
A Lightweight Combination of Semantics for
Non-deterministic Functions ?

F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid, Spain

fraguas@sip.ucm.es, jrodrigu@fdi.ucm.es, jaime@sip.ucm.es

Abstract. The use of non-deterministic functions is a distinctive feature
of modern functional logic languages. The semantics commonly adopted
is call-time choice, a notion that at the operational level is related to the
sharing mechanism of lazy evaluation in functional languages. However,
there are situations where run-time choice, closer to ordinary rewriting, is
more appropriate. In this paper we propose an extension of existing call-
time choice based languages, to provide support for run-time choice in
localized parts of a program. The extension is remarkably simple at three
relevant levels: syntax, formal operational calculi and implementation,
which is based on the system Toy.

1 Introduction

Non-strict non-deterministic functions are a distinctive feature of modern func-
tional logic languages (see [5] for a recent survey). It is known that the introduc-
tion of non-determinism in a functional setting gives rise to a variety of semantic
decisions (see e.g. [12]). For term-rewriting based specifications, Hussmann [7]
established a major distinction between call-time choice and run-time choice.
Call-time choice is closely related to call-by-value and, in the case of strict se-
mantics, it is easily implemented by innermost rewriting. In the case of non-strict
semantics, things are more complicated, since the call-by-value view of call-time
choice must include partial values. Operationally, this needs something simi-
lar to the sharing mechanism followed, for efficiency reasons, in (deterministic)
functional languages under lazy evaluation. In contrast, run-time choice does not
share, corresponds rather to call-by-name, and is realized by ordinary rewriting.
For deterministic programs, run-time and call-time are able to produce the same
set of values, but in general the set of values reachable by run-time choice is larger
than that of call-time choice.

Non-deterministic functions with non-strict and call-time choice semantics
were introduced in the functional logic setting with the CRWL framework [4],

? This work has been partially supported by the Spanish projects MERIT-FORMS-
UCM (TIN2005-09207-C03-03), FAST-STAMP (TIN2008-06622-C03-01/TIN) and
Promesas-CAM (S-0505/TIC/0407) .

in which programs are possibly non-confluent and non-terminating constructor-
based term rewriting systems (CTRS). Since then, they are common part of
daily programming in systems like Curry [6] or Toy [11]. Run-time choice has
been rarely [1] considered as a valuable global alternative to call-time choice.

However, there might be parts in a program or individual functions for which
run-time choice could be a better option, and therefore it would be convenient
to have both possibilities (run-time/call-time) at programmer’s disposal. The
following example illustrates the interest of combining both semantics.

Example 1. Modeling grammar rules for string generation can be directly done
by CTRS like the following (non-confluent and non-terminating) one, in which
we assume that texts (terminals) are represented as strings (lists of characters),
that can be concatenated with ++ (defined in a standard way):

letter → ”a” letter → ”z” word → ” ” word → letter++word

Disregarding syntax, this CTRS is a valid program in functional logic systems
like Curry or Toy. The program acts as a non-deterministic generator of the
texts in the language defined by the grammar. Each individual reduction leads
to a string in the language.

The generation of palindromes (of even length, for simplicity) could be done
by the rewrite rules:

palindrome → palAux(word) palAux(X) → X ++ reverse(X)

where reverse is defined in any standard way. It is important to remark that the
definition of palindrome/palAux works fine only if call-time choice is adopted for
non-determinism, meaning operationally that in the (partial) reduction

palindrome → palAux(word) → word ++ reverse(word)

the two occurrences of word created by the rule of palAux must be shared. If
run-time choice (i.e., ordinary rewriting) were used, the two occurrences of word
could follow independent ways, and therefore palindrome could be reduced, for
instance, to ”oops”, which is not a palindrome. Two useful operators to structure
grammar specifications are the alternative ‘|’ and Kleene’s ‘∗’ for repetitions:

X | Y → X X | Y → Y star X → ” ” star X → X++star(X)

With them letter and word could be redefined as follows:

letter → ”a” | ”b” | ... | ”z” word → star(letter)

The annoying fact is that this does not work! At least not under call-time
choice, which implies that this is an uncorrect definition of star in systems like
Curry or Toy. The problem with call-time choice here is that all the occurrences
of letter created by star will be shared and therefore word will only generate
words like aaa, nnnn, . . . , made with repetitions of the same letter. To overcome
this problem, we would like that in the definition of word , the application of

the star operation to the string generator letter could follow a run-time choice
regime, so that each of the two occurrences of letter created in the rewriting
steps

word → star(letter) → letter ++ star(letter)

could evolve independently. In our proposed extension this would be expressed
by writing the definition of word as follows:

word → star(rt(letter))

where rt is a special unary function symbol indicating that its argument (letter
in this case) is not going to be shared in the evaluation of the surrounding
application (star(rt(letter)) in this case).

We remark that in this example neither call-time nor run-time choice are a
good single option as semantics for the whole program. The definition of palin-
drome requires call-time choice, while the use of star in word requires run-time
choice. To the best of our knowledge, no existing implementation for functional
logic programming offers the possibility of combining in the same program both
kind of semantics. This paper addresses that problem at a practical level, aim-
ing at a solution that can be easily realized by modifying existing Prolog-based
functional logic systems. Although our main interest is easiness of implementa-
tion, we provide also formal calculi attempting to reflect at an abstract level the
operational behavior of the extended language. These calculi could be the tech-
nical basis for a thorough investigation of the formal properties of our proposal,
a matter that is out of the scope of this paper.

2 A tiny functional logic language with run-time choice
annotations

We shortly present here a functional logic language with run-time choice anno-
tations. To keep the presentation simple, we consider only a first order untyped
core with the usual first order syntax of term rewriting systems. However, the
implementation described in Sect. 5 extends the existing system Toy, which is a
HO typed system using curried notation.

We consider a signature Σ made of constructor symbols c, d, . . . ∈ CS, func-
tion symbols f, g, . . . ∈ FS, the special unary symbol rt, and a set of vari-
ables X,Y, . . . ∈ V. We sometimes write c ∈ CSn (f ∈ FSn) to denote a con-
structor (function) symbol of arity n. Constructor terms (or c-terms) t, s, . . . ∈
CTerm follow the syntax: t ::= X | c(t1, . . . , tn), and expressions (with run-time
choice annotations) e, . . . ∈ RtExpr follow the syntax: e ::= X | c(e1, . . . , en) |
f(e1, . . . , en) | rt(e). An intermediate set between CTerm and RtExpr is the
set RtCTerm of annotated c-terms RtCTerm 3 t ::= X | c(t1, . . . , tn) | rt(e),
where t1, . . . , tn are also from RtCTerm and e is any expression.

A program is a set of function defining rules, each of the form

f(t1, . . . , tn)→ e

where (t1, . . . , tn) is a linear tuple of c-terms from CTerm, and e is any expres-
sion from RtExpr. We remark that annotated c-terms play no special role in the
syntax of programs, but play an important role in the parameter passing mech-
anism, which informally can be explained as follows: to apply a program rule
f(t1, . . . , tn) → e to a function application f(e1, . . . , en), a matching substitu-
tion θ such that f(t1, . . . , tn)θ ≡ f(e1, . . . , en) must exist, and then f(e1, . . . , en)
reduces to rθ, but following the informal criterion about sharing : the copies of
subexpressions e of f(e1, . . . , en) created in rθ are not shared –i.e. follow run-time
choice– if e is under a rt annotation, and shared –i.e. follow call-time choice–
otherwise. These ideas are formalized in the next section in the form of two
alternative operational calculi.

3 Formal operational calculi

In this section we will try to design some calculi able to express an extension
of the standard call-time choice semantics for FLP [4], to support the primitive
rt for run-time choice evaluation. Our approach to formalize this extension is
based in two main ideas:

• The new calculus will be a modification of the simple rewrite calculus pre-
sented in [9]. As we will have to express run-time evaluation for parts of
the computation, we will need to have partially evaluated expressions at our
disposal. A calculus in the line of those used in [4] would not be a suitable
tool, as it returns only partial values for the expressions, but no intermediate
states of the computation.
• Instead of giving a semantics for annotations rt(e) directly, we will think

about it as a syntactic sugar for the annotation of the function symbols that
appear in e with a rt superscript, indicating that those function symbols will
be treated as a constructor symbol as far sharing and parameter passing is
concerned. Therefore, an expression containing only variables, constructor
symbols and function symbols annotated with rt could be copied freely, thus
getting a run-time behaviour for it, as a function argument. We write FSrt

for the set of function symbols with superscript rt, FS? for FS ∪ FSrt

and f? for function symbols in FS?, i.e., for possibly superscripted function
symbols.

The desugaring of expressions to eliminate the rt primitive transforming it
into rt annotations is performed according to the following definition:

Definition 1 (Desugaring of the rt primitive).

desugar(rt(X)) = X if X ∈ V
desugar(rt(c(e1, . . . , en))) = c(desugar(rt(e1)), . . . , desugar(rt(en))) if c ∈ CS
desugar(rt(f(e1, . . . , en))) = frt(desugar(rt(e1)), . . . , desugar(rt(en))) if f ∈ FS
desugar(rt(rt(e))) = desugar(rt(e))

According to this syntactic desugaring for rt(e), the syntax of annotated
c-terms and expressions can be reformulated as follows:

• RtCTerm 3 t ::= X | c(t1, . . . , tn) | frt(t1, . . . , tn), if X ∈ V, c ∈ CSn,
f ∈ FSn, t1, . . . , tn ∈ RtCTerm

• RtExpr 3 e ::= X | c(e1, . . . , en) | f?(e1, . . . , en), if X ∈ V, c ∈ CSn,
f? ∈ FS?, e1, . . . , en ∈ RtExpr

To express parameter passing in function applications with rt−annotated
arguments we will need to consider rt-c-substitutions, defined by: θ ∈ RtCSubst
iff Xθ ∈ RtCTerm,∀X ∈ V.

Now we will define calculi to work with annotated expressions. In [9] two
rewrite notions for call-time choice were defined, each of them being interesting
for different applications. Here we will modify both of them to get two (hopefully)
equivalent characterizations of a semantics for annotated run-time choice under
a call-time choice environment.

(B) C[e] � C[⊥] for any context C and expression e ∈ RtExpr⊥
(OR) C[f?(p)θ] � C[rθ] for any context C, (f(p)→ r ∈)P, and θ ∈ RtCSubst⊥

Fig. 1. A one-step reduction relation for non-strict call-time choice with rt annotations

The first characterization is shown in Fig. 1. Its drawback is that the rule (B)
involves a ‘magical’ guessing in advance of the fact that the reduction of a (sub)-
expression is not going to be needed, and replaces this ‘no need of reduction
in the future’ by an artificial anticipated reduction to the undefined value ⊥.
However, because of its simplicity, the relation is helpful to understand what are
the possible results of a reduction.

The second characterization is the rewrite relation of Fig. 2. It expresses in a
more realistic manner (specially, if a reduction strategy would be added, which
is not our focus here) the way in which computations are to be performed. To
express sharing (when needed), local bindings are created via a let construct.

(Fapp) f?(p)θ →l rθ, if (f(p)→ r) ∈ P, θ ∈ RtCSubst
(LetIn) h(. . . , e, . . .)→l let X = e in h(. . . , X, . . .), if h ∈ Σ, e ≡ f(e′) with f ∈ FS

or e ≡ let Y = e′ in e′′, and X is a fresh variable

(Bind) let X = t in e →l e[X/t], if t ∈ RtCTerm
(Elim) let X = e1 in e2 →l e2, if X 6∈ FV (e2)

(Flat) let X = (let Y = e1 in e2) in e3 →l let Y = e1 in (let X = e2 in e3)
if Y 6∈ FV (e3)

(Contx) C[e]→l C[e′], if C 6= [], e→l e
′ using any of the previous rules, and in case

e→l e
′ is a (Fapp) step using (f(p)→ r)θ ∈ [P] then vRan(θ|\var(p))∩BV (C) =

∅.

Fig. 2. Rules of let-rewriting extended with rt annotations

Note how in the rule (LetIn), in the case a function application is extracted
to a let, it is needed that f is not marked with rt, which tell us that it is not
allowed to duplicate it, and therefore it may be needed to put it in a let in order
to progress with the evaluation (for example if it appears in an argument of
another function application whose reduction is needed).

Example 1. Given the program

coin→ 0 f(X)→ g(X, coin)
coin→ 1 g(X,Y)→ (X,X, Y, Y)

we want to evaluate the expression rt(f(coin)), which is desugared as frt(coinrt).
With the calculus of Fig. 1 we can do:

frt(coinrt) � g(coinrt, coin) � g(coinrt, 0) � (coinrt, coinrt, 0, 0)
� (0, coinrt, 0, 0) � (0, 1, 0, 0)

Note how in the first step the expression frt(coinrt) can be evaluated as every
function symbol present in coinrt is annotated with rt. On the other hand we
cannot apply (OR) to g(coinrt, coin), as one of its arguments contains a function
symbol that it is not annoted for run-time, and thus the value (0, 1, 0, 1) is not
reachable from frt(coinrt). This is even more evident in the version of this
evaluation got with the calculus of Fig. 2:

frt(coinrt)→l g(coinrt, coin)→l let X = coin in g(coinrt, X)
→l let X = coin in (coinrt, coinrt, X,X)→l let X = coin in (0, coinrt, X,X)
→l let X = coin in (0, 1, X,X)→l let X = 0 in (0, 1, X,X)
→l (0, 1, 0, 0)

When we reach the expression let X = coin in (coinrt, coinrt, X,X) it is clear
that the first two components of the tuple may evolve in different ways while
the values of the last two components will be shared.

4 A variant of run-time annotations

In the present section we will show another primitive to express run-time choice
that we will build on top of the previous primitive rt, through a simple program
transformation. We will call that primitive rRt, and define its behaviour by the
following inference rule that should be added to the CRWL logic [4]:

e→∗P′ e′ t v |e′|
P `CRWL rRt(e) _ t

(rRt)

where P ′ is the program resulting of adding to P the new rule rRt(e) → e,
and e →∗P′ e′ indicates that e′ can be reached from e by zero or more steps of
ordinary rewriting [2] using the program P ′. The approximation ordering t v t′
between partial values expresses that t is less defined than t′ (see [4] for details).

The rule (rRt) itself is already suggesting a possible implementation for rRt.
This implementation will be based on the fact that, for any program in which
every function symbol that appears in a right hand side of a program rule is rt-
annotated, the evaluation of an expression that has each of its function symbols
rt-annotated too returns the same results as it was evaluated under run-time
choice but discarding the annotations. This ideas are formalized in the following
definition:

Definition 2. Given a CRWL-program P:

• We build the signature of a new program P adding to it any constructor
symbol in the signature of P, and for any function symbol f in the signature
of P considering a fresh function symbol f which we add to the signature
of P.

• We define the transformation of expressions rRt as:

rRtT (X) = X if X ∈ V
rRtT (c(e1, . . . , en)) = c(rRtT (e1), . . . , rRtT (en)) if c ∈ CS
rRtT (f(e1, . . . , en)) = frt(rRtT (e1), . . . , rRtT (en)) if f ∈ FS
rRtT (rRtT (e)) = rRtT (e)

• For any (f(p1, . . . , pn) → r) ∈ P we add the rule f(p1, . . . , pn) → rRtT (r)
to P.

Finally, any expression rRt(e) to be evaluated under P is desugared into rRtT (e)
and evaluated under P] P

Example 2. Starting with the program of Example 1 we get the program

{coin→ 0, coin→ 1, f(X)→ g(X, coin), g(X,Y)→ (X,X, Y, Y)}
]

{ coin→ 0, coin→ 1, f(X)→ grt(X, coin), g(X,Y)→ (X,X, Y, Y)}

under which we can do:

rRt(f(coin)) ≡ frt(coinrt) � grt(coinrt, coinrt)
� (coinrt, coinrt, coinrt, coinrt) �∗ (0, 1, 0, 1)

5 Implementation issues

In order to study the practicability of the proposal we have implemented it as an
extension of the functional logic system Toy ([3]). This system, as well as other
modern systems like Curry ([6]), operates under call-time choice. We introduce
the new syntactic construct rt e into the syntax of Toy to instruct the system
to evaluate the expression e under a run-time choice regime. The system will
use run-time choice for evaluating the expressions annotated with rt, and call-
time choice as usual for the rest of computations, i.e., we have within the same
language both regimes of evaluation.

The extension is well supported by the system and requires only some light-
weight modifications. In fact, the traditional problem is how to achieve sharing
in a non-deterministic language like this, and our goal now is to inhibit this
sharing mechanism at the points required by the programmer with rt.

Toy is implemented in Prolog and uses Prolog as target code (see [8, 3] for
details). Sharing is implemented by means of suspensions, that are Prolog terms
of the form:

susp(FunctionName,Arguments,Result,Evaluated)

The FunctionName and its Arguments represent the expression e to be evaluated,
while Result is the resulting value (if evaluated, variable in other case) and
Evaluated is a flag that indicates if the expression has been evaluated (flag on)
or not (flag variable). Every function call is translated into a suspension in order
to share its value when the expression is passed as argument and copied. As an
example of the use of this representation consider the following program:

coin = 0
coin = 1

double X = X + X

test1 = double coin
test2 = rt (double coin)

Consider the evaluation of test1. As all the function calls are translated into
suspended forms, in particular coin will have the form susp(coin,[],R,E). The
evaluation of double does not demand the evaluation of its argument coin, so it
will produce

susp(coin,[],R,E) + susp(coin,[],R,E)

Later, when one of the calls to coin is evaluated, for example to 0, the other one
automatically gets the same value:

susp(coin,[],0,on) + susp(coin,[],0,on)

The result of the addition is 0, that is a value obtained for test1. If we evaluate
coin to 1 we have

susp(coin,[],1,on) + susp(coin,[],1,on)

and then result 2, that is the other value obtained for test1. With this sharing
mechanism we can not obtain the value 1 for double coin as it would require to
evaluate both calls to coin to two different values.

For the function function test2 we would want to obtain the values 0 and 2
as before, but also the value 1 (evaluating separately both calls to coin). In this
case rt will deactivate the sharing mechanism. This can be easily achieved by
translating the call coin into the suspended form susp(coin,[],R,rt). The flag rt
will indicate to the system that the value of this expression must not be shared
(and neither kept in the variable R). For test2 we evaluate

susp(coin,[],R,rt) + susp(coin,[],R,rt)

The first suspension can be reduced to 0 (without annotating the result in R),
and the second one to 1, obtaining 1 for test2 as expected.

The extension implemented in Toy provides this behaviour with test1 and
test2. In fact, for test2 it obtains 0, 2 and 1 twice (evaluating the first coin to 0
and the second to 1 and viceversa). As another example, consider the problem of
generating numbers as combinations of the digits 0, 1 and 2. Using take, repeat
and the alternative operator ‘|’ (introduced in Sec. 1) we could define:

number N = take N (repeat (0 | 1 | 2))

but then the expression number 3 will produce only the answers [0,0,0], [1,1,1]
and [2,2,2], because the expression 0 | 1 | 2 is evaluated only once and then its
value is shared when evaluating repeat. For achieving the expected behaviour
we have to instruct the system for choosing the digits under run-time choice (to
avoid sharing):

number N = take N (repeat (rt (0 | 1 | 2)))

Now we obtain the 27 possible combinations that include [1, 1, 2] or [3, 1, 2] as
instance. The example of palindromes of Sect. 1 also works as expected.

The prototype and some examples can be found at
https://gpd.sip.ucm.es/trac/gpd/wiki/GpdSystems.

6 Conclusions

We have proposed a simple way of combining in the same program run-time
choice and call-time choice, two semantics commonly adopted for non-determinism
in rewriting-based declarative languages, but that cannot coexist within the same
program in current systems.

The approach presented here starts from a call-time choice ambient (as given
by most popular functional logic systems like Curry [6] or Toy [11]) and adds
to it the possibility of annotating the evaluation of (sub)-expressions as follow-
ing a run-time choice regime. We have proposed two variants of this idea, the
first being more ’local’ in the effect of an annotation rt(e), while the second is
more global. In both cases we have proposed a formal definition of the intended
semantics.

For the first variant we have given formal operational descriptions, by adapt-
ing to the new setting two one-step reduction relations proposed in [9] as a
simple notion of rewriting adequate for call-time choice. As for implementation,
this variant has been achieved by modifying of the system Toy. Essentially, we
have needed to change the management of suspensions, that are the technical
key to implement sharing for call-time choice. The resulting prototype can be
found at https://gpd.sip.ucm.es/trac/gpd/wiki/GpdSystems.

For the second variant we give a logical semantics that extends, to cope with
rt annotations, the proof calculus of the CRWL framework [4]. We have seen

how to transform annotations of this variant into the first one. This mapping
can be used to implement the second variant.

Recently, we have tried a different alternative to the combination of call-
time and run-time choice [10], following a way complementary to the one in
this paper: there we start from ordinary rewriting and enhance it with local
bindings through a let construct to express sharing and call-time choice. The
resulting framework seems to be more amenable to formal treatments, as shown
by the good number of technical results obtained in [10]. On the other hand, the
approach here seems to be more easily implementable, at least if one wants to
reuse existing call-time-choice based implementations.

References

1. S. Antoy. Optimal non-deterministic functional logic computations. In Proc. Inter-
national Conference on Algebraic and Logic Programming (ALP’97), pages 16–30.
Springer LNCS 1298, 1997.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, United Kingdom, 1998.

3. R. Caballero and J. Sánchez (eds.). TOY: A multiparadigm declarative language,
version 2.2.3. Technical report, UCM, Madrid, July 2006.

4. J. C. González-Moreno, T. Hortalá-González, F. López-Fraguas, and M. Rodŕıguez-
Artalejo. An approach to declarative programming based on a rewriting logic.
Journal of Logic Programming, 40(1):47–87, 1999.

5. M. Hanus. Multi-paradigm declarative languages. In Proceedings of the Inter-
national Conference on Logic Programming (ICLP 2007), pages 45–75. Springer
LNCS 4670, 2007.

6. M. Hanus (ed.). Curry: An integrated functional logic language (version 0.8.2).
Available at http://www.informatik.uni-kiel.de/~curry/report.html, March 2006.

7. H. Hussmann. Non-Determinism in Algebraic Specifications and Algebraic Pro-
grams. Birkhäuser Verlag, 1993.

8. R. Loogen, F. López-Fraguas, and M. Rodŕıguez-Artalejo. A demand driven com-
putation strategy for lazy narrowing. In Proc. International Symposium on Pro-
gramming Language Implementation and Logic Programming (PLILP’93), pages
184–200. Springer LNCS 714, 1993.

9. F. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández. A simple
rewrite notion for call-time choice semantics. In Proc. Principles and Practice of
Declarative Programming, pages 197–208. ACM Press, 2007.

10. F. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández. A flexible
framework for programming with non-deterministic functions (extended version).
Technical report, 2008. http://gpd.sip.ucm.es/juanrh/pubs/tchrRTCT08.pdf.

11. F. López-Fraguas and J. Sánchez-Hernández. T OY: A multiparadigm declarative
system. In Proc. Rewriting Techniques and Applications (RTA’99), pages 244–247.
Springer LNCS 1631, 1999.

12. H. Søndergaard and P. Sestoft. Non-determinism in functional languages. The
Computer Journal, 35(5):514–523, 1992.

