 0 1) ( f rom X 0.5) == [X ]⇐ X > 0.5, X ≤ 1

witnessing the declarative correctness of the computed answer previously discussed in Exam-
ple 5. In order to ease an explanation given below, a subtree of T has been given the separate
name T0.

AC takeWhile (inInterval 0 1) ( f rom X 0.5) == [X ]⇐ X > 0.5, X ≤ 1
X > 0.5, X ≤ 1 |=R [X ] == [X ]
DC [X ]→ [X ]⇐ X > 0.5, X ≤ 1

RR X → X ⇐ X > 0.5, X ≤ 1
DC [ ]→ [ ]⇐ X > 0.5, X ≤ 1

DF takeWhile (inInterval 0 1) ( f rom X 0.5)→ [X ]⇐ X > 0.5, X ≤ 1
DC inInterval 0 1 → inInterval 0 1 ⇐ X > 0.5, X ≤ 1

RR 0 → 0 ⇐ X > 0.5, X ≤ 1
RR 1 → 1 ⇐ X > 0.5, X ≤ 1

DF f rom X 0.5 → [ X ,X +0.5 | ⊥ ]⇐ X > 0.5, X ≤ 1
RR X → X ⇐ X > 0.5, X ≤ 1
RR 0.5 → 0.5 ⇐ X > 0.5, X ≤ 1
DC [ X | f rom (X +0.5) 0.5 ]→ [ X ,X +0.5 | ⊥ ]⇐ X > 0.5,

X ≤ 1
RR X → X ⇐ X > 0.5, X ≤ 1
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DF f rom (X +0.5) 0.5 → [ X +0.5 | ⊥ ]⇐ X > 0.5,
X ≤ 1
PF X +0.5 → X +0.5 ⇐ X > 0.5, X ≤ 1

RR X → X ⇐ X > 0.5, X ≤ 1
RR 0.5 → 0.5 ⇐ X > 0.5, X ≤ 1
X > 0.5, X ≤ 1 |=R X +0.5 → X +0.5

RR 0.5 → 0.5 ⇐ X > 0.5, X ≤ 1
DC [ X +0.5 | f rom ((X +0.5)+0.5) 0.5 ]→

[ X +0.5 | ⊥ ]⇐ X > 0.5, X ≤ 1
PF X +0.5 → X +0.5 ⇐ X > 0.5, X ≤ 1
TI f rom ((X +0.5)+0.5) 0.5 →⊥⇐ X > 0.5,

X ≤ 1
DF i f (inInterval 0 1 X) [ X | takeWhile (inInterval 0 1)

[X +0.5 | ⊥] ] [ ]→ [X ]⇐ X > 0.5, X ≤ 1
DF inInterval 0 1 X → true ⇐ X > 0.5, X ≤ 1

RR 0 → 0 ⇐ X > 0.5, X ≤ 1
RR 1 → 1 ⇐ X > 0.5, X ≤ 1
RR X → X ⇐ X > 0.5, X ≤ 1
DF and (0≤ X) (X ≤ 1)→ true ⇐ X > 0.5, X ≤ 1

PF 0 ≤ X → true ⇐ X > 0.5, X ≤ 1
RR 0 → 0 ⇐ X > 0.5, X ≤ 1
RR X → X ⇐ X > 0.5, X ≤ 1
X > 0.5, X ≤ 1 |=R 0 ≤ X → true

PF X ≤ 1 → true ⇐ X > 0.5, X ≤ 1
RR X → X ⇐ X > 0.5, X ≤ 1
RR 1 → 1 ⇐ X > 0.5, X ≤ 1
X > 0.5, X ≤ 1 |=R X ≤ 1 → true

DC true → true ⇐ X > 0.5, X ≤ 1
DC [ X | takeWhile (inInterval 0 1) [X +0.5 | ⊥] ]→ [X ]

⇐ X > 0.5, X ≤ 1
RR X → X ⇐ X > 0.5, X ≤ 1
DC takeWhile (inInterval 0 1) [X +0.5 | ⊥]→ [ ]

⇐ X > 0.5, X ≤ 1
. . . T0 . . .

DC [ ]→ [ ]⇐ X > 0.5, X ≤ 1
DC [X ]→ [X ]⇐ X > 0.5, X ≤ 1

RR X → X ⇐ X > 0.5, X ≤ 1
DC [ ]→ [ ]⇐ X > 0.5, X ≤ 1

Note that the subtree T0 is such that T0 : P `R takeWhile (inInterval 0 1) [ X +0.5 | ⊥ ]
→ [ ] ⇐ X > 0.5, X ≤ 1. Fig. 1 shows a graphical representation of T0, where the common
constrained part X > 0.5, X ≤ 1 has been omitted for readability.

DF takeWhile (inInterval 0 1) [ X +0.5 | ⊥ ]→ [ ]⇐ X > 0.5, X ≤ 1
DC inInterval 0 1 → inInterval 0 1 ⇐ X > 0.5, X ≤ 1
DC [ X +0.5 | ⊥ ]→ [ X +0.5 | ⊥ ]⇐ X > 0.5, X ≤ 1
DF i f (inInterval 0 1 (X +0.5)) [ X +0.5 | takeWhile (inInterval 0 1) ⊥ ] [ ]

→ [ ]⇐ X > 0.5, X ≤ 1
DF inInterval 0 1 (X +0.5)→ f alse ⇐ X > 0.5, X ≤ 1
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takeWhile (inInterval 0 1) [X +0.5|⊥] → [ ]

inInterval 0 1 →
inInterval 0 1

0 → 0

1 → 1

[X +0.5|⊥] →
[X +0.5|⊥]

⊥ → ⊥X +0.5 →
X +0.5

X → X

0.5 → 0.5

[X +0.5 | takeWhile (inInterval 0 1) ⊥] → ⊥

[ ] → [ ]

[ ] → [ ]

inInterval 0 1 (X +0.5) → f alse

0 → 0
1 → 1

X +0.5 →
X +0.5

and (0≤ X +0.5) (X +0.5≤ 1)
→ f alse

X → X
0.5 → 0.5

f alse → f alse

0≤ X +0.5 → true X +0.5≤ 1 → f alse

0 → 0 X +0.5 →
X +0.5

X → X
0.5 → 0.5

1 → 1

X → X

X +0.5 →
X +0.5

0.5 → 0.5

i f (inInterval 0 1 (X +0.5)) [X +0.5|takeWhile

(inInterval 0 1) ⊥] [ ] → [ ]
DFtake

DC
DC

PF DFi f

DFinInterval

DFand

PF PF

PF PF

PF

RR

RR

RR

RR

RR
RR

RR
RR

RR

RR
RR

RR

RR

RR

DC

DC

DC

TI

TI

Fig. 1 A CRWL(R)-proof tree for Example 5

RR 0 → 0 ⇐ X > 0.5, X ≤ 1
RR 1 → 1 ⇐ X > 0.5, X ≤ 1
PF X +0.5 → X +0.5 ⇐ X > 0.5, X ≤ 1
DF and (0≤ X +0.5) (X +0.5≤ 1)→ f alse ⇐ X > 0.5,

X ≤ 1
PF 0 ≤ X +0.5 → true ⇐ X > 0.5, X ≤ 1

RR 0 → 0 ⇐ X > 0.5, X ≤ 1
PF X +0.5 → X +0.5 ⇐ X > 0.5, X ≤ 1
X > 0.5, X ≤ 1 |=R 0 ≤ X +0.5 → true

PF X +0.5 ≤ 1 → f alse ⇐ X > 0.5, X ≤ 1
PF X +0.5 → X +0.5 ⇐ X > 0.5, X ≤ 1
RR 1 → 1 ⇐ X > 0.5, X ≤ 1
X > 0.5, X ≤ 1 |=R X +0.5 ≤ 1 → f alse

DC f alse → f alse ⇐ X > 0.5, X ≤ 1
TI [ X +0.5 | takeWhile (inInterval 0 1) ⊥ ]→⊥⇐ X > 0.5,

X ≤ 1
DC [ ]→ [ ]⇐ X > 0.5, X ≤ 1
DC [ ]→ [ ]⇐ X > 0.5, X ≤ 1

Most of the properties proved in Lemma 1 for the semantic calculus translate into analo-
gous valid properties of the rewriting calculus CRWL(D), with the only exception of items
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6 and 7 in Lemma 1, which seem to have no natural analogy in CRWL(D). The properties
are stated in the next lemma. Again, the rather technical proof can be found in Appendix
B.1.

Lemma 2 Properties of the Constrained Rewriting Calculus.

1. Compactness Property: P `D ϕ implies P0 `D ϕ for some finite subset P0 ⊆ P .
2. Extension Property: P `D ϕ and P ⊆P ′ implies P ′ `D ϕ .
3. Approximation Property: For any e ∈ Exp⊥(U ), t ∈ Pat⊥(U ): Π |=D e w t iff there is

some easy proof tree T such that T : `D e→ t ⇐ Π (derivation from empty program).
4. Primitive c-atoms: For any primitive atom ptn →! t , P `D ptn →! t ⇐ Π iff Π |=D

ptn →! t .
5. Entailment Property: T : P `D ϕ and ϕ <D ϕ ′ implies T ′ : P `D ϕ ′ for some proof

tree T ′ such that | T ′ |≤| T |.

4.2 The Constraint Rewriting Logic CRWL(D): Model Theory

In this section we investigate the relationship between CRWL(D)-derivability and the two
model-theoretic semantics presented in sections 3.3 and 3.4. Our first result is the next theo-
rem, showing a nice correspondence between CRWL(D)-derivability, strong consequence,
and validity in least strong models:

Theorem 3 Correctness Results for Strong Semantics.
For any CFLP(D)-program P and any c-statement ϕ , the following three conditions are
equivalent:

(a) P `D ϕ (b) P |=s
D ϕ (c) SP `̀D ϕ

Moreover, we also have:

1. Soundness: for any c-statement ϕ , P `D ϕ ⇒ P |=s
D ϕ .

2. Completeness: for any c-statement ϕ , P |=s
D ϕ ⇒ P `D ϕ .

3. Canonicity: SP = {ϕ | ϕ is a c-fact andP `D ϕ}.

Proof A proof of the equivalence among (a), (b), (c) is given in Appendix B.2. Sound-
ness and completeness are just a trivial consequence of this equivalence. In order to prove
canonicity, consider any c-fact ϕ . We know that ϕ ∈ SP iff SP `̀D ϕ , because of the Con-
servation Property from Lemma 1. On the other hand, SP `̀D ϕ iff P `D ϕ is ensured by
the equivalence between (c) and (a).

Concerning the relationship between CRWL(D)-derivability and the weak semantics,
most of the results (with the exception of soundness) must be restricted to ground c-statements:

Theorem 4 Correctness Results for Weak Semantics.
For any CFLP(D)-program P and any ground c-statement ϕ , the following three condi-
tions are equivalent:

(a) P `D ϕ (b) P |=w
D ϕ (c) WP `̀D ϕ

Moreover, we also have:



29

1. Soundness: for any c-statement ϕ , P `D ϕ ⇒ P |=w
D ϕ .

2. Ground Completeness: for any ground c-statement ϕ , P |=w
D ϕ ⇒ P `D ϕ . This does

not hold in general for arbitrary c-statements.
3. Ground Canonicity: gkD (WP) = {ϕ | ϕ is a ground c-fact andP `D ϕ}.

Proof These results can be easily deduced from Theorem 3, using already proved relation-
ships between weak and strong models. The detailed arguments can be found in Appendix
B.2.

Using Theorems 3 and 4 we can now easily obtain two results that were announced at
the end of sections 3.3 and 3.4, respectively.

Proposition 5 Strong versus Weak Consequence.
For any CFLP(D)-program P and any c-fact ϕ one has: P |=s

D ϕ ⇒ P |=w
D ϕ . The

reciprocal is false in some cases.

Proof Assume that P |=s
D ϕ . By the Completeness Property in Theorem 3, we can con-

clude that P `D ϕ , which implies P |=w
D ϕ by the Soundness Property in Theorem 4.

On the other hand, in the proof of Theorem 4 we have shown a CFLP(R)-program P
and a non-ground c-statement ϕ such that P |=w

R ϕ and P 6`R ϕ , which is the same as
P 6|=s

R ϕ because of Theorem 3.

Proposition 6 Strong versus Weak Least Models.
For any CFLP(D)-program P one has WP ⊆ SP . The inclusion is strict in some cases.

Proof The inclusion WP ⊆ SP has been proved already in the subsection 3.4. As a coun-
terexample for the opposite inclusion, consider an arbitrary constraint domain D with ure-
lements U , the CFLP(D)-program P consisting of one single program rule id X → X
defining the identity function, and the c-interpretation I = clD ({id t → t | t ∈ DU }). Note
that the c-fact ϕ = (id X → X) does not belong to I, since it is neither a trivial c-fact nor
follows by D-entailment from the ground c-facts used for defining I. On the other hand, ϕ
belongs to SP by the Canonicity Property in Theorem 3, because P `D ϕ is obviously
true. Therefore, SP 6⊆ I. But WP ⊆ I holds by Theorem 1, because I is clearly a weak model
of P . From SP 6⊆ I and WP ⊆ I we conclude SP 6⊆WP .

5 Conclusions

We have proposed a new generic scheme CFLP(D) which provides a uniform foundation
for the semantics of constraint functional logic programs. As main novelties w.r.t. previous
related approaches, we have presented a new formalization of constraint domains, a new
notion of interpretation giving rise to weak and strong semantics for programs, and a new
constraint rewriting logic CRWL(D) whose proof theory is sound and complete w.r.t. strong
semantics, and sound and ground complete w.r.t. weak semantics.

Our results can be viewed as a natural but not trivial extension of known results on the
semantics of success in the CLP(D) scheme for constraint logic programming [56,40]. In
comparison to previous work on constraint functional logic programming, we have improved
our older CFLP(D) scheme [64,65] in several respects, and we have provided a rigorous
declarative semantics which was missing in other approaches.

The improvements in the new scheme provide a satisfactory foundation for our previous
work on functional logic programming with disequality constraints [60,7,68] and a solid
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starting point for a better foundation of our previous work on functional logic programming
with multiset constraints [8,9]. Multiset constraints are outside the scope of the present
paper because they use algebraic data constructors, while the CFLP(D) scheme presented
here assumes free data constructors.

The new scheme CFLP(D) is intended as a basis for several lines of ongoing and future
work. Some recent results cited in Subsection 3.2 have already shown the existence of va-
rious goal solving calculi that are sound and complete w.r.t. CRWL(D)-semantics, some of
which can be regarded as a reasonable formal model for the actual behavior of implemented
CFLP(D) systems. Concerning applications of the CFLP(D) scheme, we are working with
the instance CFLP(FD), which provides a foundation for previous work on functional logic
programming with finite domain constraints, started in [36]. We plan to continue the inves-
tigation of practical constraint solving methods and applications of the resulting language.
Last but not least, we are working on declarative debugging techniques for CFLP(D)-
programs, following previous work for functional logic programs [17–19] as well as re-
lated work for CLP(D) programs [96]. The Constraint Rewriting Logic CRWL(D) already
provides a formal framework for the declarative debugging of wrong answers [20]. We are
designing an extension of CRWL(D) which will serve as a formal framework for the declara-
tive debugging of missing answers. As a byproduct of this research, we expect to obtain a
formal characterization of finite failure in CLP(D) programming, generalizing some of the
already known results on the finite failure semantics of functional logic programs with dise-
quality constraints [70,71].

A Small sample of CFLP(D)-programming in TOY

This appendix contains a short collection of simple programs corresponding to different instances of CFLP(D),
aiming to give the reader an impression of how constraint functional logic programs look like in practice. Pro-
grams are executable in the system TOY [1], and use some syntactical facilities like type declarations or where
constructions for local definitions, usual in many functional languages.

A.1 Permutation sort in CFLP(Hseq) using strict equality

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Programming in CFLP(H_seq) %
% %
% using strict equality constraints %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Lazy generate & test as a higher order scheme.
%
% Problem: Given a generator, a tester and an input, find a solution.
% The generator will be a non-deterministic lazy function.
% Method: Lazy generate and test.

findSol :: (Input -> Solution) -> (Solution -> bool) -> Input -> Solution
findSol Generate Test Input = Candidate <== Test Candidate

where Candidate = Generate Input

% Intended Goals: findSol generate test input == Sol
% Application: permutation sort.
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permSort :: [int] -> [int]
permSort = findSol permute isSorted

% The generator computes permutations of a list:

permute [] = []
permute [X|Xs] = [Y|permute Ys] where (Y,Ys) = split_one [X|Xs]

split_one [X|Xs] = (X,Xs)
split_one [X|Xs] = (Y,[X|Ys]) where (Y,Ys) = split_one Xs

% The tester accepts sorted lists:

isSorted :: [int] -> bool
isSorted [] = true
isSorted [X] = true
isSorted [X,Y|Zs] = (X <= Y) /\ (isSorted [Y|Zs])

% /\ behaves as sequential conjunction:

infixr 40 /\

(/\) :: bool -> bool -> bool
false /\ Y = false
true /\ Y = Y

% Goal: permSort [3,11,8,10,1,14,12,5,6,9,2,7,15,13,4] == Xs
% Solution: Xs = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
% Elapsed time in the system Toy: 8513 ms.
% Comments: This program does not attempt to be efficient, but to illustrate
% a useful programming technique. It is remarkable that in this
% example the use of a non-deterministic function as lazy generator
% gives much better results than similar ’generate and test’
% programs written in Haskell or Prolog, which take more than one
% hour for the goal above.

A.2 List difference in CFLP(Hseq) using disequality constraints

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Programming in CFLP(H_seq) %
% %
% using disequality constraints %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Problem: given two lists Xs, Ys, compute the list difference Xs -- Ys,
% obtained by deleting from Xs the first occurrence of each member
% of Ys, failing in case that some member of Ys does not occur
% in Xs with the same multiplicity; i.e., compute the difference
% Xs -- Ys viewing the lists Xs, Ys as representations of multisets.

infixl 50 --

(--) :: [A] -> [A] -> [A]

Xs -- [] = Xs
Xs -- [Y|Ys] = (delete Y Xs) -- Ys
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delete :: A -> [A] -> [A]

delete Y [X|Xs] = if Y == X then Xs else [X|delete Y Xs]

% Note: (delete Y Xs) fails if Y does not occur in Xs.
%
% Moreover, the rule of "delete" is TOY code for:
%
% delete Y [X|Xs] -> if R then Xs else [X|delete Y Xs] <== seq X Y ->! R
%
% The use of the seq primitive here involves disequality constraints.
% An equivalent but less efficient definition of delete would be:
%
% delete Y [X|Xs] -> Xs <== Y == X
% delete Y [X|Xs] -> [X|delete Y Xs] <== Y /= X
%
% Disequality constraints are apparent in this version

% Goal: [1,2,3,2,4] -- [2,4] == Xs
% Solution: Xs = [1,3,2]

% Goal: ("angle" -- Xs) ++ Xs == "angel"
% Solutions: Xs = "l"; Xs = "el"; Xs = "gel"; etc.

% Application: computing permutations.
% (alternative to the function "permute" above)
% Not good for using in cooperation with "permSort",
% because "permutation" is not a lazy generator!

permutation :: [A] -> [A]

permutation Xs = Ys <== Ys -- Xs == []

% Goal: permutation [1,2,3] == Xs
% Solutions: Xs == [1,2,3] ;
% Xs == [1,3,2] ;
% Xs == [2,1,3] ;
% Xs == [2,3,1] ;
% Xs == [3,1,2] ;
% Xs == [3,2,1] ;
% no

A.3 Computing a mortgage in CFLP(R)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Programming in CFLP(R) %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Computing a mortgage (adapted from K. Marriott and P.J. Stuckey)

% Some useful type alias.

type principal = real % principal

type time = real % number of time periods
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type interest = real % percentual interest rate

type repayment = real % repayment for one time period

type balance = real % outstanding balance

% Computation of the new principal NP after one repayment R:
%
% NP = P + P*I - R

mortgage :: (principal,time,interest,repayment) -> balance

mortgage (P, T, I, R) = P <== T == 0
mortgage (P, T, I, R) = mortgage (P + P*I - R, T-1, I, R) <== T >= 1

% Several modes of use are possible:

% What is the balance corresponding to borrowing 1000 Euros for 10 years at
% an interest rate of 10% and repaying 150 Euros per year?
%
% Goal: mortgage (1000, 10, 10/100, 150) == B
% Solution: B == 203.12876995000016

% How much can be borrowed in a 10 year loan at 10% with
% annual repayments of 150 Euros?
%
% Goal: mortgage (P, 10, 10/100, 150) == 0
% Solution: P == 921.6850658557024

% What must be the relationship between the initial principal, the
% repayment an the balance in a 10 year loan at 10%?
%
% Goal: mortgage(P, 10, 10/100, R) == B
% Solution: B == 2.5937424601*P-15.937424601000002*R
% (a linear constraint relating P, R and B)

A.4 Magic series in CFLP(FD)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Programming in CFLP(FD) %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This example illustrates the combination of finite domain constraints
% with typical functional logic programming features, such as lazy
% evaluation and higher order functions.

% Magic series problem (adapted from Van Hentenryck)
%
% Problem: Let S = [s_0, s_1,...,s_N-1] be a non-empty finite sequence of
% non-negative integers. S is called a N-magic series if and only
% if there are s_i occurrences of i in S, for all i in 0,...,N-1.
% We propose a TOY(FD) program to calculate magic series where the
% functions ’take’ and ’generate’ are as defined in Example 6.

lazymagic :: int -> [int]
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lazymagic N = L <== take N (generate N) == L,
constrain L L 0 Cs,
sum L (#=) N,
scalar_product Cs L (#=) N,
labeling [ff] L

constrain :: [int] -> [int] -> int -> [int] -> bool

constrain [] A B [] = true
constrain [X|Xs] L I [I|S2] = true <== count I L (#=) X,

constrain Xs L (I+1) S2

% ’sum’, ’scalar_product’ and ’count’ are predefined higher-order constraints,
% that can accept a FD primitive (e.g. the constraint #=) as argument.
%
% ’sum L C N’ means that the summation of the elements in the list L is
% related through C with the integer N (in the example, the summation
% is constrained to be equal to N).
%
% ’scalar_product’ and ’count’ stand for scalar product and element counting.
% Their parameters are understood as those of sum.

% ’labeling [ff] L’ controls the order in which variables of the list L are
% chosen for assignment (i.e., variable ordering). In this case, the variable
% with the smallest domain.

% Given a natural number N, (lazymagic N) returns a N-magic series.
% Since (generate N) produces an infinite list, (take N (generate N))
% requires lazy evaluation.

% A more interesting problem is to compute a list of different magic series
% of increasing lengths, starting with a given N. This is done by the recursive
% function magicfrom:

magicfrom :: int -> [[int]]

magicfrom N = [lazymagic N | magicfrom (N+1)]

% Solving the following goal requires lazy evaluation.
% The answer provides a list consisting of a 7-magic,
% a 8-magic and a 9-magic series:

% Goal: take 3 (magicfrom 7) == L
% Solution: L == [ [ 3, 2, 1, 1, 0, 0, 0 ],
% [ 4, 2, 1, 0, 1, 0, 0, 0 ],
% [ 5, 2, 1, 0, 0, 1, 0, 0, 0 ] ]

% The TOY(FD) code shown below shows another way of computing a
% list of magic series of increasing lengths, this time using
% higher-order functions.

from :: int -> [int]
from N = [N | from (N+1)]

(.) :: (B -> C) -> (A -> B) -> (A -> C)
(F . G) X = F (G X)

map :: (A -> B) -> [A] -> [B]

map F [] = []
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map F [X|Xs] = [F X | map F Xs]

lazyseries :: int -> [[int]] lazyseries = map lazymagic . from

% The next goal produces the same answer as the previous one:

% Goal: take 3 (lazyseries 7) == L
% Solution: L == [ [ 3, 2, 1, 1, 0, 0, 0 ],
% [ 4, 2, 1, 0, 1, 0, 0, 0 ],
% [ 5, 2, 1, 0, 0, 1, 0, 0, 0 ] ]

B Proofs of the main results

B.1 Proofs of the main results from section 3

Proof of Lemma 1

Proof (1) Compactness Property. Assume a given proof tree T for I `̀D ϕ . Reasoning by induction on ‖T‖
we prove the existence of some finite subset I0 ⊆ I and a proof tree T ′ such that T ′ : clD (I0) `̀D ϕ . We
distinguish cases according to the inference rule applied at the root of T .

First, if T is an easy proof tree the property holds trivially because T : I `̀D ϕ is a derivation from the trivial
c-interpretation clD ( /0). Therefore, T and T ′ are the same easy proof tree for clD ( /0) `̀D ϕ , and of course, for
clD (I0) `̀D ϕ with I0 ⊆ I every finite subset.

In other case, using the induction hypothesis and the fact that we only use almost one c-fact of I in each
step of the derivation, the property is obvious for all the rest of inference rules applied at the root of T .

For example, if ϕ = f enak → t ⇐ Π and T = DFI(f enak → t ⇐ Π , [T1, . . . ,Tn,Ts]) for some c-fact
( f tn → s⇐Π) ∈ I such that Ti : I `̀D ei → ti ⇐Π with ‖Ti‖< ‖T‖ (1≤ i≤ n) and Ts : I `̀D sak → t ⇐Π
with ‖Ts‖< ‖T‖, by induction hypothesis we obtain T ′i : clD (Ii) `̀D ei → ti ⇐Π for some finite subset Ii ⊆ I
(1≤ i≤ n) and T ′s : clD (Is) `̀D sak → t ⇐ Π for some finite subset Is ⊆ I.

Then, we can define the finite subset I0 =de f
⋃m

i=1 Ii ∪ Is ∪ { f tn → s ⇐ Π}. We note that I0 ⊆ I and
clD (I0) =

⋃m
i=1 clD (Ii) ∪ clD (Is) ∪ clD ({ f tn → s ⇐ Π}). Moreover, we have T ′i : clD (I0) `̀D ei → ti ⇐ Π

(1≤ i≤ n), T ′s : clD (I0) `̀D sak → t ⇐ Π and ( f tn → s⇐Π)∈ clD (I0). Hence, T ′ =de f DFclD (I0)(f enak →
t ⇐Π , [T ′1 , . . . ,T ′n ,T ′s ]).

(2) Extension Property. Assume a given proof tree T for I `̀D ϕ . Reasoning by induction on ‖T‖, we prove
the existence of a proof tree T ′ for I′ `̀D ϕ .

First, if T is an easy proof tree then the property holds trivially because T : I `̀D ϕ is a derivation from
the trivial c-interpretation clD ( /0). Therefore, T and T ′ are the same easy proof tree for clD ( /0) `̀D ϕ , and of
course, for I′ `̀D ϕ .

In other case, using the induction hypothesis and the fact that I ⊆ I′ if I is necessary in the derivation, the
property is obvious for all the rest of inference rules applied at the root of T .

For example, if ϕ = f enak → t ⇐ Π and T = DFI(f enak → t ⇐ Π , [T1, . . . ,Tn,Ts]) for some c-fact
( f tn → s⇐Π) ∈ I s. t. Ti : I `̀D ei → ti ⇐Π with ‖Ti‖< ‖T‖ (1≤ i≤ n) and Ts : I `̀D sak → t ⇐Π with
‖Ts‖< ‖T‖, by induction hypothesis we obtain T ′i : I′ `̀D ei → ti ⇐Π (1≤ i≤ n) and T ′s : I′ `̀D sak → t ⇐ Π .

Moreover, since I⊆ I′, we also have ( f tn → s⇐Π)∈ I′. Hence, T ′ =de f DFI′ (f enak → t ⇐Π , [T ′1 , . . . ,T ′n ,

T ′s ]), which verifies T ′ : I′ `̀D ϕ .

(3) Approximation Property. In case that SolD (Π) = /0, Π |=D e w t is trivially true and T : `̀D e→ t ⇐ Π
with just one TI inference. In the rest of this proof we can assume SolD (Π) 6= /0 and reason by induction on
the syntactic size of e. We distinguish cases for t:

– t =⊥. In this case, Π |=D e w ⊥ is trivially true and T : `̀D e→ ⊥⇐ Π with just one TI inference.

– t = u ∈ U . We consider several subcases for e. If e = u then Π |=D u w u is true and T : `̀D u→ u⇐ Π
with just one RR inference. If e = X ∈ V and Π |=D X w u then T : `̀D X → u⇐ Π with just one SP
inference, and if Π 2D X w u then 1D X → u ⇐ Π (since no inference rule is applicable).
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Finally, if e is neither u nor a variable then Π 2D e w u. Assume a proof tree T : `̀D e → u ⇐ Π
(if there is no proof tree, then we are done). Since the c-interpretation is clD ( /0) and e 6= u, e /∈ V , the
inference rule applied at the root of T must be either PF or AC. In either case, T is not easy.

– t = X ∈ V . We consider several subcases for e. If e = X then Π |=D X w X and T : `̀D X → X ⇐ Π
with just one RR inference. If e is a pattern s 6= X and Π |=D s w X then T : `̀D s→ X ⇐ Π with just
one SP inference, and if Π 2D s w X then 1D s → X ⇐ Π (since no inference rule is applicable).

Finally, if e is not a pattern, we consider any µ ∈ SolD (Π) such that Xµ is a total pattern. Then
eµ w Xµ is not true and therefore Π 2D e w X . Assume a proof tree T : `̀D e → X ⇐ Π (if there is
no proof tree, then we are done). Since the c-interpretation is clD ( /0) and e is not a pattern, the inference
rule applied at the root of T must be IR, PF or AC. In the last two cases, T is not easy.

In the first case, we can assume that e = hem is a rigid and passive expression but not a pattern.
Hence T = IR(hem → X ⇐ Π , [T1, . . . ,Tm]), and for each 1 ≤ i ≤ m, Ti : `̀D ei → ti ⇐ Π such that
Π |=D htm w X . Then, for some 1 ≤ i ≤ m, Π 2D ei w ti. Otherwise we would have Π |=D ei w ti
for all 1 ≤ i ≤ m, and then Π |=D hem w htm and Π |=D hem w X , which is not the case. Fix any
1 ≤ i ≤ m such that Π 2D ei w ti. By induction hypothesis (note that the size of ei is smaller than the
size of hem), Ti is not an easy proof tree. Therefore, T is not easy either.

– t = htm with t1, . . . , tm patterns. We consider again several subcases for e. If e = X ∈ V and Π |=D X w
htm then T : `̀D X → htm ⇐ Π with just one SP inference, and if Π 2D X w htm then 1D X →
htm ⇐ Π (since no inference rule is applicable).

If e = hem and Π |=D hem w htm then Π |=D ei w ti for all 1 ≤ i ≤ m. Hence, by induction hy-
pothesis (the size of ei is smaller than the size of hem), `̀D ei → ti ⇐ Π with an easy proof tree Ti for
all 1 ≤ i ≤ m and T : `̀D hem → htm ⇐ Π with T = DC(hem → htm ⇐ Π , [T1, . . . ,Tm]) is an easy
proof true. Moreover, if Π 2D hem w htm then Π 2D ei w ti for some 1≤ i≤ m. Hence, by induction
hypothesis, there is some 1 ≤ i ≤ m such that no easy proof tree Ti for `̀D ei → ti ⇐ Π exists. There-
fore, no easy proof tree T exists for `̀D hem → htm ⇐ Π (DC doesn’t work and no other inference rule
applies).

Finally, if e is neither a variable nor of the form hem then we consider any total µ ∈ SolD (Π). Clearly
eµ w (htm)µ is not true. Hence, Π 2D e w htm. If 1D e → htm ⇐ Π we are done. If there is some
proof tree T : `̀D e → htm ⇐ Π , the inference rule applied at the root must be either PF or AC (DFI
cannot be used with the trivial c-interpretation clD ( /0)). In any case, T is not easy.

(4) Primitive c-atoms. The ”only if” part. By initial hypothesis, a proof tree T for I `̀D ptn →! t ⇐ Π must
have the form T = AC(ptn →! t ⇐ Π , [T1, . . . ,Tn]), where Π |=D pt ′n →! t for some t ′1, . . . , t

′
n ∈ Pat⊥(U )

and Ti : I `̀D ti → t ′i ⇐ Π (1 ≤ i ≤ n) are easy proof trees. Moreover, Π |=D ti w t ′i (1 ≤ i ≤ n) follows
using the Approximation Property, and then Π |=D ptn →! t.

Now, the ”if” part. Since Π |=D ptn →! t by initial hypothesis and Ti : `̀D ti → ti ⇐ Π are easy proof
trees for all 1 ≤ i ≤ n using the Approximation Property, we can build a proof tree T =de f AC(ptn →! t ⇐
Π , [T1, . . . ,Tn]) for I `̀D ptn →! t ⇐ Π .

(5) Entailment Property. Assume ϕ <D ϕ ′ and a substitution σ which relates ϕ and ϕ ′ as expected by
the entailment relation (see definition 6). We can also assume SolD (Π ′) 6= /0, otherwise T ′ : I `̀D ϕ ′ with an
easy proof tree T ′ =de f TI(ϕ ′, [ ]) and | T |≥ 0 = | T ′ |. Let T be a given proof tree for I `̀D ϕ . Reasoning by
induction on ‖T‖ we prove the existence of a proof tree T ′ for I `̀D ϕ ′ such that | T |≥| T ′ |. We distinguish
various possible cases:

– T is an easy proof tree and ϕ = e → t ⇐ Π . This covers the cases where T has some of the forms
TI(ϕ, [ ]), RR(ϕ, [ ]), SP(ϕ, [ ]) or DC(ϕ, [ ]). Since T is easy, DFI is not used. Therefore, T : `̀D e →
t ⇐ Π . By the Approximation Property, Π |=D e w t. This implies Πσ |=D eσ w tσ . Since ϕ <D ϕ ′,
we know that ϕ ′ = e′ → t ′ ⇐ Π ′ with Π ′ |=D Πσ , Π ′ |=D e′ w eσ and Π ′ |=D tσ w t ′. We can con-
clude Π ′ |=D e′ w t ′. By the Approximation Property again, there is some easy T ′ : `̀D e′ → t ′ ⇐ Π ′,
and of course, T ′ : I `̀D e′ → t ′ ⇐ Π ′. Since T and T ′ are both easy, | T |= 0≥ 0 =| T ′ |.

– T = DC(hem → htm ⇐ Π , [T1, . . . ,Tm]). In this case, we know ϕ = hem → htm ⇐ Π with Ti : I `̀D

ei → ti ⇐ Π , ‖Ti‖< ‖T‖ (1≤ i≤m) and ϕ ′ = e′ → t ′ ⇐ Π ′ with Π ′ |=D Πσ , Π ′ |=D e′ w (hem)σ ,
Π ′ |=D (htm)σ w t ′.

We can assume that T is not easy; otherwise we could reason as in the previous case. Since T is
not easy, hem is not a pattern. Then it must be the case that e′ = he′m with Π ′ |=D e′i w eiσ for all
1 ≤ i ≤ m (otherwise, any total µ ∈ SolD (Π ′) would be such that e′µ w (hem)σ µ is not true). More-
over, Π ′ |=D (htm)σ w t ′ and SolD (Π ′) 6= /0 leave only two possible cases for t ′.
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First, t ′ = ht ′m with Π ′ |=D tiσ w t ′i for all 1 ≤ i ≤ m. In this case, for each 1 ≤ i ≤ m we have
(ei → ti ⇐ Π) <D (e′i → t ′i ⇐ Π ′) because Π ′ |=D Πσ , Π ′ |=D e′i w eiσ , Π ′ |=D tiσ w t ′i . By
induction hypothesis, we can assume proof trees T ′i : I `̀D e′i → t ′i ⇐ Π ′ with | Ti |≥| T ′i | (1≤ i≤ m).
Therefore, T ′ =de f DC(he′m → ht ′m ⇐ Π ′, [T ′1 , . . . ,T ′m]) verifies that T ′ : I `̀D he′m → ht ′m ⇐ Π ′
and | T |= ∑m

i=1 | Ti | ≥ ∑m
i=1 | T ′i | = | T ′ |.

Second, if t ′ = X ∈ V with Π ′ |=D (htm)σ w X . In this case, for each 1≤ i≤m we have (ei → ti ⇐
Π) <D (e′i → tiσ ⇐ Π ′) because Π ′ |=D Πσ , Π ′ |=D e′i w eiσ , Π ′ |=D tiσ w tiσ . By induction
hypothesis, we can assume proof trees T ′i : I `̀D e′i → tiσ ⇐ Π ′ with | Ti |≥| T ′i | (1 ≤ i ≤ m). Since
Π ′ |=D (htm)σ w X , we can build the proof tree T ′ =de f IR(he′m → X ⇐ Π ′, [T ′1 , . . . ,T ′m]), which
verifies T ′ : I `̀D he′m → X ⇐ Π ′ and | T |= ∑m

i=1 | Ti | ≥ ∑m
i=1 | T ′i | = | T ′ |.

– T = IR(hem → X ⇐ Π , [T1, . . . ,Tm]). In this case, we know ϕ = hem → X ⇐ Π with hem a rigid
and passive expression but not a pattern, Π |=D htm w X (and hence Πσ |=D (htm)σ w Xσ ), Ti :
I `̀D ei → ti ⇐ Π , ‖Ti‖ < ‖T‖ (1 ≤ i ≤ m), and ϕ ′ = e′ → t ′ ⇐ Π ′ with Π ′ |=D Πσ (and hence
Π ′ |=D (htm)σ w Xσ ), Π ′ |=D e′ w (hem)σ , Π ′ |=D Xσ w t ′ (and hence also Π ′ |=D (htm)σ w t ′).
Now we can reason similarly to the previous case.

– T = DFI(f enak → t ⇐ Π , [T1, . . . ,Tn,Ts]). Assume k > 0 (the case k = 0 is analogous and easier). In this
case, we know ϕ = f enak → t ⇐ Π with t 6=⊥, and there are some c-fact ( f tn → s ⇐ Π) ∈ I and some
partial pattern s 6=⊥ such that Ti : I `̀D ei → ti ⇐ Π , ‖Ti‖< ‖T‖ (1≤ i≤ n) and Ts : I `̀D sak → t ⇐ Π ,
‖Ts‖< ‖T‖.

Since ϕ <D ϕ ′, we know ϕ ′ = e′ → t ′ ⇐ Π ′ with Π ′ |=D Πσ , Π ′ |=D e′ w ( f enak)σ , Π ′ |=D

tσ w t ′ and t ′ 6=⊥ (if t ′ =⊥ then T ′ consists of just one TI step and | T |> 0 = | T ′ |). From Π ′ |=D e′ w
( f enak)σ , it follows that e′ = f e′na′k with Π ′ |=D e′i w eiσ for all 1≤ i≤ n and Π ′ |=D a′j w a jσ for
all 1≤ j ≤ k (otherwise, for any total µ ∈ SolD (Π ′) we would have e′µ w ( f enak)σ µ not true).

Using the former conditions, it is easy to check that (ei → ti ⇐ Π) <D (e′i → tiσ ⇐ Π ′) for all
1≤ i≤ n and (sak → t ⇐ Π) <D (sσ a′k → t ′ ⇐ Π ′). By induction hypothesis (applied to Ti, Ts), we
get T ′i : I `̀D e′i → tiσ ⇐ Π ′, | Ti |≥| T ′i | (1≤ i≤ n) and T ′s : I `̀D sσ a′k → t ′⇐ Π ′, | Ts |≥| T ′s |.

Since ( f tn → s ⇐ Π) ∈ I and ( f tn → s ⇐ Π) <D ( f tnσ → sσ ⇐ Π ′), it implies that ( f tnσ →
sσ ⇐ Π ′) ∈ I by definition of c-interpretation, with sσ 6=⊥ a partial pattern (if sσ =⊥ then the pattern s
must be a variable and the deduction is not possible in the semantic calculus because I `̀D sak → t ⇐ Π
with k > 0 and t 6= ⊥). We can build the proof tree T ′ =de f DFI(f e′na′k → t ′ ⇐ Π ′, [T ′1 , . . . ,T ′n ,T ′s ]),
which verifies T ′ : I `̀D f e′na′k → t ′ ⇐ Π ′ and | T |= 1 + ∑m

i=1 | Ti |+ | Ts |≥ 1 + ∑m
i=1 | T ′i |+ | T ′s |

= | T ′ |.

– T = PF(pen → t ⇐ Π , [T1, . . . ,Tn]). In this case, we know ϕ = pen → t ⇐ Π and Ti : I `̀D ei → ti ⇐
Π , ‖Ti‖< ‖T‖ (1≤ i≤ n) with Π |=D ptn → t.

Since ϕ <D ϕ ′ and SolD (Π ′) 6= /0, it must be the case that ϕ ′ = pe′n → t ′ ⇐ Π ′ with Π ′ |=D Πσ ,
Π ′ |=D e′i w eiσ for all 1 ≤ i ≤ n, Π ′ |=D tσ w t ′. From the previous conditions, we can deduce
Πσ |=D (ptn)σ → tσ and hence also Π ′ |=D (ptn)σ → t ′. We also observe that (ei → ti ⇐ Π) <D

(e′i → tiσ ⇐ Π ′) (1≤ i≤ n). By induction hypothesis, we obtain proof trees T ′i : I `̀D e′i → tiσ ⇐ Π ′,
| Ti |≥| T ′i | (1≤ i≤ n).

Since Π ′ |=D (ptn)σ → t ′, we can build the proof tree T ′ =de f PF(pe′n → t ′ ⇐ Π ′, [T ′1 , . . . ,T ′n ]),
which verifies T ′ : I `̀D pe′n → t ′ ⇐ Π ′ with | T |= 1 + ∑m

i=1 | Ti | ≥ 1 + ∑m
i=1 | T ′i | = | T ′ |.

– T = AC(pen →! t ⇐ Π , [T1, . . . ,Tn]). Similar to the case of the rule PF.

(6) Conservation Property. Let ϕ be a c-fact of the form f tn → t ⇐ Π . We prove first the ”if” part. Taking
into account that Ti : I `̀D ti → ti ⇐ Π are easy proof trees for all 1≤ i≤ n by the Approximation Property
(from the definition of the approximation ordering, ti w ti always holds for all ti ∈ Pat⊥(U ) and therefore
Π |=D ti w ti also holds for all 1 ≤ i ≤ n), we can also suppose that t 6= ⊥ (the case I `̀D f tn → ⊥⇐ Π
is trivial by TI) and build directly the deduction DFI(f tn → t ⇐ Π , [T1, . . . ,Tn]) using the initial hypothesis
( f tn → t ⇐ Π) ∈ I.

The ”only if” part. First, if we suppose that t = ⊥ or SolD (Π) = /0, directly ( f tn → t ⇐ Π) ∈ I by
definition of c-interpretation. Otherwise, by initial hypothesis T : I `̀D f tn → t ⇐ Π must have the form
T = DFI(f tn → t ⇐ Π , [T1, . . . ,Tn]), where Ti : I `̀D ti → t ′i ⇐ Π (1≤ i≤ n) are easy proof trees such that
( f t ′n → t ⇐ Π) ∈ I with t ′1, . . . , t

′
n ∈ Pat⊥(U ). In this setting, we obtain Π |=D t ′i v ti for all 1 ≤ i ≤ n

using the Approximation Property. It follows that ( f t ′n → t ⇐ Π) <D ( f tn → t ⇐ Π) and consequently
( f tn → t ⇐ Π) ∈ I because I is closed under entailment by definition of c-interpretation.
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(7) Grounding Property. The ”if” part follows from the Extension Property, since [I]D ⊆ I. In order to prove
the ”only if” part, we introduce two auxiliary notions:

– A c-statement ϕ = e→? t ⇐Π is called c-ground iff Π is ground. In particular, every ground c-statement
is c-ground.

– The least grounding of a c-ground c-statement ϕ = e→? t ⇐ Π is the ground c-statement ϕ⊥ = e⊥→?

t⊥ ⇐ Π obtained from ϕ by substituting ⊥ in place of all the variable occurrences.

Obviously, the ”only if” part follows from the more general property

GP For any c-ground statement ϕ , T : I `̀D ϕ implies T ′ : [I]D `̀D ϕ⊥ with proof tree T ′ such that ‖T ′‖ ≤
‖T‖.

Let us prove GP by induction on ‖T‖. We distinguish cases according to the inference rule applied at the root
of T . In the rest of this proof, the notation assumed for ϕ in each case is the same one used in the inference
rules given in Definition 8.

TI In this case, ϕ⊥ is also a trivial c-statement and we can take T ′ = TI(ϕ⊥, [ ]).
RR If t ∈ V , then ϕ⊥ is a trivial c-statement and we can take T ′ = TI(ϕ⊥, [ ]). Otherwise t ∈U , ϕ⊥ = ϕ ,

and we can take T ′ = T .
SP If t ∈ V , then ϕ⊥ is a trivial c-statement and we can take T ′ = TI(ϕ⊥, [ ]). If t /∈ V , then ϕ = X → t ⇐

Π for some X ∈ V , and Π |=D X w t. Since X does not occur in Π , the c-statement ϕ must be trivial
(otherwise we would have Π |=D ⊥ w t, SatD (Π), t /∈ V , t 6=⊥, which is impossible). In this case, ϕ⊥
is also a trivial c-statement and we can take T ′ = TI(ϕ⊥, [ ]).

DC In this case we have T = DC(hem → htm ⇐ Π , [T1, . . . ,Tm]) where Ti : I `̀D ei → ti ⇐ Π for all
1≤ i≤m. By induction hypothesis, there exist ‖T ′i ‖ ≤ ‖Ti‖ such that T ′i : [I]D `̀D e⊥i → t⊥i ⇐ Π for all
1≤ i≤ m. Therefore, T ′ : [I]D `̀D ϕ⊥ with T ′ = DC(he⊥m → ht⊥m ⇐ Π , [T ′1 , . . . ,T ′m]).

IR In this case ϕ⊥ is obviously a trivial c-statement and we can take T ′ = TI(ϕ⊥, [ ]).
DFI Let us assume k > 0 (the proof for the case k = 0 is similar and simpler). In this case T = DFI(f enak →

t ⇐ Π , [T1, . . . ,Tn,Tn+1]) where Ti : I `̀D ei → ti ⇐ Π for all 1 ≤ i ≤ n, Tn+1 : I `̀D sak → t ⇐ Π
and tn, s patterns such that ( f tn → s ⇐ Π) ∈ I. Since I is closed under entailment, in particular under
substitution, we can assume that ( f t⊥n → s⊥ ⇐ Π) ∈ I and hence also ( f t⊥n → s⊥ ⇐ Π) ∈ [I]D ,
since this is a ground c-fact. By induction hypothesis, there exist ‖T ′i ‖ ≤ ‖Ti‖ such that T ′i : [I]D `̀D

e⊥i → t⊥i ⇐ Π for all 1 ≤ i ≤ n, T ′n+1 : [I]D `̀D s⊥ a⊥k → t⊥ ⇐ Π . Therefore, T ′ : [I]D `̀D ϕ⊥ with

T ′ = DFI(f e⊥n a⊥k → t⊥ ⇐ Π , [T ′1 , . . . ,T ′n ,T ′n+1]).
PF In this case, T = PF(pen → t ⇐ Π , [T1, . . . ,Tn]) where Ti : I `̀D ei → ti ⇐ Π for all 1 ≤ i ≤ n and tn

patterns such that Π |=D ptn → t. Since Π is ground, Π |=D ptn → t trivially implies Π |=D pt⊥n →
t⊥. Moreover, by induction hypothesis there exist ‖T ′i ‖ ≤ ‖Ti‖ such that T ′i : [I]D `̀D e⊥i → t⊥i ⇐ Π for
all 1≤ i≤ n. Therefore, T ′ : [I]D `̀D ϕ⊥ with T ′ = PF(pe⊥n → t⊥ ⇐ Π , [T ′1 , . . . ,T ′n ]).

AC In this case T = AC(pen →! t ⇐ Π , [T1, . . . ,Tn]) where Ti : I `̀D ei → ti ⇐ Π for all 1 ≤ i ≤ n and tn
patterns such that Π |=D ptn →! t. By induction hypothesis there exist ‖T ′i ‖ ≤ ‖Ti‖ s. t. T ′i : [I]D `̀D

e⊥i → t⊥i ⇐ Π for all 1≤ i≤ n. Since Π is ground, Π |=D ptn →! t trivially implies Π |=D pt⊥n →! t⊥.
This can be the case only if t⊥ is total. Therefore, t must be ground, t⊥ = t, and T ′ : [I]D `̀D ϕ⊥ with
T ′ = AC(pe⊥n →! t ⇐ Π , [T ′1 , . . . ,T ′n ]).

Proof of Proposition 3

Proof We prove only the properties of the strong interpretation transformer STP ; the corresponding proper-
ties of WTP can be proved similarly.

First we note that STP : ID → ID is a well defined mapping, because for each I ∈ ID the image STP (I)
is defined as clD (preSTP (I)), and hence a c-interpretation.

A careful inspection of Definition 11 reveals that I |=s
D P iff preSTP (I) ⊆ I. On the other hand,

preSTP (I) ⊆ I iff STP (I) = clD (preSTP (I)) ⊆ I, because I is closed under clD . Therefore, I |=s
D P iff

STP (I)⊆ I, i.e., the strong models of P are the pre-fixpoints of STP .
Finally, the fact that STP is continuous follows from the two items below:

1. STP is monotonic:

Assume I, J ∈ ID such that I⊆ J. Then, preSTP (I)⊆ preSTP (J) is an easy consequence of the Exten-
sion Property from Lemma 1, and we can conclude STP (I)⊆ STP (J).
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2. STP preserves the lubs of non-empty directed sets:

Assuming a non-empty directed set I ⊆ ID , we must prove STP (tI) = tSTP (I). The inclusion
STP (tI) ⊇ tSTP (I) holds because STP is monotonic. Since I is not empty, the opposite inclu-
sion can be rewritten as STP (

⋃
I) ⊆ ⋃

STP (I), which is obviously a consequence of preSTP (
⋃

I) ⊆⋃
STP (I). In order to prove this last inclusion, assume an arbitrarily fixed c-fact ϕ belonging to the

set preSTP (
⋃

I). Because of the way this set is defined, ϕ becomes its member due to the existence
of finitely many other c-statements ϕi such that

⋃
I `̀D ϕi. Therefore, by the Compactness Property in

Lemma 1, there must be some finite set of c-facts I0 ⊆
⋃

I such that ϕ ∈ preSTP (clD (I0)). Since I is di-
rected, there must be also some I ∈ I such that I0 ⊆ I. Since I is closed under clD , we obtain clD (I0)⊆ I,
and therefore (using the Extension Property from Lemma 1) ϕ ∈ preSTP (I)⊆⋃

STP (I).

Proof of Proposition 4

Proof We prove the two inclusions (i) and (ii) below:
1. WTP ([I]D )⊆ [STP (I)]D

Since [STP (I)]D is closed under clD , it is sufficient to prove that preWTP ([I]D )⊆ [STP (I)]D . Assume
any ϕ ′ ∈ preWTP ([I]D ). Because of Definition 13 (2.), we know that ϕ ′ = f t ′n → t ′, where t ′n, t ′ are
ground and there exist

(1) ( f tn → r ⇐ P2∆) ∈ P , η ∈ GSub⊥(U )
such that

(2) ( f tn → r ⇐ P2∆)η is ground
(3) tnη = t ′n
(4) [I]D `̀D (P2∆)η , [I]D `̀D rη → t ′

By the Extension Property from Lemma 1, condition (4) implies
(5) I `̀D (P2∆)η , I `̀D rη → t ′

From conditions (1), (3) and (5) and Definition 13 (1.), we clearly obtain that ϕ ′ ∈ preSTP (I)⊆ STP (I).
Since ϕ ′ is ground, we can infer that ϕ ′ ∈ gkD (STP (I))⊆ [STP (I)]D as desired.

2. [STP (I)]D ⊆WTP ([I]D )

Since WTP ([I]D ) is closed under clD , it is sufficient to prove that all the non-trivial c-facts belonging to
gkD (STP (I)) also belong to WTP ([I]D ). Assume any non-trivial ground c-fact ϕ ′ = f t ′n → t ′ ⇐ Π ′ ∈
STP (I). By Definition 13 (1.), there exist

(6) ( f tn → r ⇐ P2∆) ∈ P, θ ∈ Sub⊥(U )
(7) Π ⊆ PCon⊥(D), t ∈ Pat⊥(U )

such that
(8) I `̀D (P2∆)θ ⇐ Π , I `̀D rθ → t ⇐ Π
(9) f tnθ → t ⇐ Π <D f t ′n → t ′ ⇐ Π ′

Because of condition (9) and the definition of D-entailment (see Definition 6), there is some σ ∈
Sub⊥(U ) such that

(10) Π ′ |=D Πσ , Π ′ |=D t ′n w tnθσ , Π ′ |=D t ′ v tσ
Since ϕ ′ is non-trivial and ground, we know that Π ′ is ground and D-satisfiable, and thus D-valid. For
this reason, condition (10) can be rewritten as follows:

(11) |=D Πσ , |=D t ′n w tnθσ , |=D t ′ v tσ
From the first condition in (11) and the definition of D-entailment we get:

(12) (P2∆)θ ⇐ Π <D (P2∆)θσ , rθ → t ⇐ Π <D rθσ → tσ
From the conditions (8) and (12) and the Entailment Property from Lemma 1, we can infer

(13) I `̀D (P2∆)θσ , I `̀D rθσ → tσ
Consider now η ∈ GSub⊥(U ) chosen in such a way that

(14) (P2∆)η = ((P2∆)θσ)⊥, rη → tη = (rθσ)⊥ → (tσ)⊥

where the notation (. . .)⊥ indicates substitution of⊥ in place of all variable occurrences. From (13), (14)
and the generalized Grounding Property GP used in the proof of Lemma 1 (7), we get:

(15) [I]D `̀D (P2∆)η , [I]D `̀D rη → tη
From conditions (6) and (15) and Definition 13 (2.), we obtain

(16) ( f tnη → tη) ∈ preWTP ([I]D )
On the other hand, from the second and third conditions in (11), the choice of η and the fact that t ′n and
t ′ are ground, we get:

(17) |=D t ′n w tnη , |=D t ′ v tη
Since Π ′ is ground and D-valid, condition (17) ensure that

(18) ( f tnη → tη) <D ( f t ′n → t ′ ⇐ Π ′) = ϕ ′
From conditions (16) and (18) and the Entailment Property from Lemma 1, we finally conclude that
ϕ ′ ∈ clD (preWTP ([I]D )) = WTP ([I]D )
as desired.
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B.2 Proofs of the main results from section 4

Proof of Lemma 2

Proof The proof of this lemma is similar to that of Lemma 1.
In (1) the property holds trivially because we only use almost one program rule instance of P in each step

of the derivation.
(2) is obvious using the fact that P ⊆P ′ if some program rule instance of P is necessary in the derivation.
(3) and (4) are proved in the same way as the analogous properties of the semantic calculus.
Finally, in (5) we can use again induction on ‖T‖ to prove the existence of the proof tree T ′ for P `D ϕ ′

such that | T |≥| T ′ |. Now, the only different case is in the application of the rule DFP .
If T = DFP (f enak → t ⇐ Π , [T1, . . . ,Tn,T ,Tr,Ts]) and k > 0 (the case k = 0 is analogous and easier), we

know ϕ = f enak → t ⇐ Π with t 6= ⊥, and there are some program rule instance ( f tn → r ⇐ P2∆) ∈
[P]⊥ and some partial pattern s 6=⊥ such that Ti : P `D ei → ti ⇐ Π , ‖Ti‖< ‖T‖ (1≤ i≤ n), T : P `D

P2∆ ⇐ Π , ‖T‖< ‖T‖, Tr : P `D r → s⇐ Π , ‖Tr‖< ‖T‖ and Ts : P `D sak → t ⇐ Π , ‖Ts‖< ‖T‖.
Since ϕ <D ϕ ′, we know ϕ ′ = e′ → t ′ ⇐ Π ′ with Π ′ |=D Πσ , Π ′ |=D e′ w ( f enak)σ , Π ′ |=D tσ w t ′

and t ′ 6=⊥ (if t ′ =⊥ then T ′ consists of just one TI step and | T |> 0 = | T ′ |).
From Π ′ |=D e′ w ( f enak)σ , it follows that e′ = f e′na′k with Π ′ |=D e′i w eiσ for all 1 ≤ i ≤ n and

Π ′ |=D a′j w a jσ for all 1≤ j≤ k (otherwise, for any total µ ∈ SolD (Π ′) we would have e′µ w ( f enak)σ µ
not true).

Using the former conditions, it is easy to check that (ei → ti ⇐ Π) <D (e′i → tiσ ⇐ Π ′) for all 1≤ i≤ n,
(P2∆ ⇐ Π) <D ((P2∆)σ ⇐ Π ′), (r → s ⇐ Π) <D (rσ → sσ ⇐ Π ′) and (sak → t ⇐ Π) <D

(sσ a′k → t ′ ⇐ Π ′).
By induction hypothesis (applied to Ti, T , Tr, Ts), we get T ′i : P `D e′i → tiσ ⇐ Π ′, | Ti |≥| T ′i | (1 ≤

i≤ n), T ′ : P `D (P2∆)σ ⇐ Π ′, | T |≥| T ′ |, T ′r : P `D rσ → sσ ⇐ Π ′, | Tr |≥| T ′r |, and T ′s : P `D

sσ a′k → t ′⇐ Π ′, | Ts |≥| T ′s |.
Since ( f tn → r ⇐ P2∆)σ ∈ [P]⊥ and sσ 6=⊥ is a partial pattern (if sσ =⊥ then the pattern s must be a

variable and the deduction is not possible in the constrained rewriting calculus because P `D sak → t ⇐ Π
with k > 0 and t 6=⊥), we can build the proof tree T ′ =de f DFP (f e′na′k → t ′ ⇐ Π ′, [T ′1 , . . . ,T ′n ,T ′,T ′r ,T ′s ]),
which verifies T ′ : P `D f e′na′k → t ′ ⇐ Π ′ and | T |= 1 + ∑m

i=1 | Ti |+ | T | + | Tr | + | Ts |≥ 1 +
∑m

i=1 | T ′i |+ | T ′ | + | T ′r | + | T ′s |= | T ′ |.

Proof of Theorem 3

Proof The stated result follows from the following three implications:

1. P `D ϕ ⇒ P |=s
D ϕ :

Assume T : P `D ϕ . Consider any strong model I |=s P . We prove I `̀D ϕ reasoning by induction on
‖T‖. The base cases correspond to T = RL(ϕ, [ ]), where RL ∈ {TI, RR, SP}. These are trivial since
the same tree T verifies T : I `̀D ϕ .
The inductive cases corresponding to T = RL(ϕ, [T1, . . . ,Tn]), where RL ∈ {DC, IR, PF, AC}, are also
straightforward, simply noticing that the same rule RL applies in CRWL(D), and using the induction
hypothesis for T1, . . . ,Tn.
The interesting case is that of the rule DFP applied at the root step. We consider the first variant of the
rule DFP (the reasoning for the second one is similar).
The tree T would have the form

T = DFP ( f en → t ⇐ Π , [T1, . . . ,Tn,T ,Tr])

with Ti : P `D ei → ti ⇐ Π , T : P `D P2∆ ⇐ Π , Tr : P `D r → t ⇐ Π , where f ∈ DFn,
( f tn → r ⇐ P2∆) ∈ [P]⊥.
By the induction hypothesis applied to T ,Tr , there must exist T ′,T ′r such that T ′ : I `̀D P2∆ ⇐ Π and
T ′r : I `̀D r→ t ⇐Π . This, together with the fact that I is a strong model of P , ensures that ( f tn → t ⇐
Π) ∈ I. Combining this with the rest of the induction hypothesis which ensures the existence of trees
Ti : I `̀D ei → ti ⇐Π , for i = 1 . . .n, we can build the tree T ′ = DFI( f en → t ⇐ Π , [T ′1 , . . . ,T ′n ,T ′,T ′r ]),
which proves I `̀D f en → t.

2. P |=s
D ϕ ⇒ SP `̀D ϕ:

This holds simply because SP |=s P , as proved in Theorem 1.
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3. SP `̀D ϕ ⇒ P `D ϕ:
Assume SP `̀D ϕ , where SP =

⋃
k∈N STP ↑k (⊥⊥). Due to the fact that

⋃
k∈N STP ↑k (⊥⊥) `̀D ϕ must be

proved by a finite proof tree, and taking into account that STP ↑k (⊥⊥) grows with k, it is easy to see that
there must exist k ∈ N such that STP ↑k (⊥⊥) `̀D ϕ . Therefore, it suffices to prove the following:

For all k ∈ N,STP ↑k (⊥⊥) `̀D ϕ ⇒P `D ϕ

We prove that by induction on k.

k = 0 :
Assume STP ↑0 (⊥⊥) `̀D ϕ . We prove that P `D ϕ by induction on the structure of a tree T with
T : STP ↑0 (⊥⊥) `̀D ϕ . We distinguish cases according to the rule at the root of T :
TI, RR or SP: trivial, since the same rule in CRWL(D) proves P `D ϕ .
DC, IR, PF or AC: straightforward using the induction hypothesis, since the same rule applies also in
CRWL(D).
DFI: This rule is in fact not applicable. Otherwise, the proof tree T would have the form T = DFI( f en →
t ⇐ Π , [T1, . . . ,Tn]), with Ti : P `D ei → ti ⇐ Π , and where f ∈ DFn, ( f tn → t ⇐ Π) ∈ STP ↑0 (⊥⊥).
But STP ↑0 (⊥⊥) =⊥⊥, and therefore ( f tn → t ⇐ Π) is a trivial fact, which implies that ( f en → t ⇐ Π)
is also trivial, but then the rule TI could have been applied.

A similar reasoning holds for the second case of the DFI rule.

k 7→ k +1:
Assume STP ↑(k+1) (⊥⊥) `̀D ϕ . The induction hypothesis says that STP ↑k (⊥⊥) `̀D ψ ⇒P `D ψ,∀ψ .
As before, we prove P `D ϕ by induction on the structure of the proof tree for STP ↑(k+1) (⊥⊥) `̀D ϕ .
Also as before, the interesting case is when the root step consists of an application of DFI, that is, when
T = DFI( f en → t ⇐ Π , [T1, . . . ,Tn]), with Ti : P `D ei → ti ⇐ Π , and f ∈ DFn, ( f tn → t ⇐ Π) ∈
STP ↑k+1 (⊥⊥).

Now, since ( f tn → t ⇐ Π) ∈ STP ↑(k+1) (⊥⊥), it follows, from the definition of STP ↑(k+1) (⊥⊥), that
there must exist a rule instance ( f tn → r ⇐ P2∆) ∈ [P]⊥ such that r → t ⇐ Π ∈ STP ↑k (⊥⊥) and
P2∆ ⇐ Π ∈ STP ↑k (⊥⊥). Then, by the induction (on k) hypothesis, we have P `D r → t ⇐ Π and
P `D P2∆ ⇐ Π . This, together with the (proof tree) induction hypothesis P `D ei → ti ⇐ Π , for
i = 1, . . . ,n, allows to build, using DFP , a derivation in CRWL(D) for P `D f en → t ⇐Π .
A similar reasoning holds for the second case of the DFI rule.

Proof of Theorem 4

Proof “(a) ⇒ (b)” holds for any c-statement ϕ , ground or not, since:
P `D ϕ

⇒ (Entailment Property from Lemma 2)
P `D ϕη for all η ∈ GSub⊥(U ) such that ϕη is ground

⇒ (Canonicity Property from Theorem 3)
SP `̀D ϕη for all η ∈ GSub⊥(U ) such that ϕη is ground

⇒ (Grounding Property from Lemma 1)
[SP ]D `̀D ϕη for all η ∈ GSub⊥(U ) such that ϕη is ground

⇒ (Theorem 2)
WP `̀D ϕη for all η ∈ GSub⊥(U ) such that ϕη is ground

⇒ (Theorem 1 (2.), Extension Property from Lemma 1)
I `̀D ϕη for all I |=w

D P and all η ∈ GSub⊥(U ) such that ϕη is ground
⇒ (Definition 12 (2.))

P |=w
D ϕ

“(b) ⇒ (c)” holds for any ground c-statement ϕ , because WP is a weak model of P , as shown in Theo-
rem 1.

“(c) ⇒ (a)” also holds for every ground c-statement ϕ:
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WP `̀D ϕ
⇒ (Theorem 2)

[SP ]D `̀D ϕ
⇒ (Extension Property from Lemma 1)

SP `̀D ϕ
⇒ (Canonicity Property from Theorem 3)

P `D ϕ
Soundness holds because we have proved the implication “(a) ⇒ (b)” for arbitrary ϕ . Ground Com-

pleteness is an immediate consequence of the two implications “(b) ⇒ (c)” and “(c) ⇒ (a)”. The restriction
to ground c-statements is necessary, as shown by the CFLP(R)-program:

P =de f {notZeroX → true ⇐ X > 0,
notZeroX → true ⇐ X < 0}

and the c-fact ϕ =de f notZeroX → true ⇐ X /=R 0. For this particular choice of P and ϕ we get:

– For every weak model I |=w
R P , it is easy to see that (notZerox → true) ∈ I for all x ∈ R\{0}, which

implies I |=w
R ϕ . Therefore, P |=w

R ϕ .
– On the other hand, P 6`R ϕ , because the proof (if existing) should use the CRWL(R)-rule DFP together

with some program rule, and neither of the two rules in P supports such an inference.

Finally, Ground Canonicity just follows from the equivalence between (c) and (a) and the Conservation
Property from Lemma 1, reasoning as in the proof of Theorem 3. Note that WP includes also some non-
ground c-facts, because all c-interpretations over D are required to be closed under clD . Nevertheless, for the
purposes of weak semantics, the ground c-facts give all the relevant information.
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82. Möller B.: On the Algebraic Specification of Infinite Objects - Ordered and Continuous Models of Alge-

braic Types. Acta Informatica 22, pp. 537–578, (1985)
83. Mück A., Streicher T.: A Tiny Constrain Functional Logic Language and Its Continuation Semantics.

Proc. European Symp. on Programming (ESOP’94), Springer LNCS 788, pp. 439-453, (1994)
84. Palomino Tarjuelo M.: Comparing Meseguer’s Rewriting Logic with the Logic CRWL. Electronic Notes

in Theoretical Computer Science 64, 22 pages, (2002)
85. Palomino Tarjuelo M.: A Comparison between two logical formalism for rewriting. In Falaschi M.,

Maher M. (eds.): Multiparadigm Languages and Constraint Programming (special issue). To appear in
Theory and Practice of Logic Programming.

86. Robinson J.A., Sibert E.E.: LOGLISP: Motivation, Design and Implementation. In Clark K.L.,
Tärnlund S.A (eds.): Logic Programming, Academic Press, pp. 299–313, (1982)

87. Rodrı́guez-Artalejo M.: Functional and Constraint Logic Programming. In Comon H., Marché C.,
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