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Abstract

This paper describes implementation issues of the constraint functional logic system T OY, which has
recently incorporated new features such as solver cooperation. The formal framework introduced in [14] is
the basis for this implementation, allowing the cooperation of three constraint solvers over different domains:
the Herbrand domain, the finite domain, and the real numbers domain. The system offers both binding and
propagation as mechanisms for the cooperation. The paper describes the implementation of the system and,
in particular, regarding solver cooperation, presents a new function that serves as a bridge among the solvers
involved in the cooperation. The new system (T OY version 2.3.0) is built upon the last software release
(T OY version 2.2.3), inheriting all of the previous features. The contents of this paper covers the aspects
of the implementation which have not been reported elsewhere. We describe its software architecture,
data-flow of compilation, loading of libraries, and the implementation of binding and propagation.

Keywords: Cooperating Solvers, Constraints, Functional Logic Programming, Lazy Narrowing,
Implementation

1 Introduction

The design, implementation, and optimization of declarative (particularly logic)
constraint programming systems can be considered one of the major issues treated
in recent years in the constraint programming and logic programming areas. Proof
of it is the annual celebration of the (already stable) colloquium on implementation
of constraint and logic programming systems (i.e., CICLOPS) that is usually held
as a satellite workshop of the international conference on logic programming.

One of the main reasons for this interest in the implementation of declarative
constraint systems is the continuous progress that the computing technology is ex-
perimenting nowadays. This progress is translated into an improvement of physical

1 Author partially supported by projects TIN2005-09207-C03-03 and S-0505/TIC0407.
2 Author partially supported by projects TIN2004-7943-C04-01 and TIN2005-08818-C04-01.
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factors that affect directly to the performance of a programming system, e.g., faster
processor or memories with higher capacities, among other factors. Additionally,
declarative constraint languages (e.g., CHR [19], Prolog [31,9,13], Curry [24], Oz
(Mozart) [34], HAL [11] or T OY [28], among others) are considered as high level
programming tools that ease the task of programming (e.g., formulation of the prob-
lem or program analysis) and provide a reasonable balance between compile-time
effort and run-time problem solving. The addition of constraint solving technology
to declarative programming systems has caused that these systems are now being
considered good options for programmimg complex and real problems. Moreover,
declarative constraint systems combine a high level of abstraction and a declarative
nature with an extreme flexibility in the design of their implementations (e.g., wrt.
their execution model). This means that they can be used not only as development
tools for implementing non-trivial applications but also as platforms where research
on key concepts of the implementation of programming languages (including con-
current/parallel models and memory management) can be done.

In this paper, we consider specifically the constraint functional logic program-
ming (CFLP) language T OY [4,20]. This language combines functional and rela-
tional notation, curried expressions, higher-order functions, patterns, partial appli-
cations, non-determinism, lazy evaluation, logical variables, types, domain variables,
and constraint composition. It also provides technology for finite domain (FD)
constraint solving (including a wide set of FD constraints comparable to existing
CLP(FD) systems and which is competitive with them as shown by performance
results [15]), support for managing arithmetic linear and non-linear constraints de-
fined on the real domain R [26], and provision of strict equality and disequality
constraints [5] defined in the Herbrand domain H. The domain-specific constraints
are solved in the associated domain-specific solvers (i.e., SolverFD, SolverR, SolverH,
respectively) that are connected to the system via an adequate interface.

Recently, with the aim of extending the applicability of the system, T OY has
incorporated new features such as solver cooperation. The implementation of this
feature in T OY is based on the theoretical framework described in [14]. Basically,
this cooperation allows the communication between SolverFD and SolverR by means
of special communication constraints called bridges. A bridge u #== v constrains
u::int and v::real to take the same integer value. Bridges are kept in a special
store and they are used for two purposes, namely binding and propagation. Binding
simply instantiates a variable occurring at one end of a bridge whenever the other
end becomes a numeric value. Propagation is a more complex operation which
takes place whenever a pure constraint is submitted to SolverFD or SolverR. At
that moment, propagation rules relying on the available bridges are used for building
a mate constraint which is submitted to the mate solver (think of SolverFD as the
mate of SolverR, and viceversa). Propagation enables each of the two solvers to
take advantage of the computations performed by the other. In order to maximize
the opportunities for propagation, the goal solving procedure has been enhanced
with operations to create bridges whenever possible, according to certain rules.
Obviously, independent computing of solvers remains possible.

Goal solving takes care of evaluating expressions to functions by means of lazy
narrowing [12,27], and decomposing constraints by introducing new local variables.
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Eventually, primitive FD and R constraints arise, which must be submitted to
the respective solvers. T OY has been implemented on top of SICStus Prolog [33],
using the FD and R solvers provided by SICStus along with Prolog glue code for
interfacing them with SolverFD and SolverR, respectively, code for implementing
SolverH, and code for implementing lazy narrowing dealing with constraints.

This paper focuses specifically on implementation issues, not reported so far, of
the T OY system. Among these issues, the paper provides implementation details
about the architecture of the system, its module system, program compilation data-
flow, the way in which libraries are loaded in the system and, more particularly,
how the solver cooperation described in [14] has been implemented. Thus, this
paper can help other implementors of declarative constraint systems to understand
the implementation fundamentals of T OY and can provide them further ideas to
incorporate in their systems.

2 Software Architecture

T OY [14] has four constraint domains available (see Figure 1): H for equality and
disequality constraints dealing with constructed terms, R for (linear and non-linear)
arithmetical constraints over real numbers, FD for finite domain constraints over
integers, and M for bridge constraints between numerical solvers, allowing its co-
operation by means of binding and propagation.
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Fig. 1. Software Architecture of T OY

Each constraint domain has an attached constraint store (H, R, FD, and M
for H, R, FD, and M, respectively) and solver (SolverH, SolverR, SolverFD, and
SolverM). We take advantage of the SICStus Prolog [33] constraint stores for stor-
ing R and FD constraints. For the sake of rapid prototyping, we have implemented
the stores H and M as a single list, although they should be separated for better
performance. In addition, we always add constraints to the communication store
(irrespective of groundness) and never drop them (again to be enhanced in a forth-
coming release).

Primitive constraints for R and FD are posted to SolverR and SolverFD, respec-
tively, which are already implemented in SICStus Prolog libraries. The impedance
mismatch problem between the host language and these solvers is tackled by glue
code (cfr. Section 5). Bridge constraints for M are implemented as introduced
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in [14] and detailed in Section 5. Equality and disequality constraints for H are
implemented as already reported [5,1].

Disequality constraints may affect a variable whose type is unknown [28]. These
constraints are assumed to involve constructed terms and, therefore handled by
SolverH. But, along computation, these variables may be instantiated to a number,
so that the corresponding disequality constraints are moved to SolverR. In fact,
this should also be done with SolverFD for integers, but we have not dealt with
its implementation up to now. Since a disequality constraint (#/=) in SolverFD

is syntactically different from a disequality contraint in SolverR and SolverH (/=),
programmers are warned about this issue.

2.1 Modules

The T OY system has several usage modes (with respect to the loaded libraries and
active constraint solvers) which either imply to have more functions available, or a
different implementation of existing functions, or removing existing functions. We
have thus taken advantage of the module system provided by SICStus Prolog, which
allows to easily interchange, add or remove the implementation of predefined func-
tions by simply loading a file, besides the advantages of modularization for software
development. Each module is defined by a file which consists of the module decla-
ration, import and export lists, and the definition of exports and hidden predicates.
Next, we indicate some of the modules which are mainly implied in particular tasks,
and enclosing between parenthesis the file which define the module.

• System initialization and operation:
toy (toy.pl): The first module loaded and used for initialization purposes.
initToy (initToy.pl): For interpreting commands and evaluate expressions

from the command prompt.
process (process.pl): For the compilation process.
dyn (dyn.pl): Contains dynamic predicates which indicates the system state.

For instance, prop active for indicating whether propagation between numer-
ical solvers is active, or cflpfd active for indicating whether the finite domain
library is loaded.

tools (tools.pl): Utility predicates.
toycomm (toycomm.pl): Contains common predicates to T OY programs (e.g.,

the predicate hnf).
• Compilation:
compil (compil.pl): Lexical, syntactical, (part of) semantical analysis, and de-

pendency analysis of functions.
codfun (codfun.pl): Generates the Prolog code of a function using the defini-

tional tree.
errorToy (errorToy.pl): Error handling during compilation.
inferrer (inferrer.pl): Type inference and checking.
outgenerated: Contains defined and predefined type and function definitions,

definitional trees [2], and flags for indicating deterministic functions. It is built
up and loaded during program compilation (see Section 3).

• Built-ins and goal solving (see Section 4):
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plgenerated (basic.pl): Intended as a T OY user module in which the result
of compiled code is available for goal solving. It contains type definitions for
predefined constructors and functions, including the code to implement the
operational behaviour of predefined functions (for instance, the code for sus-
pensions and partial applications). Its contents vary depending on whether a
user program is compiled (see Section 3) or a library (file, graphics, reals, finite
domain (see Subsection 4.3)) is loaded.

primFunct (primFunct.pl): Predefined functions (infix and type declarations)
are defined in this module. The contents of this module depend on the libraries
which have been loaded, so that they are built at run-time from different files.

primitivCod (primitivCod.pl, primitivCodClpr.pl): The operational be-
haviour of predefined functions is implemented in this module, which again
varies with the library loaded. If the library for reals is loaded, the defini-
tion of arithmetical operators is different since they are handled in constraint
expressions which are sent to SolverR.

primitivCodIo (primitivCodIo.pl): Primitives for the file library.
primitivCodGra (primitivCodGra.pl): Primitives for the graphics library.

3 Compiling Programs

Instead of using an abstract machine for running byte-code or intermediate code
from compiled programs, the T OY system relies on an efficient Prolog system for
running compiled T OY programs, as done in other related systems [3]. The compi-
lation follows a demand driven computation strategy for lazy narrowing [27]. In this
section, instead of describing the compilation (which was already reported [27,1]),
we rather describe the data-flow involved in this procedure.

Given the T OY program program.toy, its compilation follows the data-flow de-
picted in Figure 2. First, defined functions, types and constructors in program.toy
are joined with predefined ones in basic.toy, giving the file program.tmp.toy.

�

program.toy basic.toy 

program.pl 

program.tmp.toy 

program.tmp.tmp 

program.tmp.out 

Fig. 2. Compilation Data-Flow

Next, a first compilation stage is performed: lexical, syntactical, and (part of)
semantical analysis, giving the file program.tmp.tmp, which in particular contains
the result of higher-order to first-order program translation [21]. A second compila-
tion stage gives the file program.tmp.out, which defines the module outgenerated
containing type declarations, functional dependencies, and definitional trees [2].
This file is consulted, in particular allowing the user to ask for definitional trees
with the command /tree.
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Finally, from the file program.tmp.out, a type inference is performed to infer
non-declared types and check that user-declared types are correct. The final com-
pilation stage is also performed in this step, generating the compiled (Prolog) code,
giving the file program.pl, which defines the module plgenerated. This file, when
next consulted, loads the files toycomm.pl, primFunct.pl, primitivCod.pl (or
primitivCodClpr.pl if the constraint solver over reals is active) into plgenerated
(see Section 4). It also loads primitivCodIo.pl and primitivCodGra.pl if the
file and graphical libraries are loaded, respectively (see Section 4). program.pl
also contains the Prolog code for the functions in program.toy. The last compi-
lation stage departs from the definitional trees in program.tmp.out, performing a
case analysis about the shape of these trees [27]. In addition, program.pl contains
code for dynamic cut [8], type declarations for predefined functions and construc-
tors, head normal form (hnf) calculations, partial applications and declarations of
precedence and associativity for infix operators. The file program.pl is loaded for
defining the (user) module plgenerated so that both defined (in program.toy) and
predefined functions, types and constructors are available during goal solving. Note
that if a program is compiled, its definitions in the module plgenerated will be
lost if another program is compiled afterwards. Therefore, if definitions in several
programs are needed, the include statement [4] has to be used.

4 Loading Libraries

Four libraries can be optionally loaded into T OY: file, graphics, constraints over
real numbers, and constraints over finite domains (integers). They add type, data
constructor and function definitions to the basic system, therefore requiring more
main memory. Loading more libraries means leaving less memory for goal solving,
although this issue becomes less noticeable as main memory capacities grows along
time. Note that loading the real numbers constraint library implies understanding
arithmetical equations as logical relations, requiring no groundness on related vari-
ables, thus allowing a more declarative understanding of the program. However, this
may cause a programmer familiarized with logic or functional programming without
constraints to mistake tests for relations, which will be handled by the most costly
constraint solving procedure. Next, we show the different ways libraries are loaded,
which mainly depend on technical and rapid-prototyping reasons.

4.1 File and Graphics

Loading and unloading the file and graphics libraries are performed with the user
commands /io file, /noio file, /io graphic and /noio graphic, respectively.
Loading a library performs three main stages: first, files for defining modules are
built; second, they are consulted in the Prolog underlying system; and, third, a void
file is compiled to generate and load the module plgenerated. This allows both the
compilation and execution of user programs using predefinitions in such libraries.
In the following, we focus on loading the graphic library, an analogous process to
the loading of the file library.

Loading the graphics library involves four modules: primitivCod, primitivCod-
Gra, primFunct, and plgenerated, as shown in Figure 3. The contents of the files
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defining modules depend on the loaded libraries, so that if, e.g., the library for real
numbers is loaded, the file defining the module primitivCod is primitivCodClpr.pl
instead of primitivCod.pl, as shown in the picture with the symbol ⊕, meaning
that only one of the alternative files will be used for defining the module. On
the other hand, there are other modules (primFunct and plgenerated) which are
built by joining in one file the contents of, at least, two files (basiccopia.pl and
basicGra.pl) for loading the graphics library. If the file library is already loaded,
the joining will also include the file basicIo.pl (the optional inclusion of a file is
shown in the figure by enclosing the file name in a dashed box).

    primitivCod.pl ⊕� primitivCodClpr.pl � primitivCod 
         
      primitivCodGra.pl � primitivCodGra 
         

primFunctcopia.pl + primFunctGra.pl + primFunctIo.pl = primFunct.pl � primFunct 
         

basiccopia.pl + basicGra.pl + basicIo.pl = basic.pl � plgenerated 
         

basiccopia.toy + basicGra.toy + basicIo.toy = basic.toy   
�

�

Fig. 3. Modules and Built-In Definitions for the Graphics Library

These modules make predefinitions available to the system at the command
prompt, so that goals containing built-ins can be compiled and executed since pre-
definitions are visible from the built modules. In addition, the file basic.toy is
built up from, at least, the files basiccopia.toy (containing predefinitions of ba-
sic types and functions) and basicGra.toy (containing predefinitions of types and
functions for graphics). This allows to have available predefinitions in the graphics
library for building up a temporary file during the compilation (cfr. Section 3).

Each module is then built up by consulting the corresponding files (cfr. Section
2). Then, the void file nada.toy is compiled, yielding the file nada.pl, in which the
module plgenerated is defined. The contents of this file are similar to basic.pl.

Loading the file library is similar to loading the graphics library, with the mod-
ule primitivCodIo instead of primitivCodGra, and the files primitivCodIo.pl,
primFunctIo.pl, basicIo.pl, and basicIo.toy instead of primitivCodGra.pl,
primFunctGra.pl, basicGra.pl, and basicGra.toy, respectively.

Unloading these libraries amounts to reload a given loading configuration; that
is, given the loaded libraries indicated in the system state (module dyn, cfr. Section
2), a loading process is performed omitting the just unloaded library. This applies
to the libraries for files, graphics, and constraints for real numbers, but it is different
for the finite domain constraint library as explained in Subsection 4.3.

4.2 Constraints over Reals

Loading and unloading the real numbers library are performed with the user com-
mands at the system prompt /cflpr and /nocflpr, respectively. The loading
command performs the same stages as for loading files or graphics libraries.

Since the operational behaviour of arithmetical operators changes, its implemen-
tation is redefined in the module primitivCod (see Figure 4), taking primitivCod-
Clpr.pl as its defining file. In addition, this file defines four new optimization
functions: minimize, maximize, bb minimize, and bb maximize, the first two are
intended for linear programming optimization, and the second two for mixed integer
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linear programming optimization (using a branch and bound algorithm). Therefore,
there is no a specific module for this library because the module primitivCod is
used for this purpose. However, modules primFunct and plgenerated are built up
in a similar way as indicated in the previous section. Also, the file basic.toy is to
be built up in a similar way with, in particular, predefinitions of reals.

� � � � � � � � primitivCodClpr.pl � primitivCod 
 �  �  �  �    

primFunctcopia.pl �� primFunctClpr.pl� �� primFunctGra.pl �� primFunctIo.pl �� primFunct.pl �� primFunct 
 �  �  �  �    

basiccopia.pl �� basicClpr.pl �� basicGra.pl �� basicIo.pl �� basic.pl � plgenerated 
 �  �  �  �    

basiccopia.toy �� basicClpr.toy �� basicGra.toy �� basicIo.toy �� basic.toy   

�

Fig. 4. Modules and Built-In Definitions for the Real Numbers Constraint Library

The file primitivCodClpr also includes the loading of the SICStus Prolog con-
straint logic programming over reals library, which makes available the underlying
Prolog system solver to compiled T OY goals and programs.

4.3 Constraints over Finite Domains

Loading and unloading the library for constraints over finite domains are performed
with the user commands at the system prompt /cflpfd and /nocflpfd, respec-
tively. In contrast to the loading and unloading processes just described in previous
subsections, we have followed a different point of view in order to promote rapid
prototyping.

The objective is to have available both the T OY library for finite domain con-
straints and the SICStus Prolog one. The first one relies on the second one as
explained in Section 2. Then, instead of adding a new module for the finite do-
main constraint library, we make available all the predefinitions in the module
plgenerated, which is built by compiling the file nadacflpfd.toy joined with
basic.toy, as shown in Figure 5. nadacflpfd.toy includes the file cflpfd.toy by
the directive include; in fact, it is the only code in nadacflpfd.toy.

The result of this compilation gives the file nadacflpfd.pl, which contains all
the stuff needed for goal solving but the actual implementation of the behaviour
for finite domain built-ins. This is because a T OY program is compiled in terms of
T OY built-ins, and it is not possible to specify its Prolog translation at this level.
So, function definitions in the file cflpfd.toy are void, such as 0 #> 0 = true.
After compilation, this is translated into Prolog as shown in Figure 5.

On the other hand, the actual implementation of finite domain built-ins are
in the file cflpfdfile.pl, and its contents replace the void definitions in the file
nadacflpfd.pl, which now builds the module for the FD constraints library. In
fact, it is the only module which is modified by loading this library, in contrast to
the three or four modules (depending on the loaded libraries) of former cases.

Comparing this approach to the former one means that library developers have
only to focus on modifying just two files: cflpfd.toy, for declaring predefined
types, data constructors and function types; and cflpfdfile.pl, for implement-
ing the actual behaviour of predefined functions. In the former approach, the li-
brary developer has to define the built-ins in a T OY file, compile this file, extract
type definitions for constructors and functions, add them to primFunctLibrary.pl
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�

� cflpfd.toy 

(#>=)::int->int->bool 
0 #>= 0 = true 
� �

�����

basic.toy 

nadacflpfd.toy 

���	
���

nadacflpfd.pl 

$#>=(_A,_B,true,_C,_D):- 
   hnf(_A,0,_C,_E), 
   hnf(_B,0,_E,_D). 

nadacflpfd.pl 

$#>=(L,R,Out,Cin,Cout):-  
 hnf(L,HL,Cin,Cout1),  
 hnf(R,HR,Cout1,Cout),  
 ((Out=true,HL#>=HR); 
  (Out=false,HL#<HR)).  

cflpfdfile.pl 

$#>=(L,R,Out,Cin,Cout):-  
   hnf(L,HL,Cin,Cout1),  
   hnf(R,HR,Cout1,Cout),  
   ((Out=true,HL#>=HR); 
    (Out=false,HL#<HR)).  
 

Fig. 5. Assembling Finite Domain Built-Ins into the Module plgenerated

and basicLibrary.pl in different formats, and modify the module interface for
primitivCodLibrary.pl. Clearly, this process, besides tedious, is prone to errors.

5 Implementing Solver Cooperation

This section shows the implementation of the basic mechanisms for solver coopera-
tion: binding and propagation. Binding is implemented with the new communica-
tion constraint bridge, whereas propagation is implemented by modifying the code
of predefined constraints, allowing to send mate constraints to mate solvers [14].
Solver cooperation is allowed with binding alone or both binding and propagation.
This allows to analyze the trade-off between communication flow and performace
gain and decide the best option for a given program. Next, we show the implemen-
tation of binding and propagation (from SolverFD to SolverFD and viceversa).

5.1 Binding

The Prolog implementation of the bridge constraint is similar in nature to the
translation of any defined function. In particular, the name of the function is
preceded by the symbol $ in order to avoid the name clash problem. The code
excerpt below (in cflpfdfile.pl) shows its basic implementation (without obvious
optimizations):
(1) $#==(L, R, Out, Cin, Cout):-
(2) hnf(L, HL, Cin, Cout1), hnf(R,HR, Cout1, Cout2),
(3) ((Out=true, Cout = [’#==’(HL,HR)|Cout2],
(4) freeze(HL, HR is float(HL)), freeze(HR, HL is integer(HR)));
(5) (Out=false, Cout = [’#/==’(HL,HR)|Cout2],
(6) freeze(HL, (F is float(HL), {HR =\= F})),
(7) freeze(HR, (0.0 is float_fractional_part(HR) -> (I is integer(HR), HL #\= I); true)))).

As the bridge has arity 2, its Prolog implementation has two first arguments: L
and R for the left (integer) and right (real) arguments of #==, respectively. Out is
the argument for the result of its evaluation. Cin and Cout are the arguments for

10
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the incoming constraint store and the outcoming constraint store. This store (in
the following, mixed store) includes constraints from both domains H and M, i.e.,
disequality constraints for constructed terms and equality and disequality bridges
(in this paper, we have introduced equiv e1 e2 →! false, abbreviated as #/==,
as the counterpart of equiv e1 e2 →! true [14], abbreviated as #==). Notice that
there is no need of explicitly account for equality constraints on H since they are
handled by unification, whereas equality bridges should be explictly accounted since
they cannot be implicitly handled because of the different related types (integers vs.
reals). The mixed store also includes totality constraints [7]. Therefore, it includes
the stores H, M, and T (this last one for the totality constraints). We have relied in
the current predicate prototypes instead of using new arguments for different stores
for the sake of rapid prototyping.

Line (2) flattens both L and R by calculating their hnfs, which always delivers
either a variable or a number, therefore ensuring that no suspensions will occur
from line (3) on. So, this implements the demandness of these arguments: they are
required to be a variable or a number for a bridge constraint relating them to be
posted. In addition, note that a hnf calculation may involve during narrowing new
H disequality constraints that have to be added to the mixed store.

A common use of the bridge constraint is as an argument of a goal connective
(e.g., f X Y = true <= X #> 0, X #== Y, Y < log 100), but it also accepts its
reification (e.g., f X Y = B <= X #> 0, (X #== Y) == B, Y < log 2 100). This
means that if the value for B is true, then the constraint X #== Y is posted to the
store M (line (5)), whereas if the value is false, then the complementary constraint
(X #/== Y) is otherwise posted (line (5)).

Implementing both equiv e1 e2 →! true and equiv e1 e2 →! false is accom-
plished by using the concurrent predicate freeze available in SICStus Prolog. This
predicate suspends the evaluation of its second argument until the first one becomes
ground. For the first case (#==), we need to reflect in this constraint the equality
of its two arguments (variables or constants), which are of different type, i.e., real
and integer, so that type casting is needed (performed by the operations float and
integer in line (4)). Binding and matching are accomplished by unification. This
constraint also amounts to an integral constraint over its right argument. For the
second case (#/==), we have to state in SolverM that both arguments are not equal,
which cannot be directly handled by SICStus solvers, as before. So, whenever an ar-
gument becomes (or is) ground in a domain D, then a disequality constraint between
the casted ground variable and its mate variable can be posted to the underlying
solver for the mate domain D′ (lines 6-7).

5.2 Propagation: SolverFD to SolverR

Propagating a constraint in FD toR is possible if: the user has enabled propagation
with the command /prop, there is a bridge relating any of the involved variables,
and the constraint is allowed to be propagated (cfr. [14]). The propagation amounts
to, first, send a mate constraint from R to FD, and, second, create bridges for the
rest of variables in the FD constraint which are not involved in bridges, therefore
creating new R variables with integral values which may be further related in other
FD constraints. The code excerpt below (which can be found in cflpfdfile.pl)
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shows its basic implementation (without considering obvious optimizations) for a
concrete constraint #>:
(1) $#>(L, R, Out, Cin, Cout):-
(2) hnf(L, HL, Cin, Cout1), hnf(R, HR, Cout1, Cout2),
(3) ((Out=true, HL #> HR); (Out=false, HL #=< HR)),
(4) (prop_active ->
(5) (searchVarsR(HL,Cout2,Cout3,HLR),
(6) searchVarsR(HR,Cout3,Cout,HRR),
(7) ((Out == true, { HLR > HRR });
(8) (Out == false, { HLR =< HRR })));
(9) Cout=Cout2).

This predicate follows the same prototype (line (1)) as #==, since it is a binary
relation which can be reified. Its two input arguments (L and R) are demanded
to be in hnf (line (2)), and a primitive constraint is posted to the underlying FD
solver, depending on the Boolean result of the function (line (3)). If propagation is
active (indicated by the dynamic predicate prop active in line (4)), then bridges
relating the arguments of #> are looked for in the mixed store in order to find mate
variables in R (lines (5)-(6)). This search, if unsuccessful, will otherwise create
bridges relating new mate variables in R. Finally, a mate constraint is sent to the
underlying R solver (lines (7)-(8)).

5.3 Propagation: SolverR to SolverFD

Propagating a constraint in R to FD is possible in the same conditions stated in
the previous section. The propagation amounts to send mate constraints as before,
but bridges for the rest of variables in the R constraint are not created since their
integral nature is not for sure. The code excerpt below (which can be found in
primitiveCodClpr.pl) shows its basic implementation (without considering obvi-
ous optimizations) for a concrete constraint >:
(1) $>(L, R, Out, Cin, Cout):-
(2) hnf(L, HL, Cin, Cout1), hnf(R, HR, Cout1, Cout2),
(3) (Out = true, {HR > HL} ; Out = false, {HL =< HR}),
(4) toSolver(HL, Cout2, Cout3), toSolver(HR, Cout3, Cout4),
(5) toSolver(Out, Cout4, Cout),
(6) (prop_active ->
(7) (searchVarsFD(HL, Cout, BL, FDHL),
(8) searchVarsFD(HR, Cout, BR, FDHR),
(9) ((BL == true, BR == true, Out == true, FDHL #> FDHR);
(10) (BL == true, BR == true, Out == false, FDHL #=< FDHR);
(11) (BL == true, BR == false, Out == true, FDHL #> FDHR);
(12) (BL == true, BR == false, Out == false, FDHL #=< FDHR);
(13) (BL == false, BR == true, Out == true, FDHL #>= FDHR);
(14) (BL == false, BR == true, Out == false, FDHL #< FDHR);
(15) true); true).

After analogous steps to the previous subsection (lines (1)-(3)), the next two
lines deal with the explicit interaction between SolverH and SolverR [32]. Whenever
a disequality constraint occurs, it is assumed to involve terms in H (the type of a
variable is not always known because types are checked and inferred at compile-
time but this information is not present at run-time) so that it is sent to the mixed
store (this task is performed in the evaluation of the disequality constraint with
the predicate notEqual [4]). Therefore, we need to check whether the disequality
affect a real variable; if so, the constraint is sent to the underlying solver for reals
and removed from the mixed store (lines (4)-(5)). Next, if propagation is active,
a similar procedure to the one performed for the propagation in the other direction
follows. However, notice that there are more possibilities for sending a mate con-
straint to SolverFD (see Table 4 in [14]), depending on whether bridges are found
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for the related variables (a true value for BL (resp. BR) means that a bridge relating
the variable in the left(resp. right)-hand-side of the constraint has been found).

6 Conclusions and Future Work

In this paper, we have dealt with implementation issues of the constraint functional
logic programming system T OY unreported up to now. Among these implemen-
tation issues, we have described the software architecture, the data-flow program
compilation process, library loading, and the integration of constraint solving tech-
nology in the system. With special emphasis we have explained how solver cooper-
ation has been recently incorporated in T OY. This is a very important issue as the
interaction among solvers makes it easier to express compound problems and good
communication can help the efficiency of the systems [23].

More specifically, we have described the internal communication between SolverR

and SolverFD via binding and propagation. We have sketched their implementation,
and shown that binding manages the communication between two variables that
belong to different computation domains, whereas propagation generates, from a
primitive constraint defined on one source computation domain, new (semantically-
equivalent) constraints that are propagated to another computation domain that
demands cooperation with the source domain. This solver cooperation can lead to
drastic reductions in the search space of the problem, and can be translated into a
reduction of the solving time as it was shown in [14]. The descriptions in this paper
might reveal useful for implementors of other related declarative systems.

In general, solver cooperation have been widely analyzed in the literature and
there are a number of declarative constraint systems that provide support for the in-
teraction among solvers. For example: CLP(BNR) [6], Prolog III [10] and Prolog IV
[31] allow solver cooperation, mainly limited to Booleans, reals and naturals. Also,
the language NCL [35] provides an integrated constraint framework that strongly
combines Boolean logic, integer constraints, and set reasoning. The integration of
new constraint domains such as the reals is described as future work in [35]. In
general, all those systems provide a limited form of cooperation that is very specific
to the predefined computation domains existing in the system. Solver cooperation
as integrated in T OY is quite different from nature to all those systems as its imple-
mentation follows the theoretical principles recently described in [14]. Particularly,
solver cooperation in T OY follows an interoperative approach, which means that
the system has the ability to communicate and use independently-written software
components, thus allowing independent systems to cooperate. In the literature,
one can find different proposals catalogued in this approach. For instance, [22]
proposes a C++ constraint solving library called aLiX for communicating different
solvers, possibly written in different languages. One of the main shortcomings of
the current aLiX version is that a component for solving continuous constraints is
not integrated into the system yet (this is claimed to be one of their main priorities
for future development work).

Also, [30] describes a client/server architecture to enable communication among
the component solvers. This consists of both managers of the system and the
solvers that must be defined on the same computational domain (e.g., real num-
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bers) but with different classes of admissible constraints (e.g., linear and non-linear
constraints). The CLP system CoSAc is an implementation of their system. This
system is very different to our proposal as the exchange of information is managed
by means of pipes and the exchanged data is a character string. Also, in his the-
sis [29], Monfroy constructed the system BALI (Binding Architecture for Solver
Integration) that facilitates the integration of heterogeneous solvers, as well as the
specification of solver cooperation via a number of cooperations primitives. There
are may differences with our implementation but one of the most significant is that
Monfroy’s approach assumes that all the solvers work over a common store, while
our present proposal requires communication among different stores.

Perhaps, regarding solver cooperation, the most similar system to T OY is the
system Meta-S, which allows the dynamic integration of arbitrary external (stand-
alone) solvers to enable the collaborative processing of constraints [16,17,18]. The
similarities between T OY and Meta-S are not coming from the implementation
point of view but because solver cooperation in Meta-S was implemented follow-
ing [25]. Such a proposal keeps some similarities with ours, although there are
evident differences identified in [14]. As future work, we plan to develop a compar-
ison between T OY and the system Meta-S with respect to solver cooperation (i.e.,
implementation issues and performance analysis), and to integrate another solvers.
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[5] Arenas, P., A. Gil and F. López-Fraguas, Combining Lazy Narrowing with Disequality Constraints
(1994).

[6] Benhamou, F. and W. Older, Applying Interval Arithmetic to Real, Integer and Boolean Constraints,
The Journal of Logic Programming 32 (1997), pp. 1–24.

[7] Caballero, R., A Declarative Debugger of Incorrect Answers for Constraint Functional-Logic Programs,
in: WCFLP ’05: Proceedings of the 2005 ACM SIGPLAN Workshop on Curry and Functional Logic
Programming (2005), pp. 8–13.
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