
A Simple Rewrite Notion for Call-time Choice Semantics ∗

Francisco J. López-Fraguas Juan Rodrı́guez-Hortalá Jaime Sánchez-Hernández
Dep. Sistemas Informáticos y Computación, Universidad Complutense de Madrid

fraguas@sip.ucm.es jrodrigu@fdi.ucm.es jaime@sip.ucm.es

Abstract
Non-confluent and non-terminating rewrite systems are interest-
ing from the point of view of programming. In particular, exist-
ing functional logic languages use such kind of rewrite systems
to define possibly non-strict non-deterministic functions. The se-
mantics adopted for non-determinism is call-time choice, whose
combination with non-strictness is not a trivial issue that has been
addressed from a semantic point of view in the Constructor-based
Rewriting Logic (CRWL) framework. We investigate here how to
express call-time choice and non-strict semantics from a point of
view closer to classical rewriting. The proposed notion of rewriting
uses an explicit representation for sharing with let-constructions
and is proved to be equivalent to the CRWL approach. Moreover,
we relate this let-rewriting relation (and hence CRWL) with ordi-
nary rewriting, providing in particular soundness and completeness
of let-rewriting with respect to rewriting for a class of programs
which are confluent in a certain semantic sense.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Semantics

General Terms Theory, languages.

Keywords Functional-logic programming, term rewriting sys-
tems, constructor-based rewriting logic, non-determinism, call-
time choice semantics, sharing, local bindings.

1. Introduction
Modern functional logic programs as considered in systems like
Curry [12] or Toy [16] are constructor-based term rewrite systems,
possibly non-terminating and non-confluent, thus defining possi-
bly non-strict non-deterministic functions, as happens with the pro-
gram in Figure 1.

The semantics adopted for non-determinism in those systems is
call-time choice semantics [10, 13], also called sometimes singu-
lar semantics [23]. Loosely speaking, call-time choice conceptually
means to pick a value for each argument of a function application
before applying it. Call-time choice is easier to understand and im-
plement in combination with strict semantics and eager evaluation

∗ This work has been partially supported by the Spanish projects
TIN2005-09207-C03-03 (MERIT-FORMS-UCM) and S-0505/TIC/0407
(PROMESAS-CAM).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP’07 July 14–16, 2007, Wroclaw, Poland.
Copyright c© 2007 ACM 978-1-59593-769-8/07/0007. . . $5.00

in terminating systems as in [13], but can be made also compatible
–via partial values and sharing– with non-strictness and laziness in
the presence of non-termination.

In the example of Figure 1 the expression heads(repeat(coin))
can take, under call-time choice, the values (0, 0) and (1, 1), but
not (0, 1) or (1, 0). The example illustrates also a key point here,
that ordinary term rewriting is an unsound procedure for call-time
choice semantics with non-determinism, since a possible rewrite is

heads(repeat(coin)) → heads(coin : repeat(coin)) →
heads(0 : repeat(coin)) → heads(0 :coin :repeat(coin)) →
heads(0 : 1 : repeat(coin)) → (0, 1)

In operational terms, call-time choice would have required to share
the value for all the occurrences of coin in the reduction above.

It is commonly accepted (see e.g. [11]) that call-time choice se-
mantics combined with non-strict semantics is adequately formally
expressed by the CRWL framework [9, 10]. An additional indica-
tion of the usefulness of CRWL is the large set of its extensions that
have been devised to cope with relevant aspects of declarative pro-
gramming: higher order functions, types, constraints, constructive
failure, . . . (see [21] for a survey of the first works on the CRWL
approach). However, a drawback of the CRWL-logic is its lack of
a proper one-step reduction mechanism close both to the logic and
to the computations, that could play a role similar to rewriting with
respect to equational logic. Certainly CRWL includes operational
procedures in the form of lazy narrowing based goal-solving cal-
culi [10, 24], but they are too complex to be seen as the basic or
‘fundamental’ way to explain or understand how reduction can pro-
ceed in the presence of non-strict non-deterministic functions with
call-time choice semantics.

Therefore, other works have been more influential on the op-
erational side of the field, specially those based on the notion of
needed narrowing [4], whose underlying theory is classical rewrit-
ing. Needed narrowing has become the ‘official’ operational pro-
cedure of functional logic languages, and has also been subject of
various variations and improvements (see [11]).

These two coexisting branches of research (one based on
CRWL, and the other based on classical rewriting via needed nar-
rowing) have remained disconnected from the technical point of
view, despite the fact that they both refer to what intuitively is the
same programming language paradigm, as believed by most –if not
all– people in the field.

This is not a satisfactory situation, because it precludes the
possibility of applying –on a sound technical basis– results, notions
and techniques from the semantic side to the operational side and
viceversa. Our aim in this work is to establish that missing bridge.

A major problem is that needed narrowing adopts classical
rewriting as underlying theory and therefore is not valid for call-
time choice with non-determinism. This is overcome in practice
by adding a sharing mechanism to the encoding of narrowing, but
this is an implementation patch that is not enough for our technical
purposes. Is there an existing notion of rewriting that can be used

coin → 0 repeat(X) → X :repeat(X)
coin → 1 heads(X :Y :Y s) → (X, Y)

Figure 1. A non-terminating and non-confluent program

instead? Of course, the issue of combining sharing with rewriting
or other reductions notions is not new. But a review of the literature
(in Section 7 we make a short summary) suggested to us that there
was still room for proposing a new formulation of rewriting tailored
to call-time choice as realized by functional logic languages, and
trying to fulfil the following requirements:
• it should be based on a notion of rewrite step, as to be useful to
follow how a computation proceeds step by step.
• it should be simple enough to be easily understandable for non-
expert potential users. (e.g., students) of functional logic languages
adopting call-time choice.
• it should be provably equivalent to CRWL.
• it should serve as a basis of subsequent notions of narrowing and
narrowing strategies.

We propose then a simple variant of rewriting that uses local
bindings in the form of let-expressions to express sharing. Not
surprisingly, our let-rewriting is very close to existing formalisms
to express sharing in different contexts, like in [18] for λ-calculus,
or term graph rewriting [20]. We are also inspired by [17] where
indexed unions of set expressions – a construction generalizing
the idea of let-expressions – were used to express sharing in an
extension of CRWL to deal with constructive failure.

We also investigate the connection between our let-rewriting
relation and classical rewriting. As we will prove, in general let-
rewriting is sound with respect to rewriting, and is also complete
for confluent systems (more precisely, for deterministic programs,
a semantic property close to confluence).

The rest of the paper is organized as follows. Section 2 presents
some preliminaries about term rewriting and the CRWL framework.
Section 3 contains a first discussion about how to express non-strict
call-time choice by rewriting. Section 4 introduces local bindings
in syntax to express sharing and defines let-rewriting as an adequate
notion of rewriting for them. In Section 5 we prove the equivalence
of CRWL and let-rewriting. In Section 6 we address the relationship
between of let-rewriting and classical rewriting, proving in particu-
lar their equivalence for deterministic programs. Finally, Section 7
reviews related work and summarizes some conclusions. Some of
the proofs have been moved to an appendix and some other are sim-
ply sketched or even completely omitted. Full proofs can be found
at http://gpd.sip.ucm.es/juanrh/pubs/ppdp2007/long.pdf.

2. Preliminaries
2.1 Constructor based term rewriting systems
We assume a fixed first order signature Σ = CS ∪ FS, where
CS and FS are two disjoint sets of constructor and defined func-
tion symbols respectively, each of them with an associated arity; we
write CSn (FSn resp.) for the set of constructor (function) sym-
bols of arity n. As usual notations we write c, d . . . for constructors,
f, g . . . for functions and x, y . . . for variables taken from a numer-
able set V .

To avoid confusion with the usual terminology of CRWL (intro-
duced below) we follow its approximation introducing two kinds
of syntactic objects: expressions and terms. The set Exp of ex-
pressions is defined as Exp 3 e ::= x | h(e1, . . . , en), where
h ∈ CSn ∪ FSn and e1, . . . , en ∈ Exp. The set CTerm of con-
structed terms (or c-terms) has the same definition of Exp, but with
h restricted to CSn (so CTerm ⊆ Exp). The intended meaning is
that Exp stands for evaluable expressions, i.e., expressions that can

contain (user-defined) function symbols, while CTerm stands for
data terms representing values. We will write e, e′, . . . for expres-
sions and t, s, t′, s′ . . . for c-terms. The set of variables occurring
in an expression e will be denoted as var(e).

Contexts (with one hole) are defined by Cntxt 3 C ::= [] |
h(e1, . . . , C, . . . , en), where h ∈ CSn ∪ FSn. The application of
a context C to an expression e, written as C[e], is defined inductively
by [][e] = e ; h(e1, . . . , C, . . . , en)[e] = h(e1, . . . , C[e], . . . , en).

Substitutions are mappings θ : V −→ Exp which extend
naturally to θ : Exp −→ Exp. We write eθ for the application
of θ to e. The domain and range of θ are defined as dom(θ) =
{x ∈ V | xθ 6= x} and ran(θ) =

S
x∈dom(θ) var(xθ). Given

a set of variables D the notation θ|D represents the substitution θ
restricted to D and θ|\D is a shortcut for θ|(V\D). A c-substitution
is a substitution θ such that xθ ∈ CTerm for all x ∈ dom(θ).
We write Subst and CSubst for the sets of substitutions and c-
substitutions. Throughout the paper, the notation o stands for tuples
of any of the previous syntactic construction o.

A constructor based rewrite rule (or c-rewrite rule) has the form
f(t) → e where f ∈ FSn, e ∈ Exp and t is a linear tuple of c-
terms, where linear means that no variable occurs twice in the tuple.
Notice that we allow e to have extra variables (i.e., variables not
occurring in the left-hand side). A constructor-based rewrite system
(or c-rewrite system) is a set of c-rewrite rules. Given a c-rewrite
system P , its rewrite relation →P is defined by C[lθ] →P C[rθ],
for any context C, rule l → r ∈ P and substitution θ. We write ∗→P
for the reflexive and transitive closure of the relation →P . Since in
this paper we only consider constructor based rules, we will often
speak simply of rewrite rules or rewrite systems. Furthermore, we
will usually omit the reference to P in →P .

Confluence for constructor-based term rewrite systems is de-
fined in the usual way: a program P is confluent if for any
e, e1, e2 ∈ Exp such that e →∗

P e1, e →∗
P e2 there exist

e3 ∈ Exp such that both e1 →∗
P e3 and e2 →∗

P e3.

2.2 The CRWL framework
In the CRWL framework [9, 10], programs are c-rewrite systems,
also called CRWL-programs (or simply ‘programs’) from now on.
The original CRWL logic considered also the possible presence of
joinability constraints as conditions in rules in order to give a better
treatment of strict equality as built-in, which is a subject orthogonal
to the aims of this paper. Furthermore, due to the semantic given to
equality in functional logic and thanks to the allowance of extra
variables in rules, it is possible to replace conditions by the use
of an if then function, as has been technically proved in [22] for
CRWL and in [2] for term rewriting. Therefore, we consider only
unconditional rules.

To deal with non-strictness at the semantic level, we en-
large Σ with a new constant constructor symbol ⊥. The sets
Exp⊥, CTerm⊥, Subst⊥, CSubst⊥ of partial expressions, etc.,
are defined naturally. Notice that ⊥ does not appear in pro-
grams. Partial expressions are ordered by the approximation or-
dering v defined as the least partial ordering satisfying ⊥v e and
e v e′ ⇒ C[e] v C[e′] for all e, e′ ∈ Exp⊥, C ∈ Cntxt . This par-
tial ordering can be extended to substitutions: given θ, σ ∈ Subst⊥
we say θ v σ if Xθ v Xσ for all X ∈ V .

The semantics of a programP is determined in CRWL by means
of a proof calculus able to derive reduction statements of the form

e _ t, with e ∈ Exp⊥ and t ∈ CTerm⊥, meaning informally
that t is (or approximates to) a possible value of e, obtained by
iterated reduction of e using P under call-time choice.

The CRWL-proof calculus is presented in Figure 2. Rule (B)
allows any expression to be undefined or not evaluated (non-strict
semantics). Rule (OR) expresses that to evaluate a function call we
must choose a compatible program rule, perform parameter passing
(by means of a c-substitution θ) and then reduce the right-hand side.
The use of c-substitutions in (OR) is essential to express call-time
choice; notice also that by the effect of θ in (OR), extra variables
in the right-hand side of a rule can be replaced by any c-term, but
not by any expression as in the notion of ordinary rewriting →P .

We write P `CRWL e _ t to express that e _ t is derivable
in the CRWL-calculus using the program P . Given a program P ,
the CRWL-denotation of an expression e ∈ Exp⊥ is defined as
[[e]]PCRWL = {t ∈ CTerm⊥ | P `CRWL e _ t}.

(B)
e _ ⊥ (RR)

x _ x
x ∈ V

(DC) e1 _ t1 . . . en _ tn
c(e1, . . . , en) _ c(t1, . . . , tn)

c∈CSn, ti∈CTerm⊥

(OR) e1 _ t1θ . . . en _ tnθ eθ _ t
f(e1, . . . , en) _ t

f(t) → e ∈ P
θ ∈ CSubst⊥

Figure 2. Rules of CRWL

As an example, Figure 3 shows a CRWL-derivation for the
statement heads(repeat(coin)) _ (0, 0), using the program of
Figure 1. Observe that in the derivation there is only one reduction
statement for coin (namely coin _ 0), and the obtained value 0
is then shared in the whole derivation, as corresponds to call-time
choice. In alternative derivations, coin could be reduced to 1 (or to
⊥). It is easy to see that [[heads(repeat(coin))]]PCRWL =

{(0, 0), (1, 1), (⊥, 0), (0,⊥), (⊥, 1), (1,⊥), (⊥,⊥),⊥} .
Note that (1, 0), (0, 1) 6∈ [[heads(repeat(coin))]]PCRWL.
The following monotonicity lemma is a classical result in the

CRWL framework [9, 10]:

LEMMA 1. Given a program P , e ∈ Exp⊥, t ∈ CTerm⊥ and
θ, θ′ ∈ CSubst⊥ with θ v θ′ then we have:

if P `CRWL eθ _ t then P `CRWL eθ′ _ t

We stress the fact that the CRWL-calculus is not an operational
mechanism for executing programs, but a way of describing the
logic of programs. At the operational level the CRWL framework
comes with various lazy narrowing-based goal-solving calculi [10,
24] not considered in this paper.

3. CRWL and rewriting: a first discussion
Our general concern is how to express non-strict call-time choice
semantics by means of a simple rewriting-like one-step reduction
relation. We started Section 1 by observing that ordinary term
rewriting is not valid for that purpose. Now, we discard also the
possibility of transforming the original system into another one
such that using (ordinary) term rewriting it behaves as the original
one under call-time choice. More precisely, we pose the following
question:

For any given c-rewrite system P , can we find another
rewrite system (constructor based or not) P ′ such that for
each expression e and constructed term t, (which can be
ground or not) P `CRWL e _ t iff e →∗

P′ t?

The answer to it is ‘no’, as the following simple example shows,
exploiting the fact that rewriting is closed under substitutions while
CRWL-provability is only closed under c-substitutions.

EXAMPLE 1. Consider the rewrite system P:

f(X) → c(X, X) coin → 0 coin → 1

and assume a system P ′ such that: P `CRWL e _ t ⇔ e →∗
P′ t,

for all e, t. We will arrive to a contradiction.
Since P `CRWL f(X) _ c(X, X), we must have f(X) →∗

P′

c(X, X). Now, since →∗
P′ is closed under substitutions, we have

f(coin) →∗
P′ c(coin, coin), and then we have the reductions

f(coin) →∗
P′ c(coin, coin) →∗

P′ c(0, 1). But it is easy to see
that P `CRWL f(coin) _ c(0, 1) does not hold.

Another possibility is to impose the restriction that the sub-
stitution θ in a rewriting step must be a c-substitution, as it is
done in the rule (OR) of CRWL. More precisely, we can define
rewriting by the rule (OR’) in Figure 4 below. With it the step
heads(repeat(coin)) → heads(coin : repeat(coin)) in the ex-
ample of Figure 1 would not be legal anymore. This simple so-
lution would be enough to deal with call-time choice and a strict
semantics, but it is not sufficient for non-strictness, as shown by
the following simple example:

EXAMPLE 2. Consider the rewrite system given by the two rules
f(X) → 0 and loop → loop. With a non-strict semantics f(loop)
should be reducible to 0. But with (OR’) f(loop) → 0 is not
permitted; the only rewriting sequence starting with f(loop) is
f(loop) → f(loop) → . . ., thus leaving f(loop) semantically
undefined, as would correspond to a strict semantics.

What is missing is a rule allowing to reduce a not-needed (sub)-
expression to a special constructor term with no information in it.
Since not-neededness is undecidable, this special reduction must
be allowed for any expression. This is given precisely by the rule
(B) of CRWL, which is indeed a one-step rule. The result of this
discussion is the one-step reduction relation � given in Figure 4.

It is not difficult to prove the following equivalence result:

THEOREM 1. Let P be a CRWL-program, e ∈ Exp⊥, t ∈
CTerm⊥. Then P `CRWL e _ t iff e �∗

P t.

PROOF: It is easy to see that �∗ (the reflexive and transi-
tive closure of �) coincides with the derivability relation de-
fined by the proof calculus called BRC in [10]. This means that
P `BRC e _ e′ iff e �∗ e′. But in that paper it is proved that,
for e ∈ Exp⊥ and t ∈ CTerm⊥, BRC-derivability and CRWL-
derivability (called there GORC-derivability) are equivalent, what
implies:
P `CRWL e _ t ⇔ P `BRC e _ t ⇔ e �∗ t. 2

We remark that (OR’) essentially corresponds to innermost
evaluation. So the result has the following interesting reading: non-
strict call-time choice can be achieved via innermost evaluation if
at any step one has the possibility of reducing a subexpression to
⊥. For instance, a �-rewrite sequence with the example of Figure
1 would be:

heads(repeat(coin)) � heads(repeat(0)) �
heads(0 : repeat(0)) � heads(0 : 0 : repeat(0)) �
heads(0 : 0 :⊥) � (0, 0)

The rules for � can actually serve for a very easy implementation
of non-strict call-time choice, but with a major drawback: reduction
follows an unnatural order and requires, at any step, an unavoidable
guessing between the two rules (B’) and (OR’), leading to high
inefficiency. Therefore, � achieves only partially our goals and

0 _ 0
DC

coin _ 0
OR

0 _ 0
DC

0 _ 0
DC

0 _ 0
DC

repeat(0) _⊥
B

0 : repeat(0) _ 0 :⊥
DC

repeat(0) _ 0 :⊥
OR

0 : repeat(0) _ 0 : 0 :⊥
DC

repeat(coin) _ 0 : 0 :⊥
OR

0 _ 0
DC

0 _ 0
DC

(0, 0) _ (0, 0)
DC

heads(repeat(coin)) _ (0, 0)
OR

Figure 3. A CRWL-derivation

(B’) C[e] � C[⊥] for any C ∈ Cntxt , e ∈ Exp⊥
(OR’) C[f(t1θ, . . . , tnθ)] � C[eθ] for any C ∈ Cntxt , f(t1, . . . , tn) → e ∈ P,

θ ∈ CSubst⊥

Figure 4. A one-step reduction relation for non-strict call-time choice

we cannot consider it as the natural reduction notion we are looking
for.

4. Rewriting with local bindings
In this section we introduce local bindings in the form of let-
expressions as a convenient way of expressing sharing. Formally
the syntax for let-expressions is:

LExp 3 e ::= X | h(e) | let X = e1 in e2

where X ∈ V , h ∈ CS ∪ FS, e is a tuple of let-expressions,
and e1, e2 are single let-expressions. We will use the notation
let X = a in e as a shortcut for let X1 = a1 in . . . in let Xn =
an in e. The notion of one-hole context is also extended to the new
syntax:

C ::= [] | let X = C in e | let X = e in C | h(. . . , C, . . .)

The sets FV (e) of free and BV (e) bound variables of e ∈ LExp
are defined as:

FV (X) = {X}; FV (h(e)) =
S

ei∈e FV (ei);

FV (let X = e1 in e2) = FV (e1) ∪ (FV (e2)\{X});
BV (X) = ∅; BV (h(e)) =

S
ei∈e BV (ei);

BV (let X = e1 in e2) = BV (e1) ∪BV (e2) ∪ {X}

Notice that with the given definition of FV (let X = e1 in e2)
there are not recursive let-bindings in the language since the possi-
ble occurrences of X in e1 are not considered bound and therefore
refer to a ‘different’ X . This is similar to what is done in [18],
but not in [1, 14]. Recursive lets have their own interest but since
they are not present in CRWL-programs (there are no lets at all in
CRWL) and will neither appear in a let-rewriting reduction (to be
defined below) unless they are already present in the c-rewrite sys-
tem, we have decided not to consider them. Furthermore, there is
not a general consensus about the reading of recursive lets in pres-
ence of non-determinism.

Notice that the notion of c-term has not changed with the in-
troduction of lets: in particular c-terms do not contain lets, but can
contain bound variables, as happens for example with (X, X) in
the let-expression let X = coin in (X, X).

As usual with syntactical binding constructs, we assume a vari-
able convention according to what bound variables can be consis-
tently renamed as to ensure that the same variable symbol does not
occur free and bound within an expression. Moreover, to keep sim-
ple the management of substitutions, we assume that whenever θ is
applied to an expression e ∈ LExp, the necessary renamings are
done in e to ensure that BV (e)∩(dom(θ)∪ran(θ)) = ∅. With all

these conditions the rules defining application of substitutions are
simple while avoiding variable capture:

Xθ = θ(X)
h(e1, . . . , en)θ = h(e1θ, . . . , enθ)
(let X = e1 in e2)θ = let X = e1θ in e2θ

The let-rewriting relation →l is shown in Figure 5. The rule
(Fapp) performs a rewriting step in a proper sense, using a rule of
the program. Note that only c-substitutions are allowed, to avoid
copying of unevaluated expressions which would destroy sharing
and call-time choice. (Contx) allows to select any subexpression
as a redex for the derivation. The rest of the rules are syntactic
manipulations of let-expressions. In particular (LetIn) transforms
standard expressions by introducing a let-binding to express shar-
ing. On the other hand, (Bind) removes a let-construction for a
variable when its binding expression has been evaluated. (Elim)
allows to remove a binding when the variable does not appear in
the body of the construction, which means that the correspond-
ing value is not needed for evaluation. This rule is needed be-
cause the expected normal forms are c-terms not containing lets.
(Flat) is needed for flattening nested lets, otherwise some reduc-
tions could become wrongly blocked or forced to diverge. For ex-
ample, with the rewrite rules loop → loop and g(s(X)) → 1
and applying twice (LetIn) to the expression g(s(loop)), we ob-
tain let X = (let Y = loop in s(Y)) in g(X). Without (Flat)
we can only perform reductions on loop; with (Flat) we obtain
let Y = loop in let X = s(Y) in g(X) and then applying (Bind)
and (Elim) we achieve the expected value 1. Notice that with the
variable convention, the condition Y 6∈ FV (e3) in (Flat) would
not be needed. We have written it in order to keep the rules inde-
pendent of the convention. Quite different is the case of (Elim),
where the condition X 6∈ FV (e2) might hold or not.

As a complete derivation example, consider the program of
Figure 1 and the derivation of Figure 6. Notice that there is not
a unique →l-reduction leading to (0, 0). The definition of →l does
not prescribe any particular strategy, a subject that has been left out
of the scope of this paper.

5. Equivalence of let-rewriting
and CRWL
In this section we will prove the soundness and completeness re-
sults of let-rewriting with respect to CRWL. To this purpose we
will need to consider ⊥ at some points. Therefore we define the
set LExp⊥ in the natural way. We also define the shell |e| of an
expression e that represents the outer constructor part of e, and is

(Contx) C[e] →l C[e′], if e →l e′, C ∈ Cntxt

(LetIn) h(. . . , e, . . .) →l let X = e in h(. . . , X, . . .)
if h ∈ CS ∪ FS, e takes one of the forms e ≡ f(e′) with f ∈ FS or
e ≡ let Y = e′ in e′′, and X is a fresh variable

(Flat) let X = (let Y = e1 in e2) in e3 →l let Y = e1 in (let X = e2 in e3)
assuming that Y does not appear free in e3

(Bind) let X = t in e →l e[X/t], if t ∈ CTerm

(Elim) let X = e1 in e2 →l e2, if X does not appear free in e2

(Fapp) f(t1θ, . . . , tnθ) →l eθ, if f(t1, . . . , tn) → e ∈ P , θ ∈ CSubst

Figure 5. Rules of let-rewriting

heads(repeat(coin)) →l (LetIn)
let X = repeat(coin) in heads(X) →l (LetIn)
let X = (let Y = coin in repeat(Y)) in heads(X) →l (Flat)
let Y = coin in let X = repeat(Y) in heads(X) →l (Fapp)
let Y = 0 in let X = repeat(Y) in heads(X) →l (Bind)
let X = repeat(0) in heads(X) →l (Fapp)
let X = 0 : repeat(0) in heads(X) →l (LetIn)
let X = (let Z = repeat(0) in 0 : Z) in heads(X) →l (Flat)
let Z = repeat(0) in let X = 0 : Z in heads(X) →l (Fapp)
let Z = 0 : repeat(0) in let X = 0 : Z in heads(X) →l (LetIn,Flat)
let U = repeat(0) in let Z = 0 : U in let X = 0 : Z in heads(X) →l (Bind),2
let U = repeat(0) in heads(0 : 0 : U) →l (Fapp)
let U = repeat(0) in (0, 0) →l (Elim)
(0, 0)

Figure 6. A let-rewriting derivation

defined as follows:
|X| = X
|c(e1, . . . , en)| = c(|e1|, . . . , |en|)
|f(e1, . . . , en)| = ⊥
|let X = e1 in e2| = |e2|[X/|e1|]

Notice that the information contained in let-bindings is taken into
account for building up the shell of an expression.

5.1 Soundness
Concerning soundness we would like to prove something like this:

If e →l e′ then [[e′]]CRWL ⊆ [[e]]CRWL, for any e, e′ ∈ Exp.

That is, →l-steps do not create new CRWL-semantic values. But
let-expressions are not defined in CRWL and even if we start with
an expression without lets, let-rewriting may introduce them by
(LetIn). To cope with this situation we enlarge the CRWL-calculus
in Figure 2 to a new calculus CRWLlet, by adding a new rule for
dealing with let-expressions:

(Let) e1 _ t1 e[X/t1] _ t
let X = e1 in e _ t

We write P `CRWLlet e _ t if e _ t is derivable in the
CRWLlet calculus using the programP . The CRWLlet -denotation
of an expression e ∈ LExp⊥ with respect to the program P is
defined as

[[e]]PCRWLlet
= {t ∈ CTerm⊥|P `CRWLlet e _ t}

We will omit the sub(super)-scripts when they are clear by the
context.

CRWLlet shares with CRWL the property of closedness under
c-substitutions. The following result states this fact, together with

some other useful properties related to shells that are not difficult
to check by the appropriate induction in each case:

LEMMA 2. Let P be a CRWL-program and e ∈ LExp⊥. Then:
(i) P `CRWLlet e _ t implies P `CRWLlet eσ _ tσ, for any
t ∈ CTerm⊥, σ ∈ CSubst⊥.
(ii) |e| ∈ [[e]]CRWLlet .
(iii) [[e]]CRWLlet ⊆ |e| ↑, where the upward closure t ↑ of t ∈
CTerm⊥ is t ↑= {s ∈ CTerm⊥|t v s}.
(iv) e →l e′ implies |e| v |e′|.

Parts (ii) to (iv) express that the shell of an expression represents
‘stable’ information contained in the expression ((ii) says that shells
are in the denotation; (iii), that everything in the denotation comes
from refining it, and (iv) says that shells grow monotonically with
reduction).

It is easy to establish the equivalence between CRWL and
CRWLlet for expressions not involving lets.

LEMMA 3. For any CRWL-program P , e ∈ Exp⊥ and t ∈
CTerm⊥, we have: P `CRWL e _ t iff P `CRWLlet e _ t.
Therefore [[e]]PCRWL = [[e]]PCRWLlet

.

With the aid of CRWLlet , the theorem we are looking for can be
stated as follows:

THEOREM 2 (One-Step Soundness of let-rewriting).
For any e, e′ ∈ LExp,

e →l e′ implies [[e′]]CRWLlet ⊆ [[e]]CRWLlet .

Notice that because of non-determinism ⊆ cannot be replaced
by = in this theorem. The proof of Theorem 2 (which is given
below) would proceed straightforwardly by a case distinction on

the rules for →l, if the following monotonocity under contexts was
true for any context C:

[[e]]CRWLlet ⊆ [[e′]]CRWLlet implies
[[C[e]]]CRWLlet ⊆ [[C[e′]]]CRWLlet

Unfortunately this property is false because of the possible capture
of variables when switching from e to C[e], as the following exam-
ple shows:

EXAMPLE 3. If f is defined by f(0) → 1 we have

{⊥} ≡ [[f(X)]] ⊆ [[0]] ≡ {⊥, 0}
but when these expressions are placed within the context let X =
0 in [] we obtain

{⊥, 1} ≡ [[let X = 0 in f(X)]] 6⊆ [[let X = 0 in 0]] ≡ {⊥, 0}.
To overcome this problem and prove Theorem 2 we need a

stronger result showing that →l-steps preserve (in the sense of ⊆)
the CRWLlet -semantics even under substitutions. To formalize the
idea some new notions are useful:

DEFINITION 1 (Hypersemantics).

(i) The hypersemantics of an expression e ∈ LExp⊥, written as
[[[e]]]CRWLlet , is a mapping from CSubst⊥ into P(CTerm⊥)
defined as

[[[e]]]CRWLlet θ = [[eθ]]CRWLlet .

(ii) Hypersemantics of expressions are ordered as follows:

[[[e1]]]CRWLlet b [[[e2]]]CRWLlet iff
[[e1θ]]CRWLlet ⊆ [[e2θ]]CRWLlet , ∀θ ∈ CSubst⊥

In other terms, iff ∀θ ∈ CSubst⊥, P `CRWLlet e1θ _ t im-
plies P `CRWLlet e2θ _ t.

Hypersemantics fulfils the desired monotonicity property:

LEMMA 4. For any e, e′ ∈ LExp⊥, and every context C we have:

[[[e]]]CRWLlet b [[[e′]]]CRWLlet implies
[[[C[e]]]]CRWLlet b [[[C[e′]]]]CRWLlet

Now the idea is to prove for hypersemantics a result analogous
to Theorem 2, which will become then an easy corollary. Two more
lemmas are needed: the first is a standard substitution lemma and
the second is a classical result for CRWL [10], that is also valid for
CRWLlet .

LEMMA 5. Given e, e′ ∈ LExp⊥, θ ∈ Subst⊥ and X ∈ V such
that X 6∈ dom(θ) and X 6∈ ran(θ), then we have (e[X/e′])θ ≡
eθ[X/e′θ].

LEMMA 6. Let e, e′ ∈ LExp⊥, t, t′ ∈ CTerm⊥ be such that
e v e′ and t w t′. If e _ t then e′ _ t′ with a proof of the same
size or smaller.

All these results allow to prove the expected generalization of
Theorem 2 to hypersemantics.

THEOREM 3 (One-Step Hyper-Soundness of let-rewriting).
For any e, e′ ∈ LExp

e →l e′ implies [[[e′]]]CRWLlet b [[[e]]]CRWLlet

And now Theorem 2 follows naturally:
PROOF:[For Theorem 2] Assume e →l e′. By Theorem 3 we
have [[[e′]]]CRWLlet b [[[e]]]CRWLlet , and therefore [[e′θ]]CRWLlet ⊆
[[eθ]]CRWLlet for each θ ∈ CSubst⊥. Choosing θ = ε (the empty
substitution) we obtain [[e′]]CRWLlet ⊆ [[e]]CRWLlet as desired. 2

One-step soundness as given by Theorem 2 is straightforwardly
extended to several steps, that is, to the transitive and reflexive
closure →∗

l of the let-rewriting relation →l:

COROLLARY 1. For any e, e′ ∈ LExp

e →∗
l e′ implies [[e′]]CRWLlet ⊆ [[e]]CRWLlet

PROOF: An immediate induction on the length of the derivation
e →∗

l e′. 2

Finally we can easily get our main result concerning the sound-
ness of let-rewriting with respect not only to the CRWLlet calculus,
but also to the original CRWL formulation:

THEOREM 4 (Soundness of let-rewriting).
Let P be a CRWL-program and e ∈ Exp. Then:
(i) e →∗

l e′ implies P `CRWL e _ |e′|, for any e′ ∈ LExp.
(ii) e →∗

l t implies P `CRWL e _ t, for any t ∈ CTerm.

PROOF: (i): Assume e →∗
l e′. Then, by Corollary 1 we have

[[e′]]CRWLlet ⊆ [[e]]CRWLlet . Since |e′| ∈ [[e′]]CRWLlet by Lemma
2, we get |e′| ∈ [[e]]CRWLlet , which means P `CRWLlet e _ |e′|.
By Lemma 3, we conclude P `CRWL e _ |e′|.
(ii): trivial by (i), since |t| = t for t ∈ CTerm. 2

5.2 Completeness
Now we look for the reverse implication of Theorem 4. Some
additional results are needed for it. The first one concerns only→l-
reductions:

LEMMA 7 (Peeling lemma). For any e ∈ LExp such that e 6∈ V
we have that

e →∗
l let X = a in g(t)

for some g ∈ CS ∪ FS, t ⊆ CTerm and a ⊆ LExp such that
|ai| =⊥ for all ai ∈ a. Moreover, if e ≡ h(e1, . . . , en) with
h ∈ CS ∪ FS, then

e →∗
l let X = a in h(t1, . . . , tn)

under the conditions above, and verifying also that ti ≡ ei when-
ever ei ∈ CTerm.

Besides, we can state that in these derivations the rule (Fapp)
was not applied.

We can think about a let-expression as a regular CRWL-term in
which some additional sharing information has been encoded using
let expressions. As we do not use the rule (Fapp) in the derivations
for this lemma, we do not make progress in the evaluation of
the implicit CRWL-term corresponding to e (thus not changing
the corresponding CRWL-denotation), but we change the sharing-
enriched representation of this CRWL-term in the let-rewriting
syntax. What we do in these derivations is exposing the computed
part of e concentrating it in g(t), that is, the part whose shell is
different from ⊥. That is why we call it ‘Peeling lemma’.

The next result is already a technical completeness result
preparing for our completeness theorems below:

LEMMA 8. Let P be a CRWL-program, e ∈ Exp, and t ∈
CTerm⊥ such that t 6=⊥. Then:

P `CRWL e _ t implies e →∗
l let X = a in t′

for some t′ ∈ CTerm and a ⊆ LExp in such a way that t v
|let X = a in t′| and |ai| =⊥ for all ai ∈ a. As a consequence,
t v t′[X/ ⊥].

Our main results concerning the completeness of let-rewriting
are now easy consequences of Lemma 8. The first shows that any

c-term obtained by CRWL for an expression can be refined by a
let-rewriting derivation.

THEOREM 5 (Completeness of let-rewriting).
Let P be a CRWL-program, e ∈ Exp, and t ∈ CTerm⊥. Then:

P `CRWL e _ t implies e →∗
l e′

for some e′ ∈ LExp such that t v |e′|.

PROOF: If t =⊥ then we are done with e →0
l e as ∀e,⊥v |e|. If

t 6=⊥ then by Lemma 8 we have e →∗
l let X = a in t′ such that

t v |let X = a in t′|. 2

The next result considers the case of total c-terms:

THEOREM 6 (Completeness of let-rewriting for total solutions).
Let P be a CRWL-program, e ∈ Exp, and t ∈ CTerm. Then:

P `CRWL e _ t implies e →∗
l t.

PROOF: Assume P `CRWL e _ t, then by Lemma 8 we get
e →∗

l let X = a in t′ such that t v |let X = a in t| ≡ t′[X/⊥],
for some t′ ∈ CTerm, a ⊆ LExp. As t ∈ CTerm then t is
maximal w.r.t. v, so t v t′[X/⊥] implies t′[X/⊥] ≡ t, but then
t′[X/⊥] ∈ CTerm so it must happen that FV (t′) ∩ X = ∅ and
therefore t′ ≡ t′[X/⊥] ≡ t. But then let X = a in t′ →∗

l t′ ≡ t
by zero or more steps of (Elim), so e →∗

l let X = a in t′ →∗
l t,

that is e →∗
l t. 2

As a final corollary of this result and the part (ii) of the sound-
ness Theorem 4 we obtain a strong equivalence result for both for-
malisms:

THEOREM 7 (Equivalence of CRWL and let-rewriting).
Let P be a CRWL-program, e ∈ Exp, and t ∈ CTerm. Then:

P `CRWL e _ t iff e →∗
l t.

This constitutes the main result in the paper.

6. Let-rewriting versus classical rewriting
In this section we examine the relationship between let-rewriting
and ordinary rewriting for TRS. We will first prove in 6.1 that let-
rewriting is sound with respect to rewriting. As we know since
the discussion starting the paper, completeness does not hold in
general because, in presence on non-determinism, rewriting (that
corresponds to run-time choice) can obtain more results than let-
rewriting (call-time choice). However, we will be able to prove
completeness for programs that are deterministic, a property close
to confluence that will be defined in 6.2.

Thanks to the equivalence of CRWL and let-rewriting we can
choose the most appropriate point of view for each of the two
goals (soundness and completeness): we will use let-rewriting for
proving soundness, and the proof calculus of CRWL for defining
the property of determinism and proving that, under determinism,
completeness holds.

6.1 Soundness of let-rewriting w.r.t. classical rewriting
Firstly, we need a syntactic transformation from LExp into Exp,
removing the let constructions (thus losing the sharing information
they provide). Given e ∈ LExp we define its transformation into a
standard expression be as:

bX ≡ X
̂h(e1, . . . , en) ≡ h(be1, . . . ,cen)

̂let Xp = e1 in e2 ≡ be2[Xp/ be1]

This transformation satisfies the following properties:

LEMMA 9. For all e ∈ LExp we have be ∈ Exp, var(be) ⊆
FV (e), |be| ≡ |e|. Moreover, for all e ∈ Exp we have be ≡ e.

The following lemmas can be easily proved by induction on the
structure of expressions:

LEMMA 10. For all e, s, s′ ∈ Exp, X ∈ V , s →∗ s′ implies
e[X/s] →∗ e[X/s′].

LEMMA 11. For all e, s∈LExp, X∈V: ê[X/s] ≡ be[X/bs].
Using these lemmas we get a first soundness result, stating that

what can be done in one step of let-rewriting, can also be done in
zero or more steps of ordinary rewriting, after erasing the sharing
information by the transformationb:
LEMMA 12. For all e, e′ ∈ LExp we have: e →l e′ implies
be →∗ be′.

Some other soundness results follow easily from the lemma
above. The first one expresses that any expression (not involving
let’s) reachable by let-rewriting can be also reached by ordinary
rewriting. In other terms, let-rewriting (→∗

l) is a sub-relation of
rewriting (→∗), when (→∗

l) is restricted to ordinary expressions
(not involving let’s).

THEOREM 8.
For any e, e′ ∈ LExp, e →∗

l e′ implies be →∗ be′. As a conse-
quence, if e, e′ ∈ Exp, then e →∗

l e′ implies e →∗ e′.

PROOF: An immediate induction on the length of the let-derivation,
using Lemma 12 for the inductive step. For the remaining state-
ment, if e, e′ ∈ Exp then e ≡ be, e′ ≡ be′ by Lemma 9, and
therefore e ≡ be →∗ bt ≡ t. 2

The next result, based on the correspondence of CRWL and
let-rewriting established in Section 5, is a soundness theorem for
CRWL with respect to ordinary rewriting.

THEOREM 9. For all e ∈ Exp and t ∈ CTerm⊥, P `CRWL e _
t implies ∃e′ ∈ Exp such that e →∗ e′ and t v |e′|.

PROOF: Assume P `CRWL e _ t, then by Theorem 5 ∃e′′ ∈
LExp such that e →∗

l e′′ and t v |e′′|. Then by Theorem
8 combined with Lemma 9 we get e ≡ be →∗ be′′. But then
we can choose e′ ≡ be′′ because be′′ ∈ Exp by Lemma 9, and
|e′| ≡ | be′′| = |e′′| w t, by Lemma 9 again. 2

6.2 Completeness of CRWL w.r.t. classical rewriting
As commented before, we cannot expect to get a completeness
result of the CRWL framework w.r.t. classical rewriting for any
program, but only for the class of deterministic programs, which
are defined as follows:

DEFINITION 2 (Deterministic CRWL-program).
A CRWL-program P is deterministic iff the denotation [[e]]P of
any expression e ∈ Exp⊥ is a directed set. In other words, iff
∀e ∈ Exp⊥ and t1, t2 ∈ [[e]]P there exists t3 ∈ [[e]]P with t1 v t3
and t2 v t3.

Determinism as defined here is intuitively close to confluence,
but the two notions do not coincide. Determinism does not imply
confluence, as the following example shows:

EXAMPLE 4. Consider the program P given by the three rules

f → a f → loop loop → loop

where a is a constructor. It is clear thatP is not confluent (f can be
reduced to a and loop, which cannot be joined to a common reduct),

but is deterministic, since [[f]]P = {⊥, a}, [[loop]]P = {⊥} and
[[a]]P = {⊥, a}, each of them being a directed set.

We conjecture that the reverse implication (confluence⇒ deter-
minism) is true, but a precise proof of this fact seems surprisingly
complicated and we have not yet completed it.

Determinism has been defined as a semantic property. However,
thanks to the equivalence of CRWL and let-rewriting, it can be also
characterized in terms of reduction, as the following result shows:

LEMMA 13. A CRWL-program P is deterministic iff for any ex-
pressions e, e′, e′′ ∈ Exp with e →∗

l e′ and e →∗
l e′′, there exists

e′′′ ∈ Exp such that e →∗
l e′′′ and |e′′′| w |e′|, |e′′′| w |e′′|.

We do not know if in this result let-rewriting can be replaced by
ordinary rewriting.

We need also the following auxiliary notions:

DEFINITION 3 (Denotation for a substitution).
Given a CRWL-program P, for all σ ∈ Subst⊥ its denotation is
defined as [[σ]] = {θ ∈ CSubst⊥|dom(θ) = dom(σ) ∧ ∀X ∈
dom(θ), P `CRWL σ(X) _ θ(X)}.

DEFINITION 4 (Deterministic substitution).
The set of deterministic substitutions for a given CRWL-program
P , DSubst⊥ is defined as

DSubst⊥={θ ∈ Subst⊥| ∀X ∈ dom(θ).
[[θ(X)]]P is a directed set}

Using these notions we can develop an extension of the proof
calculus for CRWL which does call-by-name parameter passing
only when it is safe for call-time choice. The extended calculus
CRWLd contains the same rules of CRWL and the following addi-
tional rule:

(ORd)
rθ _ t

f(p)θ _ t
if (f(p) → r) ∈ P and θ ∈ DSubst⊥

Besides, for every e ∈ Exp⊥ we define its denotation in this cal-
culus as [[e]]d = {t ∈ CTerm⊥|P `CRWLd e _ t}. Notice that
this relation is undecidable (as happens with confuence) because
the problem of checking whether a CRWL-denotation is a directed
set or not is undecidable.

We will see that CRWLd proves exactly the same approxima-
tion statements that CRWL proves; to do that we must prove first
the following auxiliary results:

LEMMA 14. For any CRWL-programP and for all σ ∈ DSusbt⊥,
[[σ]] is a directed set.

LEMMA 15. For any CRWL-programP and for all σ ∈ DSusbt⊥,
e ∈ Exp⊥, t ∈ CTerm⊥, P `CRWL eσ _ t implies ∃θ ∈ [[σ]]
such that P `CRWL eθ _ t.

Now we have at our disposal the tools needed to state and prove
the adequacy of CRWLd:

THEOREM 10. For any CRWL-program P and ∀e ∈ Exp⊥,
[[e]]d = [[e]].

Now we are ready to prove our first completeness result:

LEMMA 16. For any CRWL-program P , if it is deterministic then
for all e, e′ ∈ Exp, e →∗ e′ implies [[e′]] ⊆ [[e]].

The previous lemma, together with the equivalence of CRWL
and let-rewriting given by Theorem 7, allows to obtain strong
relationships between rewriting, let-rewriting and CRWL, for the
class of determinsitic programs.

THEOREM 11.
Let P be a deterministic CRWL-program, e, e′ ∈ Exp, t ∈

CTerm. Then:
a) e →∗ e′ implies e →∗

l e′′ for some e′′ ∈ LExp with |e′′| w |e′|.
b) e →∗ t iff e →∗

l t iff P `CRWL e _ t.

PROOF: a) Assume e →∗ e′. Then [[e′]] ⊆ [[e]] by Lemma 16. Now,
it is a known property of CRWL that |e′| ∈ [[e′]], and then |e′| ∈ [[e]],
which means that P `CRWL e _ |e′|. Therefore, by Theorem 7
there exists e′′ ∈ LExp such that e →∗

l e′′ with |e′′| w |e′|.
b) That e →∗

l t iff P `CRWL e _ t, and that e →∗
l t implies

e →∗ t have been already proved for arbitrary programs in Theo-
rems 7 and 8 respectively. What remains to be proved is that e →∗ t
implies e →∗

l t (i.e., P `CRWL e _ t). Assume e →∗ t. Then
[[t]] ⊆ [[e]] by Lemma 16. Now, it is an easy property of CRWL
that t ∈ [[t]], and therefore t ∈ [[e]], which exactly means that
P `CRWL e _ t. 2

Notice that in part a) we cannot ensure e →∗ e′ implies e →∗
l

e′, because rewriting can reach some intermediate expressions not
reachable by let-rewriting. For instance, given the deterministic
program with the rules g → a and f(x) → c(x, x), we have
f(g) →∗ c(g, a), but not f(g) →∗

l c(g, a). Still, part a) is a strong
completeness result for let-rewriting wrt rewriting for deterministic
programs, since it says that the outer constructed part obtained in
a rewriting derivation can be also obtained or even refined in a let-
derivation. Combined with Theorem 8, part a) expresses a kind of
equivalence between let-rewtiting and rewriting, valid for general
derivations, even non-terminating ones. For terminated derivations
reaching a constructor term (not further reducible), part b) gives an
even stronger equivalence result.

7. Related work and conclusions
This work tries to fill a gap existing in the functional logic pro-
gramming field, which is the technical disconnection between the
two most accepted approaches to the paradigm: one, given by the
CRWL framework, more biased to the semantics, and the other, fo-
cused in operational aspects, based on the theory or term rewriting.
We feel that the missing piece was a precise, simple, high level and
clear one-step reduction mechanism that is close to rewriting but at
the same time respects call-time choice semantics for possibly non-
confluent and non-terminating constructor-based rewrite systems.

There exist previous proposals that combine sharing with
rewriting or narrowing, even for the specific case of functional
logic programs. We briefly discuss now why we decided not to
adopt them for our aim of comparison with CRWL.

A usual approach to expressing different levels of sharing in
rewriting is term graph rewriting [20], a variant of which for con-
structor based systems was studied in [6, 7]. However, the class of
programs is smaller in that work, since rewrite rules in term graph
rewrite systems must be orthogonal and extra variables are not con-
sidered. These restrictions were dropped in [3], but it does not con-
tain any formal treatment for the properties of the proposed notions.
Furthermore, and admitting that this is arguable, we consider that
graph rewriting is a complex mechanism to reason about. For in-
stance, we see graph homomorphisms as a more involved notion
than matching. Therefore, we find it more comfortable, whenever
possible, to use textual or equational counterparts of graph rewrit-
ing, as in essence is our let-rewriting or the λ-calculus with sharing
of [18].

In [1] there is a proposal of two operational (natural and small-
step) semantics for functional logic programs supporting sharing
(call-time choice semantics), using a flat representation of pro-
grams coming from an implicit program transformation encoding
the demand analysis used by needed narrowing, and some kind
of heaps to express bindings for variables. As in our case, let-
expressions are used to express sharing. The approach is useful as a

technical basis for implementation and program manipulation pur-
poses; but we think that, as happens with CRWL but for rather dif-
ferent reasons –too low-level and close to a particular operational
strategy– it cannot be seen as the ‘essential’ basic reduction mech-
anism to understand non-strict call-time choice. Furthermore, to re-
late technically CRWL with [1] turns out to be a really hard task,
that has been done in [15] but only for a restricted class of programs
and expressions.

Local bindings let X=e in ... resemble oriented conditions e →
X of the deterministic conditional rewrite systems of [19]. But
they consider 3-CTRS systems and, most importantly, a different
semantics for equality, according to which call-time choice is not
respected.

Finally, for proving the completeness of a transformation that
eliminates extra variables, [5] uses a variant or rewriting explicit
substitution. However, their variant performs sharing only for the
extra variables to be eliminated and not for the whole process of
rewriting, and then they do not really achieve call-time choice.

Our concrete contributions can be summarized as follows:

• We have further clarified the well known fact that ordinary
rewriting is not adequate for call-time choice, by showing that
no program transformation can serve to fully simulate call-time
choice by ordinary rewriting (Sect. 3). Therefore, the classical
theory of TRS cannot serve as technical foundation for func-
tional logic programs with call-time choice. Then we have pro-
posed two one-step variants of rewriting.

• The first variant (Sect. 3) is very simple but of limited interest
since it alters the natural sequence of rewriting in real compu-
tations.

• The second one (called let-rewriting in the paper) defines
rewriting with local bindings. The rules for let-rewriting are
very similar, but adapted to term rewriting with call-time
choice, to those for λ-calculus with sharing [18], and can be
seen as a particular textual (equational) presentation of graph
term rewriting [20].

• As a major technical task we have proved the equivalence of
let-rewriting and CRWL, which is the core of our contribution.
Equivalence is a strong result that allows to apply known and
future results about CRWL to let-rewriting and viceversa. Just
to mention an example, the program transformations proved to
be correct for CRWL in [15] are also valid for let-rewriting. As
a technical tool for proving equivalence we have extended the
CRWL logic itself to deal with local bindings, which might be a
useful side-product.

• We have proved that for deterministic programs (a semantic
condition very close to confluence) let-rewriting (hence CRWL-
derivability) and ordinary rewriting coincide in some precise
technical sense, while in general let-rewriting is a sub-relation
of rewriting. We stress the fact that this is a new, technically
non-trivial result connecting the CRWL and rewrite worlds; to
the best of our knowledge, this kind of results were completely
missing in the literature. Furthermore, we strongly conjecture
(and we are hopefully very close to a complete proof) that
confluence of a CRWL-program (in the ordinary sense of TRS)
implies semantic determinism, which will imply that under
confluence rewriting and let-rewriting are equivalent in some
technical sense. This very intuitive (but hard to prove!) result
will give further evidence (if it finally becomes proved) of
the benefits of having connected CRWL and rewriting, since a
result related purely to rewriting would become proved using
semantical reasoning tools.

We must warn that let-rewriting as presented in this paper
does not pretend to be in its own the working operational proce-
dure for c-rewrite systems with call-time choice (functional-logic
programs), for several reasons: first, we have not considered any
rewriting strategy – something needed in practice – otherwise the
rewriting space is too large. Second, there are two situations in
computations where rewriting is not enough and must be lifted to
narrowing: when the program uses extra variables (narrowing must
be used then to obtain their values; rewriting ‘magically’ guesses
them in the parameter passing substitution) and when the initial
expression to reduce has variables. The extension of our work to
cope with narrowing and strategies is left to future work. But we
think that to present first a notion of rewriting with respect to which
one can prove correctness and completeness of subsequent notions
of narrowing and strategies is an advantage rather than a lack of
our approach.

As additional future work, we plan to extend our work to the
HO case as to obtain rewriting counterparts of HO-CRWL [8], and
to relate technically let-rewriting with more formalisms like term
graph rewriting or explicit substitutions, obtaining thus a wider
picture of reduction under non-strict call-time choice.

References
[1] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational

semantics for declarative multi-paradigm languages. Journal of
Symbolic Computation, 40(1):795–829, 2005.

[2] S. Antoy. Evaluation strategies for functional logic programming.
Electronic Notes in Theoretical Computer Science, 57, 2001.

[3] S. Antoy, D. Brown, and S. Chiang. Lazy context cloning for non-
deterministic graph rewriting. In Proc. of the 3rd International
Workshop on Term Graph Rewriting, Termgraph’06, pages 61–70,
Vienna, Austria, April 2006. To appear in ENTCS.

[4] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy.
J. ACM, 47(4):776–822, 2000.

[5] S. Antoy and M. Hanus. Overlapping rules and logic variables
in functional logic programs. In Twenty Second International
Conference on Logic Programming, pages 87–101, Seattle, WA,
Aug. 2006. Springer LNCS 4079.

[6] R. Echahed and J.-C. Janodet. On constructor-based graph rewriting
systems. Research Report 985-I, IMAG, 1997.

[7] R. Echahed and J.-C. Janodet. Admissible graph rewriting and
narrowing. In Proceedings of the Joint International Conference and
Symposium on Logic Programming, pages 325 – 340, Manchester,
June 1998. MIT Press.

[8] J. González-Moreno, M. Hortalá-González, and M. Rodrı́guez-
Artalejo. A higher order rewriting logic for functional logic pro-
gramming. In Proc. International Conference on Logic Programming
(ICLP’97), pages 153–167. MIT Press, 1997.

[9] J. C. González-Moreno, T. Hortalá-González, F. López-Fraguas,
and M. Rodrı́guez-Artalejo. A rewriting logic for declarative
programming. In Proc. European Symposium on Programming
(ESOP’96), pages 156–172. Springer LNCS 1058, 1996.

[10] J. C. González-Moreno, T. Hortalá-González, F. López-Fraguas, and
M. Rodrı́guez-Artalejo. An approach to declarative programming
based on a rewriting logic. Journal of Logic Programming, 40(1):47–
87, 1999.

[11] M. Hanus. Functional logic programming: From theory to Curry.
Technical report, Christian-Albrechts-Universität Kiel, 2005.

[12] M. Hanus (ed.). Curry: An integrated functional logic lan-
guage (version 0.8.2). Available at http://www.informatik.uni-
kiel.de/~curry/report.html, March 2006.

[13] H. Hussmann. Non-Determinism in Algebraic Specifications and
Algebraic Programs. Birkhäuser Verlag, 1993.

[14] J. Launchbury. A natural semantics for lazy evaluation. In Proc. ACM

Symposium on Principles of Programming Languages (POPL’93),
pages 144–154. ACM Press, 1993.

[15] F. López-Fraguas, J. Rodrı́guez-Hortalá, and J. Sánchez-Hernández.
Relating two semantic descriptions of functional logic programs. In
Proc. Jornadas sobre Programación y Lenguajes (PROLE’06), pages
31–40. CINME, 2006.

[16] F. López-Fraguas and J. Sánchez-Hernández. T OY: A multi-
paradigm declarative system. In Proc. Rewriting Techniques and
Applications (RTA’99), pages 244–247. Springer LNCS 1631, 1999.

[17] F. López-Fraguas and J. Sánchez-Hernández. Functional logic
programming with failure: A set-oriented view. In Proc. International
Conference on Logic for Programming and Automated Reasoning
(LPAR’01), pages 455–469. Springer LNAI 2250, 2001.

[18] J. Maraist, M. Odersky, and P. Wadler. The call-by-need lambda
calculus. J. Funct. Program., 8(3):275–317, 1998.

[19] M. Marin and A. Middeldorp. New completeness results for lazy
conditional narrowing. In PPDP, pages 120–131, 2004.

[20] D. Plump. Essentials of term graph rewriting. Electr. Notes Theor.
Comput. Sci., 51, 2001.

[21] M. Rodrı́guez-Artalejo. Functional and constraint logic program-
ming. In Revised Lectures of the International Summer School
CCL’99, pages 202–270. Springer LNCS 2002, 2001.

[22] J. Sánchez-Hernández. Una aproximación al fallo constructivo en
programación declarativa multiparadigma. PhD thesis, DSIP-UCM,
June 2004.

[23] H. Søndergaard and P. Sestoft. Non-determinism in functional
languages. The Computer Journal, 35(5):514–523, 1992.

[24] R. d. Vado-Vı́rseda. A demand-driven narrowing calculus with
overlapping definitional trees. In Proc. ACM SIGPLAN Conf. on
Principles and Practice of Declarative Programming (PPDP’03),
pages 213–227. ACM Press, 2003.

A. Some proofs
In this appendix we use the sets [P]⊥ and [P] of partial and total
c-instances of the rules of a program P , respectively, defined as:

[P]⊥ = {(f(t) → e)θ|θ ∈ CSubst⊥}
[P] = {(f(t) → e)θ|θ ∈ CSubst}

Now, the rule (OR) of CRWL(let) can be reformulated as:

(OR) e1 _ t1 . . . en _ tn e _ t
f(e1, . . . , en) _ t

(f(t) → e) ∈ [P]⊥

and the rule (Fapp) as:

(Fapp) f(t1, . . . , tn) →l e if f(t1, . . . , tn) → e ∈ P

PROOF:[For Theorem 3] We assume θ ∈ CSubst⊥ such that
e′θ _ t. We must prove that eθ _ t. The case where e′θ _⊥
holds trivially using the rule (B), so we will prove the other by a
case distinction on the rule of the let calculus applied:

(Contx) If C[e] →l C[e′] because e →l e′, we can always sup-
pose that e →l e′ without applying (Contx), because if it
was applied then we would have e ≡ C′[e1] →l C′[e2] ≡ e′

with e1 →l e2, and so we can define C′′[] ≡ C[C′[]] and
C′′[e1] ≡ C[C′[e1]] ≡ C[e] →l C[e′] ≡ C[C′[e2]] ≡ C′′[e2].
We can repeat that process ensuring that the rule (Contx) was
not applied in e →l e′. So, by the proof of the other cases,
[[[e′]]] b [[[e]]], and by Lemma 4, [[[C[e′]]]] b [[[C[e]]]], and we are
done.

(Elim) Assume let X = e1 in e2 →l e2 and θ ∈ CSubts⊥ such
that P `CRWLlet e2θ _ t:

e1θ _⊥ B
e2θ[X/⊥] ≡ e2θ _ t

Hypothesis

let X = e1θ in e2θ _ t
Let

We know that X 6∈ ran(θ) because of the way we have de-
fined substitutions 1. Then as X 6∈ FV (e2) for the condition of
(Elim), X 6∈ FV (e2θ) and so e2θ[X/ ⊥] ≡ e2θ.

(Bind) Assume let X = t1 in e →l e[X/t1] and θ ∈ CSubst⊥
such that P `CRWLlet (e[X/t1])θ _ t:

t1θ _ t1θ
DC∗

eθ[X/t1θ] ≡ (e[X/t1])θ _ t
Hyp

let X = t1θ in eθ _ t
Let

By our definition of substitutions we assume X 6∈ dom(θ)
and X 6∈ ran(θ), so by Lemma 5 we have eθ[X/t1θ] ≡
(e[X/t1])θ. Besides, ”rule” [DC∗] refers to the fact that
∀t ∈ CTerm⊥.P `CRWLlet t _ t (very easy to prove).

(Flat) Assume let X = (let Y = e1 in e2) in e3 →l let Y =
e1 in (let X = e2 in e3) and θ ∈ CSubts⊥ such that
P `CRWLlet (let Y = e1 in (let X = e2 in e3))θ _ t.
This proof must be must be of the shape of:

e1θ _ t1

e2θ[Y/t1] _ t2 (e3θ[Y/t1] ≡ e3θ)[X/t2] _ t

(let X = e2θ in e3θ)[Y/t1] _ t
Let

let Y = e1θ in (let X = e2θ in e3θ) _ t
Let

for some t1, t2 ∈ CTerm⊥. Besides, because of the way we
have defined substitutions, Y 6∈ ran(θ), so as by the condition
of (Flat), Y 6∈ FV (e3), then Y 6∈ FV (e3θ) and we can say
e3θ[Y/t1] ≡ e3θ. So:

e1θ _ t1
Hyp

e2θ[Y/t1] _ t2
Hyp

let Y = e1θ in e2θ _ t2
Let

e3θ[X/t2] _ t
Hyp

let X = (let Y = e1θ in e2θ) in e3θ _ t
Let

(LetIn) Assume h(d1, . . . , e, . . . , dn) →l let X = e in h(d1, . . .
, X, . . . , dn) and θ ∈ CSubts⊥ such that P `CRWLlet

(let X = e in h(d1, . . . , X, . . . , dn))θ _ t. This proof
will reduce to the proofs eθ _ t1 and h(d1, . . . , X, . . . , dn)
θ[X/t1] _ t for some t1 ∈ CTerm⊥. By the variable con-
vetion X 6∈ dom(θ) and X 6∈ ran(θ), so as X is fresh then
∀i.X 6∈ FV (diθ), hence h(d1, . . . , X, . . . , dn)θ[X/t1] ≡
h(d1θ, . . . , t1, . . . , dnθ). Now there are two possible cases:

a) h = c ∈ DC, then h(d1θ, . . . , t1, . . . , dnθ) _ t must
proved by (DC) as:

d1θ _ s1 . . . t1 _ t′1 . . . dnθ _ sn

c(d1θ, . . . , t1, . . . , dnθ) _ c(s1, . . . , t
′
1, . . . , sn) ≡ t

for some s1, . . . , sn, t′1 ∈ CTerm⊥. As ∀t ∈ CTerm⊥,
t _ t′ implies t′ v t (easy to prove, as only B, RR and
DC could be applied), then t′1 v t1, and so as eθ _ t1,
by Lemma 6 we have eθ _ t′1. Then we have proofs for
d1θ _ s1 . . . eθ _ t′1 . . . dnθ _ sn, and with (DC) we
can build a proof for c(d1θ, . . . , eθ, . . . , dnθ) _
c(s1, . . . , t

′
1, . . . , sn) ≡ t.

1 Actually, to prove this theorem properly, we cannot restrict the substitution
to fulfil these restrictions, so in fact we rename the bound variables in an
α-conversion fashion and use the equivalence e[X/t] ≡ e[X/Y][Y/t]
(with Y the new bound variable), to use the hypothesis. We will assume
this convention from now on.

b) h = f ∈ FS, then h(d1θ, . . . , t1, . . . , dnθ) _ t must be:

d1θ _ s1 . . . t1 _ t′1 . . . dnθ _ sn r _ t

f(d1θ, . . . , t1, . . . , dnθ) _ t
OR

for some (f(s1, . . . , t
′
1, . . . , sn) → r) ∈ [P]⊥. Again as

∀t ∈ CTerm⊥, t _ t′ implies t′ v t, then t′1 v t1,
and so as eθ _ t1, by Lemma 6 we have eθ _ t′1. So
we have proofs for d1θ _ s1 . . . eθ _ t′1 . . . dnθ _ sn

and r _ t and then with (OR) we can build the proof for
f(d1θ, . . . , eθ, . . . , dnθ) _ t.

(Fapp) Assume f(t1, . . . , tn) →l r with (f(p1, . . . , pn) =
e)σ ∈ [P] such that ∀i.piσ = ti and eσ = r, and θ ∈
CSubts⊥ such that P `CRWLlet rθ _ t. Then as θ ◦
σ ∈ CSubts⊥,∀i.piσθ = tiθ and eσθ = rθ we conclude
(f(p1, . . . , pn) = e)σθ ∈ [P]⊥ and so:

t1θ _ t1θ
DC∗

. . . tnθ _ tnθ
DC∗

rθ _ t
Hyp

f(t1θ, . . . , tnθ) _ t
OR

2

PROOF:[For Theorem 10] As CRWLd inherits all the rules of
CRWL then it is trivially complete. All that is left is proving that the
rule ORd is sound. Let us suppose an application of ORd in which
its premise is a CRWL-proof, not only a CRWLd-proof, we will
see that we can replace that application of ORd with an application
of OR, obtaining exactly the same result. If the starting proof was
the following:

rσ _ t
f(p1, . . . , pn)σ _ t

ORd

with (f(p1, . . . , pn) → r) ∈ P and σ ∈ DSubst⊥. Then, as σ is
deterministic, applying Lemma 15 under P `CRWL rσ _ t we get
that there must exist θ ∈ [[σ]] such that P `CRWL rθ _ t. Besides,
we can prove that ∀i ∈ {1, . . . , n}, P `CRWL piσ _ piθ, by
induction on the structure of each pi:
Base cases
• pi ≡ X ∈ V: Then there are two possible cases, if X 6∈ dom(σ)
then by definition of [[σ]] we have that X 6∈ dom(θ), so P `CRWL

σ(X) ≡ X _ X ≡ θ(X), by RR. On the other hand, if
X ∈ dom(σ) then by definition of [[σ]] we have that X ∈ dom(θ)
and P `CRWL σ(X) _ θ(X).
• pi ≡ c ∈ CS0: Similar to de previous case for X 6∈ dom(σ).
Inductive step Then pi ≡ c(t1, . . . , tn) and we can do

IH
t1σ _ t1θ . . .

IH
tnσ _ tnθ

c(t1σ, . . . , tnσ) _ c(t1θ, . . . , tnθ)
DC

As θ ∈ [[σ]] then θ ∈ CSubst⊥ and so it can be used to apply OR
as follows:

p1σ _ p1θ . . . pnσ _ pnθ rθ _ t

f(p1, . . . , pn)σ _ t
OR

On the other hand, if the starting proof was:
rσ _ t

fσ ≡ f _ t
ORd with (f → r) ∈ P y σ ∈ DSubst⊥

then we would have θ ∈ [[σ]] ⊆ CSusbt⊥ such that P `CRWL

rθ _ t, as in the previous case, and we could use it to apply OR:

rθ _ t
fσ ≡ f _ t

OR

We have just covered the case where the premise used to apply
ORd is also a CRWL-proof, but for any CRWLd-proof we can
apply this transformation from its leaves (the application of rules

without premise, like B or RR) climbing to its parents (the proofs
for which they are premises), obtaining an equivalent CRWL-proof.
2

The next result is a well known result in the scope of CRWL and
will be used to prove Lemma 7.

LEMMA 17. Let linear p ∈ CTerm, and t1 ∈ CTerm⊥, t2 ∈
CTerm, θ ∈ CSubst⊥. Then pθ = t1 and t1 v t2 implies
∃θ′ ∈ CSubst such that pθ′ = t2 and θ v θ′.

PROOF:[For Lemma 7] By induction on the structure of e:

Base Case : e ≡ h: Then h →0
l h, ok with X ≡ ∅.

Inductive Step :
• e ≡ h(e1, . . . , en): Let us do it for just one argument, for

h(e1). If e1 ∈ CTerm then we are done with X ≡ ∅ and
h(e1) →0

l h(e1), so let us suppose that e1 6∈ CTerm.
Then e1 6∈ V so by IH, e1 →∗

l let X1 = a1 in h1(t1) with
X1 6≡ ∅, so:

h(e1) →∗
l h(let X1 = a1 in h1(t1))

→∗
l let Y1 = (let X1 = a1 in h1(t1)) in h(Y1)

→∗
l let X1 = a1 in let Y1 = h1(t1) in h(Y1)

by i.h., (LetIn) and several applications of (Flat). Then
there are two possible cases:

a) h1 = f1 ∈ FS: Then we are done as ∀ai ∈ a.|ai| =⊥
by the IH, and |f1(t1)| =⊥.

b) h1 = c1 ∈ DC: Then let X1 = a1 in let Y1 =
c1(t1) in h(Y1) →l let X1 = a1 in h(c1(t1)) by
(Bind), and we are done as ∀ai ∈ a.|ai| =⊥ by the
IH.

Using this techniques we can extend the proof to the case
when h has more than one argument.

• e = let X = e1 in e2: Let us assume e1 6∈ V and e2 6∈ V ,
then we apply the IH to e1 and e2:

let X = e1 in e2 →∗
l

let X = (let X1 = a1 in h1(t1)) in
(let X2 = a2 in h2(t2)) →∗

l (by IH)
let X1 = a1 in let X = h1(t1) in

let X2 = a2 in h2(t2) (by (Flat) several times).

Then there are two possible cases:

a) h1 = f1 ∈ FS: Then we are done as ∀ai ∈ a1 ∪
a2.|ai| =⊥ by the IH, and |f1(t1)| =⊥.

b) h1 = c1 ∈ DC: Then:

let X1 = a1 in let X = c1(t1) in
let X2 = a2 in h2(t2) →∗

l

let X1 = a1 in let X2 = a2[X/c1(t1)] in
h2(t2)[X/c1(t1)]

by (Bind), and we are done as for every θ ∈ CSubst,
|e| =⊥ implies |eθ| =⊥ (easy to prove).
Using this techniques we can extend the proof to the case
when e1 or e2 are variables.

2

PROOF:[For Lemma 8] By induction on the size s of the CRWL-
proof, that we measure as the number of CRWL rules applied:

Base Case: s = 1. Let us see which rule was applied:
B This contradicts the hypothesis because then t ≡⊥, so we are

done. In the rest of the proof we will assume that t 6≡⊥ because
otherwise we would be in this case.

RR Then we have P `CRWL X _ X . But then X →0
l X and

X v X ≡ |X|, so we are done with X = ∅.
DC Then we have P `CRWL c _ c. But then c →0

l c and
c v c ≡ |c|, so we are done with X = ∅.

Inductive Step: s > 1. Let us see which rule was applied:

DC Then we have e ≡ c(e1, . . . , en) and the CRWL-proof has
the form:

e1 _ t1, . . . , en _ tn

c(e1, . . . , en) _ c(t1, . . . , tn)
DC

In the general case we can have ti = ⊥ for some i’s and tj 6= ⊥
for the remaining ones. For simplicity we consider the case the
case n = 2 with t1 = ⊥ and t2 6= ⊥ (it is easy to extend
the result for the general case), we have P `CRWL c(e1, e2) _
c(⊥, t2). Then by IH over the second argument we have e2 →∗

l

let X2 = a2 in t′2, with t′2 ∈ CTerm, |a2i | =⊥ for every a2i and
|let X2 = a2 in t′2| = t′2[X2/ ⊥] w t2. So:

c(e1, e2) →∗
l c(e1, let X2 = a2 in t′2) by IH

→∗
l let Y = (let X2 = a2 in t′2) in c(e1, Y) by (LetIn)

→∗
l let X2 = a2 in let Y = t′2 in c(e1, Y)) by (Flat)∗

→∗
l let X2 = a2 in c(e1, t

′
2) by (Bind)

Then there are several possible cases:
a) e1 = f1(e1): Then

let X2 = a2 in c(f1(e1), t
′
2) →l let X2 = a2 in let Z =

f1(e1) in c(Z, t′2), by (LetIn). So we are done as |a2i | =⊥ for
every a2i by the IH, |f1(e1)| =⊥ and

|let X2 = a2 in let Z = f1(e1) in c(Z, t′2)| =
c(Z, t′2)[X2/ ⊥, Z/ ⊥] w c(⊥, t2)

because t′2[X2/ ⊥] w t2 by the IH, and Z is fresh and so does
not appear in t′2.

b) e1 = t′1 ∈ CTerm; Then we are done as |a2i | =⊥ for every
a2i by the IH, and

|let X2 = a2 in c(t′1, t
′
2)| = c(t′1, t

′
2)[X2/ ⊥] w c(⊥, t2)

because t′2[X2/ ⊥] w t2 by the IH.

c) e1 = c1(e1) 6∈ CTerm: Then by Lemma 7, c1(e1) →∗
l

let X1 = a1 in c1(t1) such that |a1i | =⊥ for every a1i . But
then:

let X2 = a2 in c(c1(e1), t
′
2)

→∗
l let X2 = a2 in c(let X1 = a1 in

c1(t1), t
′
2) (by Lemma 7)

→∗
l let X2 = a2 in let Y = (let X1 = a1 in

c1(t1)) in c(Y, t′2) (by LetIn)
→∗

l let X2 = a2 in let X1 = a1 in
let Y = c1(t1) in c(Y, t′2) (by Flat∗)

→∗
l let X2 = a2 in let X1 = a1 in

c(c1(t1), t
′
2) by (Bind), as Y is fresh.

Then we are done as |a1i | =⊥ for every a1i by Lemma 7,
|a2i | =⊥ for every a2i by the IH, and

|let X2 = a2 in let X1 = a1 in c(c1(t1), t
′
2)|

= c(c1(t1), t
′
2)[X1/ ⊥][X2/ ⊥] w c(⊥, t2)

because t′2[X2/ ⊥] w t2 by the IH, and X1 are fresh and so do
not appear in t′2.

d) e1 = let X = e11 in e12: this case is impossible as in Lemma
8 we assume e ∈ Term, without lets!

OR If f has no arguments (n = 0) then we have:

rθ _ t
f _ t

OR

with (f _ rθ) ∈ [P]⊥. Let us define θ′ ∈ CSubst as the
substitution which is equal to θ except that every ⊥ introduced
by θ is replaced with some constructor symbol or variable. Then
θ v θ′, so by Lemma 6 we have P `CRWL rθ′ _ t with a proof
of the same size. But then appliying the IH to this proof we get
rθ′ →∗

l let X = a in t′ under the conditions of the lemma. But
then f →l eθ′ →∗

l let X = a in t′ applying (Fapp) in the first
step, so we are done.

If n > 0, we will proceed as in the case for (DC), doing a
preliminary version for P `CRWL f(e1, e2) _ t which can be
easily extended for the general case. Then we have:

e1 _⊥ e2 _ t2 r _ t

f(e1, e2) _ t
OR

such that t2 6=⊥, and with (f(p1, p2) = e)θ ∈ [P]⊥ such that
p1θ =⊥, p2θ = t2 and eθ = r. Then applying the IH to P `CRWL

e2 _ t2 we get that e2 →∗
l let X2 = a2 in t′2 such that |a2i | =⊥

for every a2i and |let X2 = a2 in t′2| = t′2[X2/ ⊥] w t2. So:

f(e1, e2) →∗
l f(e1, let X2 = a2 in t′2) by the IH

→∗
l let Y = (let X2 = a2 in t′2) in f(e1, Y) by (LetIn)

→∗
l let X2 = a2 in let Y = t′2 in f(e1, Y) by (Flat)∗

→∗
l let X2 = a2 in f(e1, t

′
2) by (Bind)

Then applying Lemma 7 we get

f(e1, t
′
2) →∗

l let X1 = a1 in f(t′1, t
′
2)

such that |a1i | =⊥ for every a1i . Now as t′2[X2/ ⊥] w t2 then
(t′1, t

′
2) w (⊥, t2), so by Lemma 17 there must exists θ′ ∈ CSubst

such that θ v θ′ and (p1, p2)θ
′ = (t′1, t

′
2). Then by Lemma 6, as

P `CRWL r ≡ eθ _ t then P `CRWL eθ′ _ t with a proof of
the same size. As θ′ ∈ CSubst and e ∈ Term (because it is part
of the program) then eθ′ ∈ Term and we can apply the IH to that
Crwl-proof getting that eθ′ →∗

l let X = a in t′ such that |ai| =⊥
for every ai and |let X = a in t′| = t′[X/ ⊥] w t. So:

let X2 = a2 in f(e1, t
′
2)

→∗
l let X2 = a2 in let X1 = a1 in f(t′1, t

′
2) (by Lemma 7)

→∗
l let X2 = a2 in let X1 = a1 in eθ′ (by Fapp)

→∗
l let X2 = a2 in let X1 = a1 in

let X = a in t′ by 2nd IH.

Then |a2i | =⊥ for every a2i by IH, |a1i | =⊥ for every a1i

by Lemma 7 and |ai| =⊥ for every ai by IH. As the variables
in X1 ∪ X2 are fresh variables introducted by the let-calculus,
none of those can appear in t. So t′[X/ ⊥] w t implies that
∀p ∈ O(t′) such that t′|p = Y such that Y ∈ X1 ∪ X2 then
t|p =⊥. So |let X2 = a2 in let X1 = a1 in let X = a in t′| =

t′[X/ ⊥][X1/ ⊥][X2/ ⊥] w t. 2

