Bundles pack tighter than lists*

Lopez-Fraguas, F.J., Rodriguez-Hortala, J., and I8fmtlernandez, J.

Departamento de Sistemas Informéaticos y Computacién
Universidad Complutense de Madrid, Spain
fraguas@sip.ucm.es, jrodrigu@fdi.ucm.es, jaime@sip.uc m.es

Abstract

We proposédundles an alternative to lists as data structure usually adopteprb-
gramming non-deterministic algorithms in a functionalgnamming style. Bundles
provide a more compact representation of collection ofeslbecause of structure
sharing among different elements of the collection. Ousen¢ation is based on a
small set of examples that show good performance of bundheswompared to
lists.

1 INTRODUCTION

Non-determinism plays a role in computer science from ity \®ginning. In
particular, many programming languages of various famili@ve incorporated
some constructs to express and compute with non-determinise role of non-
determinism presents different faces. In this paper werdsrdasted in its algo-
rithmic aspects and its use for problem solving. Of coursa-determinism is of
major importance in connection with concurrency and camgurprogramming,
but it is not from this point of view that this paper has beeittem.

Logic programming (LP) languages [Apt90] and —more mogedtlnctional
logic languages [Han05], occupy a principal position in pnesent panorama of
languages having non-determinism at their core. In thasgulages non-determi-
nism is typically combined with backtracking-based search

In the functional programming (FP) side, a seminal paper afidf [Wad85]
established what has become the standard approach to irogrg with non-
determinism in FP: instead of the LP implicit search spaeated by failure and
backtracking until a success is reached, in FP one prograenkaty generation
and traversal of #ist of successesThis approach benefits of many distinctive fea-
tures of FP: laziness, HO functions, list comprehensiomks since 90’s, monadic
programming [Wad95]. The list-of-successes approachvisusually presented in
terms of thdist monador non-determinism monad

The thesis of this paper is that, despite its simplicity, lieebased handling
of non-determinism misses many opportunities for lazindasa wide sense of
the term— resulting in many cases in extra inefficienciesobdywhat should be
attributed to the programmed algorithm itself.

*This work has been partially supported by the Spanish projEdN2005-09207-C03-03
(MERIT-FORMS-UCM) and S-0505/TIC/0407 (PROMESAS-CAM,i@ejeria Educacion CAM).

XXIV-1

We propose what we callundles a data structure alternative to lists to rep-
resent sets of values in a more compact form due to a greatrdarobsharing of
information. Nevertheless, we remark that our purpose tgangive the best rep-
resentation of sets, but one that fits well with non-deteistimlazy generation of
values as appears naturally in programs dealing with noerénism

The presentation of our ideas is kept at the informal leved. NAve selected a
small bunch of examples with which we illustrate and testmoposals. Although
examples are particular we have tried to identify generdisdand schemes behind
them that help to a future mechanization of the methodolBgggrams are written
in Haskell.

The algorithms we program in our small set of examples do retepd to be
efficient, and in some case are indeed very inefficient. Franpoint of view, the
important fact is whether the use of bundles improves perémce when compared
to the list approach. We provide experimental measurenwdriisie and memory
costs for these programs that show the benefits of bundlemstige. We have
used the Glasgow Haskell Compiler running on an Intel PenduEM64T 3.20
GHz with 1 Gb of RAM memory for the benchmarks. The completegpams are
available ahttp://gpd.sip.ucm.es/juanrh/pubs/tfp2007/bundles.z ip .

2 BUNDLES. GENERAL IDEAS

To a great extent, programming with non-determinism anmstmiprogram with
sets of values. Lists provide a very uniform, type indepehdey of representing
sets of values, that is used in the traditional list-of-&sses approach to non-
determinism. In it, each value is a independent piece ofrin&tion. Thanks to
laziness, itis possible that in a given problem a set (aiisthly partially computed
and that processing any of its elements does not requirepiorexit completely;
but certainly processing one of its elements does not hghpacess another one.

Bundles are introduced to provide a more compact reprasmmtaf sets of
values where different elements may share part of theictsire. We do not look
for maximal sharing, but for an amount of sharing that steatsimally in many
problem-solving cases formulated in a non-determinigiies It turns out to be,
as we will try to convince with our examples, that ‘neartie-troot’ sharing is a
good option. This means that bundles will be a kind of treleat(in addition will
be collected in forests). As a matter of fact, bundles resetribs [Knu73], a well-
known data structure invented for fast indexing of striragg] that has been gener-
alized in functional programming setting to general dapes/[CM95, HIn0O]. In
Section 5.4 we compare our bundles to generalized tries.

As an example of bundles, consider the case of list of intedkat we want to
collect in sets. Using lists to represent s¢i$,2,5|,[1,2,7],([1,4],[2,7],[2] } would
be the list[[1,2,5],[1,2,7],[1,4],[2,7].[2]] or some reordering of
it. We could also think about some kind of tree structure ableflect sharing of
information of this set, like the following couple of treesi@re each branch ending

XXIV-2

in an underlined node corresponds to a list in the set:

This pictorial representation corresponds to the follaplist of two bundles,
one for each tree above:

[1 < [2 < [5 : < [BEmpty],
7 < [BEmpty]],
4 < [BEmpty]],
2 < [7 :< [BEmpty],
BEmpty]
]

Here, BEmpty is the bundle for the empty list, and is a data constructor
for building up a bundle made of a shared head with a list ofllesas tail. The
term above is a list of two individual bundles, representiagpectively the sets
{[1,2,5],[1,2,7],[1,4]} and{[2,7],]2]}: each of them is made of elements having
a common head that is shared in the bundle, and this is madesnealy: the sub-
lists [2,5] and[2, 7] share the common 2. Notice however that in the bundle repre-
sentation above the lis{$,2,7] and|[2, 7] do not share their common substructure,

because it is not at the head. _ _) _
We give now the definition of bundles of lists. Since lists potymorphic, so
can be bundles of lists.

infixr 5 :<
data BList a = BEmpty | a :< SList a -- Bundles of lists
type SlList a = [BList a] -- Sets of lists are lists of

-- bundles of lists

BListandSListstand for ‘bundle of lists’ and ‘set of lists’. Notice thREmpty
represents a list (the empty one) whilé represents an empty set of lists. We
will say often ‘bundles’ to refer either to genuine, indival bundles, or to lists of
bundles. Notice also that, conceptually, each individwsldbe ofBList represents

a collection of lists, and that a list of bundIfy, ..., By] represent®; U... UB,.

We can define useful operations owiist astoLists converting bundles into
lists, toBundle for the ocgposite conversiob, union, b_intersectfor union and in-
tersection of bundles, dr_spreadAt rthat removes sharing until leval This will
be useful when a bundle must be processed by a function megjsuch degree of
evaluation, as will happen in section 3. Let us take a closek to two of these
0|(oerat|(f))ns. The code ftdoListsuses the standard functi@oncatMap f = concat
. (map

toLists:: SList a -> [[a]]
toLists = concatMap toLists’
where tolLists:: BList a -> [[a]]
toLists’ Empty = [[]]
toLists’ (x:< xss)= [(x:xS)| xs<-toLists xss]

XXIV-3

This code-pattern where a functidrover SListis defined agoncatMap f’for
a suitablef’ operating orBList will appear frequently.

Intersection K_intersec) is also an interesting operation. Since lists of bun-
dles represent unions, to intersect two of them, B;,...]N[...,Bj,...] we must
distribute intersection to obtaly; ;(Bi N Bj). Intersecting two individual bundles
Bi N B; may result in a new bundle or ‘fail’, a dicotomic result thawell modeled
by the use oMaybe This is the code fob_intersect

b_intersect :: (Eq a) => SList a -> SList a -> SList a
b_intersect bl b2 = catMaybes [abl ‘b_intersect* ab2 | abl < - b1, ab2 <- b2]

b_intersect’ :: (Eq a) => BList a -> BList a -> Maybe (BList a)
Empty ‘b_intersect” Empty = Just Empty

Empty ‘b_intersect” _ = Nothing -- failure
_ 'b_intersect” Empty = Nothing -- failure
(x:<xss) ‘b_intersect” (y:<yss)

| x ==y = Just (x:<(xss ‘b_intersect’ yss))

| otherwise = Nothing -- failure

Bundles of lists will be enough for our first examples, butittea of bundles
can be applied in general to any data constructor type. Btance, the data type
of Peano numberstata Nat = Zero | S Nat
has its corresponding bundles:

data BNat
type SNat

BZero | BS SNat -- Bundles of naturals
[BNat] -- Sets of naturals are lists of
-- bundles of naturals

Bundles are not very interesting for flat types, whose déffievalues cannot
share any structure. For these types, lists are sufficieept@sent sets. Just to not
leave these types without bundles, we can define them asliggeas in:

type SBool = [BBool]
type BBool = Bool

In Section 5 we examine bundles for tree-like structures.

A final remark in this section: unfortunately, bundles canbe defined in
Haskell as a polymorphic typggundle a , because bundles of different types re-
quire different data constructors. We can thinlBoihdle as a pseudo-polymorphic
type, where each of its instances must be defined as sepéyptsd Most prob-
ably, a proper treatment of types for bundles can be givemenfiamework of
polytypic programmingHin99] as happens with generalized tries [CM95, Hin00],
but we do not further discuss this issue here.

3 FIRST EXAMPLE: PERMUTATION SORT

Logic programmers inventgoermutation sor{SS86] what is probably the worst
sorting algorithm ever proposed, but at the same time is@aeiample of a very
simple declarative specification using a problem-solviag-deterministic scheme
known asgenerate and tesiThe Prolog code for permutation sort is:

permSort(Xs,Ys) :- permute(Xs,Ys),
sorted(Ys).

XXIV-4

together with suitable definitions permute(Xs,Zsp generate iZs ?ermutations

of Xs andsorted(Zs)to check if the generated permutation is already sorted. If
not, computation backtracks to generate a new candidateer&e and test is easy
to program in FP using a list of successes.

permuts :: [a] -> [[a]]
permuts [] = [[]
permuts (x:xs) = [(y:zS)|(y,ys)<-pickOne (x:xs),zs<-per muts ys]

where pickOne [x] = [(x,[])]
pickOne (x:xs) = (x,xs):[(y,x:ys)|(y,ys)<-pickOne xs]
sorted :: Ord a => [a] -> Bool
sorted [] = True
sorted [x] = True
sorted (xiyiys) = (x <= y) && sorted (y:ys)
permSort :: Ord a => [a] -> [a]
permSort = head . (filter sorted) . permuts

With this program, the list of permutations is generated fiteied lazily until
a sorted one is found. In the worst case, the last permutaiilbbe the good one
and therefore, even if the rest were immediately discargethéfilter, a traversal
of the whole list is done, giving a complexity 6f(n!), wheren is the lenght of the

list to sort. The same happens with the Prolog code.

_ However, we can do much better — without changing the essafnte algo-
rithm, needless to say — if the set of permutations is morepeatly generated
giving the filter the opportunity of discarding many perntigtas at once. If one
sees the code fgrermuts it is clear that the construction of the list comprehension
misses the opportunity of sharing that the head. Using bundles, the generation
of permutations of a list is given by:

b_permuts:: [a] -> SList a
b_permuts [] = [Empty]
b_permuts (x:xs) = [(y:<b _permuts ys)|(y,ys)<-pickOne (x:xs)]

Filtering sorted lists fronib_permutsis made by the following code:

filterSorted:: Ord a => SlList a -> SList a

filterSorted xss = concatMap filterSorted’ (b _spreadAt 1 xss)

filterSorted:: Ord a => BList a -> SList a

filterSorted’ Empty = [Empty]

filterSorted’ (x:< [Empty]) = [x:< [Empty]]

filterSorted’ (x:< [y:<yss]) = if x > y || null zss then [] else [xi<zss]
where zss = filterSorted [y:<yss]

~ The rules forfilterSorted’ have been distilled from those ebrted And no-
tice thatfilterSorted’is applied over(b_spreadAt 1 xssand not directly ovexss
because the filter demands the first two elements of each peioru Finally the
permutation-sort function using bundles is:

b_permSort:: Ord a => [a] -> [a]
b_permSort = head . toLists . filterSorted . b _permuts
It can be shown that complexity of permSortis O(2"). Probably one would
not choose it for sorting his classroom lists, but at leastush smaller tha@(n!).
Table 1 contains a comparative pérmSort b_permSortwhich is consistent
with these complexities. Cells contain running times cgpoading to evaluation
of expressions of the forrh(reverse [N,N-1..1}) wheref is permSortin the first
row andb_permSortin the second one; eadhhas the indicated range bfs.

N =6..10 0.01| 0.07 | 0.49 | 4.22 | 41.80
N=6..10,15,19| 0.01| 0.01 | 0.01 | 0.02 | 0.05| 2.07 | 43.64
Table 1: permutation sort

XXIV-5

4 WORD SEARCHING

Our next problem is a classical one: given a set of chainsattatlike a dictionary
and an input chain, we must find any appearance in the inpuycffzain present in
the dictionary. Theenerate-and-tesfcheme provides a pretty simple solution, by
generating the set containing every consecutive subseagrfitie input and taking
only those subsegments present in the dictionary. This ea&abily encoded in FP
using a list of successes, as follows:

type Set a = [a]
type Dictionary a = Set [a]

-- List-based solution
lookupSet :: (Eq a) => Dictionary a -> [a] -> Set [a]
lookupSet dic xs = filter ((flip elem) dic) (sublists xs)

Wheresublistsreturns a list containing every consecutive subsegmers afiput
list. But once again, we can get a better performance usinglés, employing the
bundle intersection operator seen in section 2. We arerngdkir chains present in
the dictionary that are also a consecutive subsegment afiplé chain. To do that
we simply define the bundles representing both sets, andatiethem:

-- Bundle-based solution
lookupBundle :: (Eq a) => Dictionary a -> [a] -> SlList a
lookupBundle dic xs =
(setToBundle dic) ‘b_intersect’ ((bsublists . toBundle) x s)

-- packs a set of lists into a SList representing the same
-- set, trying to get the tightest possible package
setToBundle :: (Eq a) => Set [a] -> SList a
setToBundle [] = []
setToBundle ([J:yss) = Empty:(setToBundle (filter (not . n ull) yss))
setToBundle ((x:xs):yss) =

let (c, nc) = partition (sameHead x) yss

in (x:< setToBundle (xs:(map tail c))):(setToBundle nc)
where sameHead _ [] = False
sameHead x (y:ys) = x ==

-- bsublists xs returns a bundle containing
-- every consecutive subsegment of xs
bsublists :: SList a -> SList a

bsublists = concatMap bsublists’

bsublists’ :: BList a -> SlList a
bsublists’ Empty = [Empty]
bsublists’ b@(x :< xss) = (binitsl [b]) ++ (bsublists xss)

-- binitsl xs returns a bundle containing
-- every non empty prefix of xs

binitsl :: SList a -> SList a

binitsl = concatMap binits1’

binits1’ :: BList a -> SList a

binits1’ Empty = []
binits1’ (x :< xss) = [x :< (Empty:(binits1 xss))]

Note that the definition fobsublistsis quite similar to the classical definition for
sublists From this example we can infer a new programming schemedor n

XXIV-6

deterministic search problems, thendle intersectiorscheme. As bundles repre-
sent sets, intersecting the bundle generated from the witlug bundle represent-

ing the filtering condition leads us to the set of solutions.
The bundle-based algorithm gets a much better performaiacethe list-based
algorithm in the tests we have done so far, as we can see ia Zabl

Expression Seconds Bytes

lookupSet dic((concat.(take 120))dic) 19.63 3303096456
toLists(lookupBundle dic((concat.(take 120))dic)) 0.09 13944344
toLists(lookupBundle dic (concat dic)) 0.29 67500736

Table 2: word searching

5 BUNDLESOF NON LINEAR DATA TYPES

Ouir first two examples have in common that bundles are usesptesent sets of
lists, which are data values withiaear structure. We now address the problem of
making bundles ofree-like structures.

We first shortly discuss two possible representations fodlas of trees: the
first one is coarser and essentially performs a cross pradiumindles, while the
second one is finer and allows to maintain sharing of rootsaremaomplex situa-
tions. After that discussion we give one example for eaclhedé representations,
and finally we see how our bundles can be used to impleffird@té maps which
was the main purpose of generalized tries [Hin00].

5.1 Two possiblerepresentations

Consider the following datatype definition for binary treestaining information
in internal nodes:
data Bin a = Leaf | Node (Bin a) a (Bin a)
According of the idea of bundles, trees are to be collectedhaying their roots.
But with respect to children there is not a unique way to pedcén a first, simpler
possibility, children of a shared root in a bundle of treesalso (lists of) bundles:
type SBin a = [BBin a]
data BBin a = BlLeaf | BNode (SBin a) a (SBin a)
In this representation, the set of trees represented by dldb(BNode S x '$ re-
sults of placingx as root of all trees whose children are the pairs of treesen th
cross-producBSx S. For instance, the following bundle
BN [BN [BL] y; [BL],BN [BL] 1y [BL]] x [BN [BL] z [BL],BN [BL] 2 [BL]]
(whereBL, BN abbreviateBLeaf BNoderesp.) represents the 4ak1, T12, To1, T2z},
where eacHj; isthe tregN (N Ly L) x (N L z L)).

This packing of trees is a bit coarse, since it is not able foress finer de-
pendencies of subtrees under a given shared root. For @estha set{Ti1, Too}
cannot be represented in a single bundle with a shaegdhe root. Instead, each

tree requires its own singleton bundle, that must be calteit a list.

We propose then a second possibility that allows to exprads gependencies
of siblings. What is needed is to replace, in the definitiorSBin the explicit
pointing of the root to its pair of sub-bundles by a list ofrsdiSB SB), each of

XXIV=7

them indicating a possible combination of left/right suntles:

type SBin’ a =[BBin’ a] data BBin' a = BLeaf | BNode’' a [(SBin’

a,SBin’ a)]

Now, the sef T11, To2} can be represented by a single bundle of tg@n’ _ with
a shared at the root:

BN" x [((BN" y1 [(BL',BL)]],[BN’ z [(BL",BL)ID,
(BN y2 [(BL',BL)IL[BN’ z [(BL',BL)D]

It is clear that each bundle of ty@@Binacan be converted intBBin'a with-
out losing any amount of sharing, while the opposite is nae.trStill, BBin-like
bundles are sufficient in some occasions, as the followiagngte shows.

5.2 Thecountdown problem

This is a popular game: given a list of operands (integers), Hiow to combine all
of them by means of arithmetical operations as to reach aJigtal

We program gyenerate-and-testolution to it that is not very clever, but cor-
responds quite straightforwardly to the specification @&f tinoblem: we blindly
generate the set of all possible arithmetical expressidtistive given operands,
and then filter this set to find which expressions evaluatbeagivenTotal. The
test is incremental in the sense that some expressions cdisdaded without
fully evaluating them: for instance, an expression of thenfe*e’ cannot evaluate
to Total if the evaluation ok does not dividélotal.

As usual throughout this paper, we give two encodings: opessents sets
of arithmetical expressions (which are tree-like struesliras lists of expressions,
while the second uses bundles, in their first variant expthin the previous sub-
section. We expect bundles to behave better, because alkpinessions packed in
a bundle can be immediately discarded if the first operandtisdequate As we

shall see, experimental results confirm these predictions.
Let us start programming. These are the involved datatypes:

data Exp = Num Int |[Add Exp Exp |Sub Exp Exp [Mul Exp Exp |Divi Ex p Exp
type SExp = [BExp] -- sets of expressions as lists of bundles
data BExp = BNum Int | BAdd SExp SExp | BSub SExp SExp

| BMul SExp SExp | BDiv SExp SExp

Now we address the generation of the set of possible expres§iom a list of
operandxs We make use of a functiosplit for partitioning a list into a two non-
empty subsets. The code for generating expressions, bothdacase ofExp
(list-of-successes) arfsE xp(bundles) is the following:

genLExp:: [Int] -> [Exp]
genLExp (x:[M)=[Num x]
genLExp xs@(_:_:_)=[exp|(ys,zs)<-split xs, u<-genLExp y s, v<-genLExp zs,
exp <- [Add u v,Sub u v,Sub v u,
Mul u v,Divi u v,Divi v u]]

Lincrementality is what gives bundles a chance for improyiagormance. If the test consists in
fully evaluation of the expression and comparisofatal, nothing is gained with the sharing of
structure provided by bundles, which indeed give in thieqasorer results due to the overhead of
managing the bundle structure.

XXIV-8

genSExp:: [Int] -> SExp
genSExp (x:[]) =[BNum X]
genSExp xs@(_:_:_)=[bexp | (ys,zs)<-split xs,
bexp<-let {u=genSExp ys;v=genSExp zs}
in [BAdd u v,BSub u v, BSub v u,
BMul u v,BDiv u v, BDiv v u]]

Notice that since generation is kept independent from ewi@ln, nothing avoids to
generate meaningless expressions (e.g., division by QjcdNalso that both gen-
erators are remarkably similar, but the sizes of the reglists are quite different.
Por instance(genLExp [1,2,3,4]has 3240 expressions, whiigenSExp [1,2,3,4])
consists of 42 bundles.))

For the test witExp], we need an evaluation functi@val:: Exp -¢ Maybe
Int. It ranges oveMaybe Intbecause of ill-behaved expressions. The definition of

evalis clear and is omitted . The test|Valdoes not perform complete evaluation,
but tries to discard expressions useless to reachdta

-- egVal total e=True iff e is useful and evaluation of e gives total
egVal:: Int -> Exp -> Bool
egval t (Num n) = n ==t
egVal t (Mul e €') = case eval e of
Just ve -> O<ve && mod t ve == 0 && eqVal e’ (div t ve)
Nothing -> False
-- similar for the rest of arithmetic operations

Finally, the set of solutions is obtained by

solution:: [Int] -> Int -> [Exp]
solution operands total = filter (eqVal total) (genLExp ope rands)

In the case of bundleSExp the test requires also of an evaluation function
mapEvaland its incremental continuatidmeqVal which are counterparts @val
andeqVal Its types are:

mapEVal:: SExp -> [(Int,SExp)] begVval:: Int -> SExp -> SExp

The type oimapEvalrequires a commen{mapEval besgvaluates the expressions
packed inbes Since not all the expressions will evaluate to the sameeyatu
returns a list(ny,bes),...,(rn,beg)] meaning that all expressions packedbies
evaluate tay. Actually, in this example, albes are singletons. Notice thddaybe

is not needed in the result sinosmpEvalreturns a list.

mapEval = concatMap mapEval’ -- mapEVal:: BExp->[(Int,SE xp)]
mapEval’ (BNum n) = [(n,[BNum n])]
mapEval' (BAdd x y) = [(n+m,[BAdd bes bes’])|(n,bes) <- mapE val X,

(m,bes’) <- mapEval y]
-- similar for the rest of arithmetic operations
beqVal total = concat.map (beqgVal' total) -- beqgVal:: Int- >BEXp->SExp
begqval’ n (BNum m) = if n == m then [BNum n] else []
beqval' n (BAdd e €') = [be|(m,es) <- mapEval e, 0< m && m < n,
be <- let es’ = beqval (n-m) €’
in if null es’ then [] else [BAdd es es’]]

Finally, the set of solutions is given by:

bsolution’:: [Int] -> Int -> SExp
bsolution’ operands total = beqVal total (genSExp operands)

XXIV-9

Table 3 contains results for a pair of instances of the probtane with several
solutions (operands [1,2,3,4,5,6] and total 101), and therowith no solution at
all ([1,2,3,4,5,6] and 284). In the first case figures comesipto the first solution
found, while the second traverse the whole search spacee®\@gmin the benefits
of using bundles over lists.

Parameters Method | Seconds Bytes

[1,2,3,4,5,6] Total=101| Lists 0.04s 5467616

[1,2,3,4,5,6] Total=101| Bundles 0.02s 2987288

[1,2,3,4,5,6] Total=284| Lists 44.00s | 4029314104

[1,2,3,4,5,6] Total=284| Bundles | 27.57s| 3061838808
Table 3: countdown problem

5.3 Acrobat castles

Our next program uses the second kind of bundles for nomligguctures, those
in which the correspondence between the recursive “tyde’dalnot lost. The
example consists in building castles made of persons lieetldone by acrobats
in the circus, or in some folkloric celebrations. More psety, given a group of
players, each one having a fixed weight and strength, we wdniild a castle of
persons standing one on top of another. This castle is jushplete binary tree of
persons, where each parent node stands above the shoultieesaot of each of
his two sons. To represent the available players we use anexated data type,
and we encode their weight and strength as functions witkahee name.

data Player
data Castle

PO | P1L|P2|P3|P4|P5]|P6]|P7]|P8]|..
Ground Player | Stands Player Castle Castle

We also want this castle to be stable, that is, such that n@plzas to hold more
weight than his or her own strength. The weight taken by e&yepis computed
assuming that it is distributed equitably between each glabrothers, so each
player must take half of the weight of his parent node plu$ ¢fahe weight held

by his parent node, as specified in the functimtdsbelow.

holds :: Castle -> [(Player, Float)]
holds = hAc 0
where hAc ac (Ground p) = [(p, ac)]
hAc ac (Stands p hi hd) = (p, ac):(hAc w hi) ++ (hAc w hd)
where w = (ac + (weight p)) / 2

Finally, the input of the problem will be the desired numbEfi@ors in the return-
ing castle. Note that fop floors the number of involved players will lme= 2P — 1.

To keep the problem simpler we will build the castles onlyngsghe firstn players
available, although more castles could be built using thergplayers.

The generate-and-testcheme can be again used providing a simple solution
for this problem, and as usual it can be easily encoded in g lists of successes,
as follows:

-- List-based solution
makeCastlesL :: Int -> [Castle]

makeCastlesL p = ((filter stands) . playersLCastle) player S
where players = enumFromTo (toEnum 0) (toEnum (n-1))
n=2p-1

XXIV-10

-- gets the list of possible castles built up with a given list of players
playersLCastle :: [Player] -> [Castle]
playersLCastle [p] = [Ground p]
playersLCastle ps = [Stands p Is rs |(p, ps) <- pickOne ps
,(h1,h2) <- halvesSet ps,Is <- playersLCastle hl,rs <- play ersLCastle h2]

-- decides if a given castle is stable or not
stands :: Castle -> Bool
stands ¢ = and (map (\(p, h) -> h <= (strength p)) (holds c))

wherehalvesSeteturns a list containing every pair obtained splittingirsut list
in two equal halves. Once again, we can improve the peforenahthis algorithm
using bundles instead of lists to represent sets of reddksuse the following type
for bundles of castles:

type SCastle = [BCastle]
data BCastle = BGround Player | BStands Player [(SCastle, SC astle)]

The solution with bundles is very close to the solution wititsl The main dif-
ference is that the filter function has to be designed ad hbdeMor lists it was
the partial application ostandsto filter. But this is not as different as it could
seem, astandshad to be designed ad hoc and so dogsls upon which that was
defined. Hence the filtering function for bundles follows &esoa similar to the
one forholds propagating it through the bundle. Nevertheless, higiesllfunc-
tions for bundles should be developed in future works, t@ ¢las design process
of these kind of functions. Finally, as usual when dealinghveundles, and addi-
tional step in which the castles included in the bundle ateeted into a list had
to be included, through the functidoLCastle So, the solution with bundles is the
following:

-- Bundle-based solution
makeCastlesS :: Int -> [Castle]
makeCastlesS p = (toLCastle . standsS . playersSCastle) pla yers
where players = enumFromTo (toEnum 0) (toEnum (n-1))
n=2p-1

-- gets the bundle of possible castles built up with a given i st of players
playersSCastle :: [Player] -> SCastle
playersSCastle [p] = [BGround p]
playersSCastle ps = map cast (pickOne ps)
where cast (p, ps) = BStands p (map (\(h1,h2)
-> (playersSCastle hl, playersSCastle h2)) (halvesSet ps))

-- filters the stable castles of a bundle
standsS :: SCastle -> SCastle
standsS = stdAcS 0
where stdAcS :: Float -> SCastle -> SCastle
stdAcS ac = mapMaybe (stdAcB ac)
stdAcB :: Float -> BCastle -> Maybe BCastle
stdAcB ac b@(BGround p) =
if ac > (strength p)
then Nothing -- the player cannot take it
else Just b
stdAcB ac (BStands p sons) = filterFather >>= filterSons
where filterFather = if ac > (strength p)
then Nothing
else Just p
w = (ac + (weight p)) / 2
filterSons p =
let fs = filter (not . (any2 null))

XXIV-11

(map (map2 (stdAcS w)) sons)
in if null fs
then Nothing
else Just (BStands p fs)

As expected, the bundle-based algorithm reaches a mu@r petformance in the
tests, as we can see in Table 4.

Depth of castle Lists version Bundles version
n head (makeCastlesL n) head (makeCastlesS n)
1 0.0 0.0
2 0.001 0.0
3 0.007 0.002
4 interrupted 71.37
Table 4: running time (in secs.) for making stable castles

In these test we use each algorithm to get only the first stddte with the
number of floors specified. Unfortunately, the search spemegvery quickly to
get more results. Anyway, the bundle-based algorithm westalget a result for
four floors while the list-based algorithm could not get amsuit.

5.4 Finitemapsas bundles

Tries are a well known structure used fundamentally to garefinite maps from
keys to values [Knu73, CM95]. In a trie, the structure of thgadype correspond-
ing to the search keys is used to compact its representdtias,improving the

efficiency of the lookup function, and also saving memorycspaln its simpler

form, a trie is a mapping from strings to values:

data MapStr v = TrieStr (Maybe v) (MapChar (MapStr v))
type MapChar v = [(Char, V)]

lookupStr :: String -> MapStr v -> v
lookupStr [] (TrieStr node hs) = value node
where value Nothing = error "not found"
value (Just v) = v

lookupStr (c:cs) (TrieStr _ hs) = (lookupStr cs . lookupChar c) hs
lookupChar :: Char -> MapChar v -> v

lookupChar _ [] = error "not found"

lookupChar ¢ ((c’, v):xs) = if c==c’ then v else lookupChar ¢ x s

This is similar to our bundles of lists and it is not surprigto discover that we can
use bundles to define a similar mapping from strings to valliee main idea here
is hiding the values associated to the string-key in its remnsive constructor,
that is, in[] . This should work well as every list has only one appearati¢hen
constructor]] in it, and because, anyway, when looking for a key, we willchee
to traverse entirely every candidate string to ensure thags the key we were
looking for, before accepting it. On the other hand, noté thaeject a key only
one mismatch is needed, this property is what is exploit¢ddriries framework to
obtain efficiency, and is also the basis for the bundle rgmtesion and algorithm.
As in tries, it is assumed as an invariant that in these mapggimere is only a value
associated to each string, and that those are constructeaXimize the sharing of
the keys, as for example usisgtToBundlgbut in aSMapStrversion:

XXIV-12

infixr 5 :<
type SMapStr v = [BMapStr v]
data BMapStr v = BEmpty v | Char :< SMapStr v

-- lookups for the value associated to the input String in the
-- input mappping
lookupSMS :: String -> SMapStr v -> Maybe v
lookupSMS [] mappping =
(listToMaybe . (filter emptyBMS)) mappping >>= contentsBM S
lookupSMS (c:cs) mappping = lookupBMS ¢ mappping >>= lookup SMS cs

-- lookups in the input SMapStr for the BMapStr starting with

-- the input Char, and returns the SMapStr corresponding to

-- its descendants

lookupBMS :: Char -> SMapStr v -> Maybe (SMapStr v)

lookupBMS _ [] = fail "not found"

lookupBMS ¢ ((BEmpty _):bs) = lookupBMS c bs

lookupBMS c¢ ((c:<hs):bs) = if c==c’ then return hs else look upBMS c bs

The functionemptyBMSeturns true iff the input mapping is a mapping for the
empty string (constructoBEmpty and a functioncontentsBMSeturns the value
stored in a constructdBEmptyif its argument matches it dlothing otherwise.
This bundle version has the advantage that it is not negessaarry an element
of Maybe vin each node of the mapping, as it is the case for tries. Ineafdr
strings we have only one constructor, thus it must repregientthe mapping for
the empty string, so an elementMfybe vis always attached to that constructor.
This results in a great amount Nbthingelements present in the trie, that is, a lot
of memory space wasted representing no information.

Subsequent works on tries as [Hin00], generalized the qiraédrie to permit
indexing by elements of arbitrary non-parameterized dgtes. We will study
the case for binary trees, as those are the paradigmaticpéxainon-linear data
structure. We start with the following representation ofdriy trees:

data Bin = Leaf | Node Bin Char Bin

To build a finite map for binary trees we proceed in a similay asa in the case for
strings, using a single data constructor wilaybe vas its first argument, for the
case of mappings for leaves, and with a mapping from binagstto mappings
from characters to mappings from binary trees to valuesaseitond argument:

data MapBin v = TrieBin (Maybe v) (MapBin (MapChar (MapBin v))

What we have do is, after attaching the corresponding elefrean Maybe v using
each argument dflodeto construct a mapping from it to the rest of the mapping,
and reading the arguments from left to right. The resultimeetis an instance of a
particular kind of types calledested data typesharacterized for being parame-
terized datatypes in whose definition some instances ofwimedatatype are used.
This forces us to use an special kind of recursion cgllelymorphic recursion
getting the following lookup function:

lookupBin :: Bin -> MapBin v -> v
lookupBin Leaf (TrieBin node mps) = value node
where value Nothing = error "not found"
value (Just v) = v
lookupBin (Node | ¢ r) (TrieBin node mps)
= (lookupBin r . lookupChar ¢ . lookupBin I) mps

XXIV-13

The advantage of this approach is that the lookup functioeslafined in a clear,
compositional, systematic way. In fact, what is done in ¢hieies is encoding the
tree traversal "left son-root-right son” in a serial of re@smappings, thus lineariz-
ing the structure of binary trees. As this traversal is a tisis can be branched
exploiting the sharing of prefixes, in a way similar to whatsvaone for tries of
strings. And that is what it is done here in fact, as each nmapisi a branching in
the tree of possible traversals. Note that as the travehsmen is "left son-root-
right son* (any other traversal could be chosen) then theevabrresponding to a

binary tree is conceptually stored in its rightmost leaf.

Now, using the methodology employed for strings above, wieusé a bundle
for Bin to represent the keys, hiding the associated values initserursive con-
structor. It is pretty clear that in this case is mandatoryge the second kind of
bundles for non-linear structures, because we should settlte correspondence
between siblings in 8in used as key. But the problem here is that, unlike with
strings, there could be several appearances of the comsthigaf in a binary tree,
so, which of the values stored in the leaves should be chasémeavalue corre-
sponding to the whole tree? To overcome this problem we usehaigue similar
to the one used for tries: we hide the value in the rightmastde To achieve this
goal in our setting, we use the typeSMBTto, either hide the corresponding value,
or to report the success recognizing a part of the key. Weseg#l howinSMB
implements theMonadclass in a way such that a key is totally recognized and its
associated value returned only when the whole key has besketh:

type SMapBin
data BMapBin
data InSMB v

[BMapBin V]
= BLeaf (INSMB v) | BNode Char [(SMapBin v, SMap Bin v)]
Follow | Value v

n <<

instance Monad InSMB where
-- the (>>) operator is the key: it returns its second argumen t
-- only if its first argument could be reduced to Follow
Follow >>y = vy

-- lookups for the value associated to the input binary tree i n
-- the input mappping
lookupSMB :: Bin -> SMapBin v -> Maybe (InSMB v)
lookupSMB Leaf mappping =
(listToMaybe . (filter leafBMB)) mappping >>= contentsBMB
lookupSMB (Node hi ¢ hd) mapping =
lookupBMB ¢ mapping >>= lookupSMBPair (hi, hd)
where lookupSMBPair (hi, hd) hss =
let lookDescendants = map (zipWithPair lookupSMB (hi, hd)) hss
in (sieve lookDescendants) >>= combine
sieve = listToMaybe . (filter (not . (any2 isNothing)))
combine (vi, vd) = return ((fromJust vi) >> (fromJust vd))

-- lookups in the input SMapBin for the BMapBin with the input

-- Char as root node and returns the list of its paired descend ants
lookupBMB :: Char -> SMapBin v -> Maybe [(SMapBin v, SMapBin v)]

lookupBMB _ [] = fail "not found"

lookupBMB ¢ ((BLeaf _):bs) = lookupBMB c bs

lookupBMB ¢ ((BNode c' hs):bs) = if c==c’ then return hs else | ookupBMB ¢ bs

Functionsany?2 and zipWithPair are just the pair versions of the corresponding
standard list functions, whileafBMBandcontentsBMRBare the same functions as
their SMapStrcounterparts just changing the constructors used forrpatt@tch-
ing. That resemblance is a consequence of the methodologlpged to develop

XXIV-14

the mapping for a given data type. Nevertheless, there isuwit a close resem-
blance betweetbokupSMBandlookupSMSalthough we can find a close relation
between themlookupSMSs a simplified form oflookupSMB(with its construc-
tors adapted, obviously). ABin is a data type more complicated th@tring as it
contains two recursive calls in its construcBNode so does its lookup function.
The ideas behintbokupSMBcould be used to defining lookup functions for other
non-linear data types.

The main advantage of the bundle mapping for binary tredsaisit is much
more simple from the type system point of view, as it is not stee data type and
thus does not require polymorphic recursion to deal withGn the other hand,
lookup functions for tries can be defined in a very simple, elegant, widnich is
clearly the main virtue of this approach.

6 CONCLUSIONSAND FUTURE WORK

This paper introduces bundles as an alternative to listgdpresenting sets of
values in functional programming. The traditional way farating with non-
deterministic algorithms in the functional setting is byane of lists of successes
[Wad85] that collect the set of possible results of suchrilgms. This is a rea-
sonable and simple way to proceed and works well for a rangeoiems. Never-
theless, there are a wide collection of problems that camlved in a natural and
easy way bygenerate and testhere lists of successes are not enough to capture
all the oportunities for lazyness. Things can be done mudtteibasing another
structure able to share information of different brancheb® algorithm.

A bundle is a data structure intended to share informatiathetearch space,
saving memory and reducing the time cost of the search, loyisly greater
prunes. We have showed a collection of problems solved irkéllagsing stan-
dard lists and also the corresponding solutions using lesndstead of lists. The
important point is that the initial algorithm is not changdidts are replaced by
bundles and then the program is adapted to the new repraésamneeserving the
essence of the algorithm. Moreover this transformation frfam being a tricky
one, follows a metodology that suggests a general traoslathema. The exper-
imental efficiency measurements with these examples refledienefits of using
bundles, and are in fact quite surprising in some cases.

The metodology used in these examples is enough generaito dhat any
data type has a corresponding bundle-based version. Maréwere can be more
than one possible bundle for the same data type, dependitige@mount of shar-
ing that we want to have. It will be interesting as future weéokformalize the
construction of bundles for a generic data type, and alspseudo)automatize
these contructions. The examples also show that there are eperations that
appear frequently when using bundles. In particular, asllesnrepresent sets of
values, the usual operations on sets like union, interaeeit, have a clear mean-
ing for bundles; different traversal operations can alsimbestigated, expansion of

XXIV-15

bundles (conversion to flat list of values) or partial expamgexpansion of some
level of sharing). As future work it will be interesting toviestigate these set of
operations to cope with bundles as an abstract data typecatelelop a richer
metodology for using them in functional programming.

From a general point of view bundles are related to (gerze@yitries [Knu73,
CMB95, Hin00], another structure designed with the main psepof representing
finite maps. We have shown that bundles can also be used tdeefiode maps,
and we have compared both approaches within some exampleglvantage of
bundles is their greater simplicity from the point of viewtgpes.
Acknowledgements. We thank Mario Rodriguez for many valuable ideas about
bundles, in particular their name. We also thank the anomgmeferees for their
useful comments.

REFERENCES

[Apt90] K.R Apt. Logic programming. In J van Leeuwen, edjtdandbook of Theoret-
ical Computer Sciengeolume B, pages 495-574. Elsevier, 1990.

[CM95] Richard H. Connelly and F. Lockwood Morris. A genézation of the trie data
structure.Mathematical Structures in Computer Sciens3):381-418, 1995.

[Han05] M. Hanus. Functional logic programming: From thetw Curry. Technical
report, Christian-Albrechts-Universitat Kiel, 2005.

[Hin99] Ralf Hinze. Polytypic programming with ease. Bmoc. 4th Fuji Int. Symp. on
Functional and Logic Programming (FLOPS'9®ages 21-36. Springer LNCS
1722, 1999.

[Hin00] Ralf Hinze. Generalizing generalized trieb.Funct. Program.10(4):327-351,
2000.

[Knu73] D. E. Knuth.The Art of Computer Programming, Vol. 3: Sorting and Searghi
Addison-Wesley, 1973.

[SS86] L. Sterling and E. Shapirdhe Art of Prolog MIT Press, 1986.

[Wad85] P. Wadler. How to replace failure by a list of sucesssinProc. Functional
Programming and Computer Architectu@pringer LNCS 201, 1985.

[Wad95] P. Wadler. How to declare an imperative Piroc. International Logic Program-
ming Symposium (ILPS’95)ages 18—-32. MIT Press, 1995.

XXIV-16

