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Abstract

A distinctive feature of modern functional logic languages like Toy or Curry is the
possibility of programming non-strict and non-deterministic functions with call-
time choice semantics. For almost ten years the CRWL framework [6,7] has been
the only formal setting covering all these semantic aspects. But recently [1] an
alternative proposal has appeared, focusing more on operational aspects. In this
work we investigate the relation between both approaches, which is far from being
obvious due to the wide gap between both descriptions, even at syntactical level.
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1 Introduction

In its origin functional logic programming (FLP) did not consider non-determ-
inistic functions (see [8] for a survey of that era). Inspired in those ancestors
and in Hussmann’s work [12], the CRWL framework [6,7] was proposed in
1996 as a formal basis for FLP having as main notion that of non-strict non-
deterministic function with call-time choice semantics. At the operational
level, modern FLP has been mostly influenced by the notions of definitional
trees [2] and needed narrowing [3].

Both approaches –CRWL and needed narrowing– coexist with success in
the development of FLP (see [15,9] for recent respective surveys). It is tac-
itly accepted in the FLP community that they essentially speak of the same
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‘programming stuff’, realized by systems like Curry [11] or Toy [14], but up to
now they remain technically disconnected. One of the reasons has been that
the formal setting for needed narrowing is classical rewriting, which is known
to be unsound for call-time choice, which requires sharing.

But recently [1] a new operational formal description of FLP has been
proposed, coping with narrowing, residuation, laziness, non-determinism and
sharing, for a language called here FLC for its proximity to Flat Curry [10].

There is a long distance in the formal aspects of the two approaches, each
one having its own merit: CRWL provides a concise and clear way for giving
logical semantics to programs, with a high level of abstraction and a syntax
close to the user, while FLC and its semantics are closer to computations and
concrete implementations with details about variable bindings representation.

The goal of our work is to relate both approaches in a technically precise
manner. In this way, some known or future results obtained for one of them
could be applied to the other.

The rest of the paper is organized as follows. Sections 2 and 3 present
the essentials of CRWL and FLC needed to relate them. Section 4 sets some
restrictions assumed in our work and gives an overview of the structure of
our results. Section 5 relates CRWL to CRWLFLC , a new intermediate formal
description. Section 6 is the main part of the work and studies the relation
between CRWLFLC and FLC. Section 7 gives some conclusions. Proofs are
mostly omitted and some of them are still under development.

2 The CRWL Framework: a Summary

We assume a signature Σ = CS ∪ FS, where CS (FS) is a set of constructor
symbols (defined function symbols) each of them with an associated arity; we
sometimes write CSn (FSn resp.) to denote the set of constructor (function)
symbols of arity n. As usual notations write c, d . . . for constructors, f, g . . .
for functions and x, y . . . for variables taken from a numerable set V .

The set of expressions Exp is defined as usual: e ::= x | h(e1, . . . , en),
where h ∈ CSn ∪ FSn and e1, . . . , en ∈ Exp. The set of constructed terms
is defined analogously but with h restricted to CS, i.e., function symbols are
not allowed. The intended meaning is that Exp stands for evaluable expres-
sions while CTerm are data terms. We will also use the extended signature
Σ⊥ = Σ ∪ {⊥}, where ⊥ is a new constant (0-arity constructor) that stands
for undefined value. Over this signature we build the sets Exp⊥ and CTerm⊥
in the natural way. The set CSubst (CSubst⊥ resp.) stands for substitutions
or mappings from V to CTerm (CTerm⊥ resp.). Both kind of substitutions
will be written as θ, σ . . .. The notation σθ denotes the composition of sub-
stitutions in the usual way. The notation o stands for tuples of any of the
previous syntactic constructions.

The original CRWL logic introduces strict equality as a built-in constraint
and program-rules optionally contain a sequence of equalities as condition. In
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(B)
e → ⊥

(RR)
x → x

x ∈ V

(DC)
e1 → t1 . . . en → tn

c(e1, . . . , en) → c(t1, . . . , tn)
c ∈ CSn, ti ∈ CTerm⊥

(Red)
e1 → t1θ . . . en → tnθ eθ → t

f(e1, . . . , en) → t

(f(t1, . . . , tn) = e) ∈ P

θ ∈ CSubst⊥

Fig. 1. Rules of CRWL

the current work, as FLC does not consider built-in equality, we restrict the
class of programs. Then a CRWL-program P is a set of rules of the form:
f(t) = e, where f ∈ FSn, t is a linear (without multiple occurrences of the
same variable) n-tuple of c-terms and e ∈ Exp. We write Pf for the sef of
rules defining f .

Rules of CRWL (without equality) are presented in Figure 1. Rule (B)
allows any expression to be undefined or not evaluated (non-strict seman-
tics). Rule (Red) is a proper reduction rule: for evaluating a function call it
uses a compatible program-rule, makes the parameter passing (by means of a
substitution θ) and then reduces the body. This logic proves approximation
statements of the form e → t, where e ∈ Exp⊥ and t ∈ CTerm⊥. Given a
program P , the denotation of an expression e with respect to CRWL is defined
as [[e]]PCRWL = {t | e → t}.

3 The FLC Language and its Natural Semantics

The language FLC considered in [1] is a convenient –although somehow low-
level– format to which functional logic programs like those of Curry or Toy
can be transformed (not in a unique manner). This transformation embeds
important aspects of the operational procedure of FLP languages, like are
definitional trees and inductive sequentiality.

The syntax of FLC is given in Fig. 2. Notice that each function symbol
f has exactly one definition rule f(x1, . . . , xn) = e with distinct variables
x1, . . . , xn as formal parameters. All non-determinism is expressed by the use
of or choices in right-hand sides and also all pattern matching has been moved
to right-hand sides by means of nesting of (f)case expressions. Let bindings
are a convenient way to achieve sharing.

An additional normalization step over programs is assumed in [1]. In nor-
malized expressions each constructor o function symbol appears applied only
to distinct variables. This can be achieved via let-bindings. The normalization
of e is written as e∗.

In [1] two operational semantics are given to FLC : a natural (big-step)
semantics in the style of Launchbury’s semantics [13] for lazy evaluation (with
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Programs: P ::= D1 . . . Dm

Function definitions: D ::= f(x1, . . . , xn) = e

Expressions
e ::= x (variable)

| c(e1, . . . , en) (constructor call)
| f(e1, . . . , en) (function call)
| case e of {p1 → e1; . . . ; pn → en} (rigid case)
| fcase e of {p1 → e1; . . . ; pn → en} (flexible case)
| e1 or e2 (disjunction)
| let x1 = e1, . . . , xn = en in e (let binding)

Patterns: p ::= c(x1, . . . , xn)

Fig. 2. Syntax for FLC programs

sharing) for functional programming, and a small step semantics. CRWL
itself being a big-step semantics, it seems more adequate to compare it to the
natural semantics of [1], which is shown 3 in Fig. 3. It consists of a set of rules
for a relation Γ : e ⇓ ∆ : v, indicating that one of the possible evaluations of
e ends up with the head normal form (variable or constructor rooted) v. Γ, ∆
are heaps consisting of bindings x 7→ e for variables. An initial configuration
has the form [] : e.

(VarCons) Γ[x 7→ t] : x ⇓ Γ[x 7→ t] : t t constructor-rooted

(VarExp)
Γ[x 7→ e] : e ⇓ ∆ : v

Γ[x 7→ e] : x ⇓ ∆[x 7→ v] : v

e not constructor-rooted,
e 6= x

(Val) Γ : v ⇓ Γ : v v constructor-rooted or variable with Γ[v] = v

(Fun)
Γ : eρ ⇓ ∆ : v

Γ : f(xn) ⇓ ∆ : v
f(yn) = e ∈ P and ρ = {yn 7→ xn}

(Let)
Γ[yk 7→ ekρ] : e ⇓ ∆ : v

Γ : let {xk = ek} in e ⇓ ∆ : v

ρ = {xk 7→ yk}

and yk are fresh variables

(Or)
Γ : ei ⇓ ∆ : v

Γ : e1or e2 ⇓ ∆ : v
i ∈ {1, 2}

(Select)
Γ : e ⇓ ∆ : c(yn) ∆ : eiρ ⇓ Θ : v

Γ : (f )case e of {pk 7→ ek} ⇓ Θ : v

pi = c(xn)

and ρ = {xn 7→ yn}

Fig. 3. Natural Semantics for FLC

3 The rule Guess of [1] is skipped due to some restrictions to be imposed in the next section.
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4 CRWL vs. FLC: Working Plan

In order to establish the relation between CRWL and FLC (in Section 6)
firstly we adapt CRWL to the syntax of FLC. For this purpose we introduce
the rewriting logic CRWLFLC as a variant of CRWL with specific rules for
managing let, or and case expressions.

Fig. 4. Proof’s plan

The relation between CRWL and FLC is established through this inter-
mediate logic. The working plan is sketched in Figure 4. Given a pair pro-
gram/expression in CRWL we transform them into FLC-syntax and study
the semantic equivalence of both versions of CRWL (Theorems 5.1 and 5.2).
Then we focus on the equivalence of FLC with respect to CRWLFLC in a
common syntax context (Theorems 6.5 and 6.1). FLC and CRWL are very
different frameworks from the syntactical and the semantical points of view.
The advantage of splitting the problem is that on one hand both versions of
CRWL are very close from the point of view of semantics; on the other hand
CRWLFLC and FLC share the same syntax. The syntactic transformation and
its correctness will be explained in Sect. 5.1.

There are important differences between FLC and CRWLFLC that compli-
cates the task of relating them. The heaps used in FLC for storing variable
bindings have not any (explicit) correspondence in CRWL. Another important
difference is that the first one obtains head normal forms for expressions, while
the second is able to obtain any value of the denotation of an expression (in
particular a normal form if it exists).

Differences do not end here. There are still two important points that
enforces us to take some decisions: (1) FLC performs narrowing while CRWL
is a pure rewriting relation. In this paper we address this inconvenience by
considering only the rewriting fragment of FLC. Narrowing acts in FLC either
due to the presence of logical variables in expressions to evaluate or because of
the use of extra variables in program rules (those not appearing in left-hand
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sides). So we can isolate the rewriting fragment by excluding this kind of
variables throughout this work. (2) The other difference is due to the fact that
FLC allows recursive let constructions. Since there is not a well established
consensus about the semantics of such constructions in a non-deterministic
context, and furthermore they cannot be introduced in the transformation of
CRWL-programs, we exclude recursive let’s from the language in this work.
Once this decision is taken it is not difficult to see that a let with multiple
variable bindings may be expressed as a sequence of nested let’s, each with a
unique binding. For simplicity and without loss of generality we will consider
only this kind of let’s. We assume from now on that programs and expressions
fulfil the conditions imposed in (1) and (2).

5 The proof calculus CRWLFLC

The rewriting logic CRWLFLC preserves the main features of CRWL from
a semantical point of view, but it uses the FLC-syntax for expressions and
programs. In particular it allows let, case and or constructs, but like CRWL
it proves statements of the form e → t where t ∈ CTerm⊥.

(B)
e → ⊥

(RR)
x → x

x ∈ V

(DC)
e1 → t1 . . . en → tn

c(e1, . . . , en) → c(t1, . . . , tn)
c ∈ CSn, ti ∈ CTerm⊥

(Red)
eθ → t

f(t) → t
(f(y) = e) ∈ P , θ = [y/t]

(Case)
e → c(t) eiθ → t

case e of {pi → ei} → t

pi = c(x) for some i

θ = [x/t]

(Or)
ei → t

e1 or e2 → t
for some i ∈ {1, 2}

(Let)
e′ → t′ e[x/t′] → t

let {x = e′} in e → t

Fig. 5. Rules of CRWLFLC

Rules of CRWLFLC are presented in Figure 5. The first three ones (B),
(RR) and (DC) are directly incorporated from CRWL. Rules (Case), (Or)
and (Let) have also a clear reading. Finally, rule (Red) is a simplified version
of the corresponding in CRWL, as now we can guarantee that any function call
in a derivation can only use c-terms as arguments. This is easy to check: the
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initial expression to reduce is in normalized form (arguments are all variables)
and the substitutions applied by the calculus (in rules (Red), (Case) and
(Let)) can only introduce c-terms. Given a program P the denotation of an
expression e with respect to CRWLFLC is defined as [[e]]PCRWLFLC

= {t | e → t}.

5.1 Relation between CRWLFLC and CRWL

We obtain here an equivalence result for CRWLFLC and CRWL. A skeleton
of the proof is given in the zoomed part of Fig 4. It is based on a pro-
gram transformation from CRWL-syntax (user syntax) to FLC-syntax. A
similar translation is assumed but not made explicit in [1]. For technical con-
venience we split the transformation into two parts: first, and still within
CRWL-syntax, we transform P into another program P ′ which is inductively
sequential ([2,9]), except for a function or defined by the two rules X or Y =
X and X or Y = Y. The function or concentrates all the non-sequentiality
(hence, all the indeterminism) of functions in right-hand sides. We speak of
‘inductively sequential with or’ (ISor) programs. Alternatively, programs can
be transformed into overlapping inductively sequential format (see [9]), where
a function might have several rules with the same left-hand side (as happens
with the rules of or). Both formats are easily interchangeable. Such kind
of transformations are well-known in functional logic programming. In the
CRWL setting, a particular transformation has been proposed in [16], where
it is proved the following result:

Theorem 5.1 Let P be a CRWL-program and e an expression.

Then [[e]]PCRWL = [[e]]P
′

CRWL where P ′ is the ISor transformed program of P .

Now, to transform ISor programs into (normalized) FLC-syntax can be
done by simply mimicking the inductive structure of function definitions by
means of (possibly nested) case expressions. We omit the concrete algorithm
due to the lack of space. Instead, we give in Fig. 6 an example of the two
program transformation steps (first to ISor, then to FLC). Notice that the
final FLC-program does not contain rules for or, since it is included in the
syntax of FLC, and there is a specific rule governing its semantics in the
CRWLFLC-calculus.

The following equivalence result states the correctness of the transforma-
tion.

Theorem 5.2 Let P be an IS CRWL-program and, e an CRWL-expression,
and P̂ , ê their FLC-transformations. Then [[e]]PCRWL = [[ê]]P̂CRWLFLC

.

6 Relation between CRWLFLC and FLC

We need some more technical preliminary notions:

• dom(Γ): The set of variables bound in the heap Γ.
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López-Fraguas, Rodŕıguez-Hortalá, Sánchez-Hernández

Constructor symbols: 0∈ CS0, s∈ CS1

Source CRWL-program
f(0,Y) = s(Y)

f(X,0) = X

f(s(X),s(Y)) = s(f(X,Y))

Transformed ISor CRWL-program
f(X,Y) = f1(X,Y) or f2(X,Y)

f1(0,Y) = s(Y)

f1(s(X),s(Y)) = s(f(X,Y))

f2(X,0) = X

X or Y = X X or Y = Y
Transformed normalized FLC-program
f(X,Y) = f1(X,Y) or f2(X,Y)

f1(X,Y) = case X of { 0 → s(Y);

s(X1) → case Y of { s(Y1) → let U=f(X1,Y1)

in s(U)} }
f2(X,Y) = case Y of {0 → X}

Fig. 6. Transformation from CRWL to FLC syntax

• Valid heap: A heap Γ is valid if [] : e ⇓ Γ : v for some e, v.

• ligs(Γ, e): The bindings of a valid heap Γ can be ordered in a way such
that Γ = [x1 7→ e1, . . . , xn 7→ en] where each ei does not depend on xj iff
j >= i. That is because recursive bindings are forbidden. Then we define
ligs([x1 7→ e1, . . . , xn 7→ en], e) =def let {x1 = e1} in . . . let {xn = en} in e.

• [[Γ, e]]: Expresses the set of terms that CRWLFLC can reach, applying the
heap Γ to the expression e. Formally, [[Γ, e]] =def [[ligs(Γ, e)]]CRWLFLC

=
{t | ligs(Γ, e) → t}.

• norm(e): If e∗ = let {x1 = e1} in . . . in let {xn = en} in e′, then
norm(e) = ([x1 7→ e1, . . . , xn 7→ en], e′). It is a kind of reverse of ligs.

Our main result concerning the completeness of CRWLFLC with respect to
FLC is:

Theorem 6.1 If Γ : e ⇓ ∆ : v, then [[∆, v]] ⊆ [[Γ, e]].

Its proof becomes easy with the aid of some auxiliary results.

Lemma 6.2 If [[∆, x]] ⊆ [[Γ, x]], for all x ∈ var(e), then [[∆, e]] ⊆ [[Γ, e]].

Theorem 6.3 If Γ : e ⇓ ∆ : v, then:
(H) [[∆, x]] ⊆ [[Γ, x]], for all x ∈ dom(Γ) (R) [[∆, v]] ⊆ [[∆, e]]

The property (H) tells us what happens with heaps, while (R) relates the
results of the computation. The following Corollary is an immediate conse-
quence of Lemma 6.2 and(H).

Corollary 6.4 (H’) If Γ : e ⇓ ∆ : v, then [[∆, e]] ⊆ [[Γ, e]], for all e with
var(e) ⊆ dom(Γ).

Proof. (Theorem 6.1) Assume Γ : e ⇓ ∆ : v. Then, by property (R) of
Theorem 6.3 we have [[∆, v]] ⊆ [[∆, e]], and by Corollary 6.4 (H’) we have
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[[∆, e]] ⊆ [[Γ, e]], because it must happen that var(e) ⊆ dom(Γ), since the
FLC-derivation has succeeded. But then [[∆, v]] ⊆ [[Γ, e]]. 2

Completeness of FLC with respect to CRWLFLC is given by the following
result, whose proof is still under development:

Theorem 6.5 If e → c(t1, . . . , tn) and (Γ, e′) = norm(e), then Γ : e′ ⇓
∆ : c(x1, . . . , xn), for some x1, . . . , xn verifying ligs(∆, xi) → ti for each i ∈
{1, . . . , n}.

7 Conclusions and Future Work

In this paper we study the relationship between CRWL [6,7] and FLC [1], two
formal semantical descriptions of first order functional logic programming with
call-time choice semantics for non-deterministic functions. The long distance
between these two settings, even at syntactical level, discourages any direct
proof of equivalence. Instead, we have chosen FLC as common language, to
which CRWL can be adapted by means of a program transformation and a
new CRWLFLC proof calculus for the resulting FLC-programs. The program
transformation itself is not very novel, although its formulation here is original,
but the CRWLFLC calculus and its relation to the original are indeed novel
and could be useful for future works.

The most important and involved part of the paper establishes the relation
between the CRWLFLC logic and the natural semantics given to FLC in [1].
We give an equivalence result for ground expressions and for the class of
FLC-programs not having recursive let bindings nor extra variables. This
is not so restrictive as it could seem: it has been proved [5,4] that extra
variables can be eliminated from programs, and recursive let’s do not appear
in the translation to FLC-syntax of CRWL-programs. Still, dropping such
restrictions is desirable, and we hope to do it in the next future.

We did not expect proofs to be easy. Despite of that, we are a bit sur-
prised by the great difficulties we have encountered, even with the imposed
restrictions over expressions and programs. This suggests to look for new in-
sights, not only at the level of the proofs but also in the sense of finding new
alternative semantical descriptions of functional logic programs.
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