
A Declarative Debugger of Incorrect Answers for Constraint
Functional-Logic Programs∗

System Demonstration

Rafael Caballero
Facultad de Inforḿatica. Univ. Complutense de Madrid

rafa@sip.ucm.es

Abstract
Debugging is one of the essential parts of the software development
cycle. However, the usual debugging techniques used in imperative
languages such as thestep by stepexecution often are not suitable
for debugging declarative programming languages. We present here
a graphical debugging environment for constraint lazy functional-
logic programs based ondeclarative debugging. The debugger dis-
plays the computation tree associated with a computation which has
produced an incorrect answer, and navigates it with the assistance
of the user until the error, an incorrect program rule, is found out.
The debugger supports programs including equality and disequality
constraints.

Categories and Subject DescriptorsD.3.2 [Programming lan-
guages]: Language Classifications—Multiparadigm languages;
H.5.2 [Information Interfaces and Presentation]: User Interfaces—
Graphical user interfaces (GUI)

General Terms Languages

Keywords Functional-Logic Languages, Declarative Debugging

1. Declarative Debugging
The lack of auxiliary tools such as debuggers has been pointed
out in [11] as a possible impediment to the success of functional
languages like Haskell [8]. The same arguments can be applied as
well to the case of functional-logic languages [6]. However, imple-
menting debuggers for these languages is not an easy task. The ap-
proach followed traditionally in imperative programming, based on
thestep by stepexecution of the program, is not suitable in declar-
ative languages, particularly in the case of the lazy functional and
functional-logic languages, where features like the higher order, the
polymorphism or the lazy evaluation makes the computation more
difficult to observe.

Declarative debuggingwas first proposed by E. Y. Shapiro [10]
as an alternative in the field of logic programming, and has been

∗Work partially supported by the Spanish CYCIT (project TIC2002-01167
’MELODIAS’)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WCFLP’05 September 29, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-069-8/05/0009. . . $5.00.

later applied in functional and functional-logic programming as
well. A declarative debugging session starts when the user observes
an unexpected behavior of the program which is regarded as wrong,
and can be divided in two phases:

1. The declarative debugger generates a suitablecomputation tree
(CT in short) representing the behavior of the program during
the computation. Each node of the tree represents the result of
some subcomputation; the value at the root of the tree corre-
sponds to the result of the overall computation, which is called
the initial symptom, while the results at the children of each
nodeN must correspond to the subcomputations necessary to
obtain the result atN . Moreover, each node must have some
associated fragment of code, which is responsible for the com-
putation result stored at the node.

2. The debuggernavigatestries to locate a node whose result
is incorrect but with correct results at all its children nodes.
Such a node is called abuggy node, and corresponds to a
fragment of code which has produced an erroneous result from
correct inputs, and is therefore incorrect. In order to check the
correctness of the nodes, the debugger relies on an external
oracle, usually the user.

Here we presentDDT , a graphical declarative debugger of
incorrect answers for the constraint lazy functional-logic program-
ming languageT OY [1]. The prototype is based on a previous
version described in [5], the main novelty of the new version
being the possibility of debugging programs including equality
and disequality constraints. The system can be downloaded from:
http://toy.sourceforge.net.

In the next section the programs considered in our setting are
presented, together with a small example of incorrect program
which will be used in the rest of the paper. The section 3 presents
informally the computation trees handled by the debugger, while
section 4 provide some details about the implementation of the
program transformation employed by the tool. A short debugging
session for our example program is shown in section 5, where
some of the features of the graphical interface are introduced. The
efficiency of the system is informally discussed in section 6. The
paper ends in section 7 with some conclusions and some proposals
of future work.

2. Toy programs
A T OY program can include declarations of data, function types,
type alias, infix operator declarations, and defining rules for func-
tions symbols. Two important syntactic categories in this setting
areexpressionsandpatterns. The possible forms of an expression

onlyOne::[A]→ bool
onlyOne L = size L==1

size:: [A]→ int
size [] = 0
size [X|L] = if (member X L) then N

else 1+N
where N = size L

member:: A→ [A] → bool
member U [] = false
member U [V|L] = if (U == V) then true

else member V L

Figure 1. Example ofT OY program

e are:
e ::= ⊥ |X | h | (e e′)

whereX is a variable,h either a function symbol or a data con-
structor, and⊥ is a symbol representing the undefined value. This
symbol cannot be written directly in the programs, but it is impor-
tant for representing correctly the lazy semantics of the programs,
and will be used by the debugger to indicate that a function call
was not demanded during the analyzed computation. The expres-
sion(e e′) stands for the application of expressione to expression
e′. We use the notatione e1 e2 . . . en or e en as a shorthand for
((. . . ((e e1) e2) . . .) en). Similarly, the possible forms of a pat-
ternt are:

t ::=⊥ |X | c tm | f tm

whereX represents a variable,c a data constructor of arity greater
or equal tom, andf a function symbol of arity greater thanm,
with the ti patterns for1 ≤ i ≤ m. Hence,T OY considers
partial applications of functions as patterns. Patterns without any
occurrence of⊥ are calledtotal patterns.

An important predefined function symbol is==, which rep-
resentsstrict equality. An expressione1 == e2 is evaluated to
true if e1 ande2 can be reduced to some common total pattern,
and tofalse if e1 ande2 can be reduced to incompatible patterns.
In T OY e1 == e2 also represents an atomic constraint which is
satisfied whene1 == e2 is evaluated totrue. Both meanings of
== can be distinguished from the context. Similarly, the notation
e1 /= e2 is used for representing an atomic constraint which is
satisfied whene1 == e2 is evaluated tofalse. The defining rules
for a functionf have the form:

f t1 . . . tn = r ⇐ C where LD

where theti are patterns,r (the right-hand side) is an expression,
C (the condition) is a conjunction of atomic constraints, andLD
is a list of local conditions, each one of the formt = e. A goal in
T OY has the same form as a rule conditionC. The computedan-
swersfor a goalG must be of the formσ �C, with σ a substitution
andC a constraint in solved form. For instance a simple goal like
X == Y has one answer:{X 7→ Y } � {tot(X)}, meaning that
the goal holds ifX andY represent the same, total value.

Let us consider now the small example program of figure 1. The
functiononlyOne checks whether a list contains only one element,
perhaps repeated many times. This function relies on the function
size, which calculates the number of different elements that can
be found in a given list.size only counts the last occurrence of
an element in the list, usingmember for checking this condition.
A goal like onlyOne [X,Y,Z]==true will obtain two different
answers:

- {Y 7→ X, Z 7→ X } � {tot(X) }
- {Z 7→ Y } � {tot(Y), Y /= X }

The first answer is correct, but the second one is an incorrect an-
swer (ifY/=X then[X,Y,Z] has more than one element), showing
that something is wrong in the program. After detecting thisinitial
symptomthe user would start the debugger to locate the error.

3. Computation Trees
In [9] a logic calculusCRWL(D) has been proposed as a suitable se-
mantics for constraint functional-logic programs over a parametric
domainD. Given a programP , a goalG, and a computed answer
σ�C, there exists always a proof tree, whose nodes correspond
to the application of theCRWL(D) logic inference rules, which
proves the logical implicationGσ ⇐ C w.r.t. P . From the the-
oretical point of view, the CT used by our debugger can be seen
as a simplification of this proof tree, obtained by removing all the
nodes associated toCRWL(D)-inferences that do not depend on the
program definition rules (and hence cannot be incorrect). A similar
approach was used in [3, 4] to define the computation trees suitable
for debugging incorrect answers in programs without constraints.

More precisely, the root of the CT is of the formGσ ⇐ C, with
G the initial goal andσ�C the incorrect answer being debugged.
The other nodes of the tree containconstraint basic facts(CBFs
from now on) of the form

f tn → t ⇐ C

with ti, t patterns, andC a conjunction of atomic constraints,
meaning that a callf tn can return the resultt wheneverC holds.
Each CBF corresponds to a function call evaluated during the com-
putation. The children of each nodeN contain the CBFs associated
to the evaluation of function calls occurring in the right-hand side,
the conditions, or in the local definitions of the program rule used
for evaluating the function call associated toN . All the values in
the CBFs of the tree appear evaluated as much as they were de-
manded by the computation, and are affected by the substitutionσ.
The occurrences of function calls which were not needed during the
computation are replaced by the symbol, standing for⊥. The con-
straintC at the CBFs correspond to the constraint store obtained at
the end of the computation, and hence is the same for all the nodes.
However, in order to simplify the questions asked by the debugger
to the user the constraintC of a CBFf tn → t ⇐ C will be
simplified by removing all the atomic constraints whose variables
do not occur inf tn → t. In principle this could be unsafe, because
reducing the number of constraints could convert a non-satisfiable
constraintC in a satisfiable one. But this is not the case, because
C is a constraint obtained as part of a computed answer and hence
it must be satisfiable. Thus the simplified CBF will have the same
declarative meaning as the original one.

The figure 2 shows the CT corresponding to the second (wrong)
answer of our example goalonlyOne [X,Y,Z]==true. Notice that
the tree does not include nodes for predefined functions such as+
or if then else, because such nodes are assumed to be valid and
have been removed in advance.

4. Implementing the program transformation
The implementation of the debugger can be divided in two different
phases, following closely the two stages of a declarative debugging
process described in Section 1:

1. The debugger uses a program transformation (described in [4])
in order to generate a program whose functions return, as part
of their results, the CTs corresponding to the computations in
the original program. The debugger uses the transformed pro-
gram to repeat the incorrect computation, obtaining in this way

Â

Á

¿

À

Source

code

(.toy)

-
Syntactic

and semantic
analysis

?
Error

-

'

&

$

%

Intermediate

Code

(.tmp.out)

- Type

checker

?
Error

Code

Generator
-

'

&

$

%

Prolog

Code

(.pl)

Figure 3. Compiling aT OY program

Figure 2. Computation tree displayed byDDT

the CT. The constraintC is not included in the tree returned
by the transformed program, and is incorporated afterwards
by the debugger, which obtains it through a primitivegetCon-
straintStore. The CT is then written in a file, which will be
loaded by the graphical interface.

2. The CT is then navigated by the graphical interface, which has
been implemented in Java, using theJTreecomponent of the
packageSwingfor displaying the tree.

Let us look to the first phase, the program transformation, more
carefully. The figure 3 represents briefly the normal compilation
process of aT OY programP.toy. First, the source code is parsed,
syntactic and semantically analyzed (excluding the type checking
phase, which is carried out afterwards), and all the ”syntactic sugar”
is eliminated. If no error is found the result, an intermediate code, is
stored in an intermediate temporary fileP.tmp.out. This temporary
file, somehow similar to theFlat Curry file used by Curry [7] but
represented through Prolog clauses, is then loaded by the second
part, which does the type checking and, if no type error is found,
the code generation which produces a Prolog fileP.pl.

When implementing the program transformation, the first idea
is to perform a source-to-source transformation, hence producing
a transformed source programPT .toy from the original program
P.toy. However this means that the fileP.toy must be parsed again.
Moreover, the transformed programPT .toy also will have to be
parsed in order to produce a compiled transformed programPT .pl,
which is the final goal of this process. For these reasons we have
preferred to apply the transformation to the intermediate fileP.tmp.

¨
§

¥
¦P.tmp.out

Gk
SSw

σ�C
¹¸

º·¶¶7

Intermediate
code

transformer

6

- ¨
§

¥
¦PT .tmp.out

?
Type

checker
Code

generator
-

¹¸

º·
PT .pl

Figure 4. Transformed program generation

The transformation process is described in the figure 4. It starts with
the intermediate temporary fileP.tmp.out, the goalG and the in-
correct answerσ�C. Notice that the fileP.tmp.out always exists
because the debugger is used after an unexpected computation is
found out, and hence the original programP has been already com-
piled. The file is read by the intermediate code transformer, which
produces a transformed intermediate filePT .tmp.out, which in
turn is used by the code generator in order to produce the final
transformed codePT .pl. Observe that the syntactic and semantic
analysis phases are in this approach avoided, since we now that the
original program contains no errors (it was compiled and used al-
ready) and therefore the same holds for the transformed program.
The same occurs with the type checking phase (we have proved in
work [4] that the transformed program has no type errors if the orig-
inal one was well-typed). At this point the transformed program can
be executed in order to obtain the computation tree. Following this
approach the generation of the transformed program can be done in
very few seconds even for large, realistic programs.

5. A debugging session
The purpose of the debugger is to locate a buggy node in the CT. For
this reason the user must determine the validity or non-validity of
some nodes of the CT w.r.t. the expected meaning of the program.
Only the root, which corresponds to the initial symptom, and whose
content is not displayed by the debugger, is marked at the beginning
as non-valid. The other nodes have a symbol ’?’ at the left, meaning
that their validity is still not known.

The options in the menu, shown in figure 5, can be used to
manage and simplify the tree. For instance, the optionRemove
Valid & Trusted Nodesof the menuTreeautomatically all the nodes
marked asvalid or trusted. It can be proved that this operation is

Figure 5. Menu options inDDT

safe w.r.t. the existence of a buggy node, in the sense that if the
original treeT had some buggy node, then the simplified treeT ′

also has a buggy node which was buggy inT as well. Deleting a
nodeN of the tree means in this context that their children trees will
become children of the parent ofN after the deletion. Therefore the
operation is not defined for the root node, but in our case this is not
a problem since the root node is always non-valid. At any point the
current CT can be saved/loaded in XML format using the options
of the menuFile.

The validity of any node can be changed by clicking the right-
button of the mouse over the node and choosing a value among
valid, non-valid, don’t-know, andtrustedin the menuNodes. Mark-
ing a node astrustedmakes all the nodes associated to the node’s
function automatically valid. Although the use can move through-
out the tree, providing information freely until a buggy node is
located, for large trees it is recommended to follow some fixed
navigation strategy.DDT includes two strategies: top-down and
divide-and-query. In the top-down strategy the children of the root
are examined looking for some non-valid child. If such child is
found, the debugging continues examining its corresponding sub-
tree. Otherwise all the children are valid, and the root of the tree is
pointed out as buggy, finishing the debugging process.

The divide-and-query strategy looks at each step for a nodeN
such that the number of nodes inside and outside of the subtree
rooted byN are the same. Although such node (called thecenter
of the tree) does not exist in most of the cases, the system singles
out the node that better approximates the condition. Then the user
is queried about the validity of the basic fact labelling this node. If
the node is non-valid its subtree will be considered at the next step.
If it is valid then its subtree is deleted from the tree and debugging
continues. The process ends when the subtree considered has been
reduced to a single non-valid node. Both strategies are complete,
in the sense that given any CT with a non-valid root a buggy node
is always found if the user answers correctly to que questions. The
next figure shows the first question asked by the debugger after
selecting the strategydivide-and query:

This constraint basic fact is valid; given any total valueY, the
list [Y,Y] only contains one element. The next questions will be:

- size [X,Y,Y] → 1 ⇐ (X/=Y), tot(Y): non-valid; the list has
at list two elements since(X/=Y) holds.

- member X [Y,Y] → true ⇐ (X/=Y), tot(Y): non-valid; if
(X/=Y) thenX is not a member of the list.

- member Y [Y]→ true⇐ tot(Y): valid.

After answering these questions the buggy node has been found:

The debugger indicates that the cause of the error is at the
second rule ofmember. Examining more carefully the CBF we
find that sinceX /= Y, it is theelse part of the rule which has been
used and therefore is wrong. Now is easy to find out that theV in
member V L should be aU.

In this simple session can be observed that although the con-
straint in all the CBFs is the same (except for the simplifications) it
must be considered in each case, since it becomes meaningful only
when is part of a CBF.

6. Efficiency
We have seen already a debugging session for a small example
program. Of course the question is whether this technique can be
also useful for larger, more realistic programs. We discuss in this
sections three issues related with the efficiency and applicability of
the tool: the complexity of the questions, the number of questions,
and the resources (memory and time) required by the transformed
program to produce the CT.
Complexity of the questions. We have seen already that que de-
bugger always asks questions about the validity of constraint basic
facts, which cannot included nested calls because they have been
replaced by their result at the end of the computation, or byif they
were not evaluated. In spite of this, the validity of some CBFs can
still be difficult to determine when they involve very large struc-
tures in the parameters or in the result. However, and due to the
recursive nature of programs in functional logic languages, it is
usual that a complex wrong computation requires some simpler, but
also wrong subcomputations. Hence, a heuristic that often works in

CT Top-Down D& Q
Program Nodes Depth Q. Nodes Q.
P1 201 68 68 134 9
P2 194 14 12 45 8
P3 206 18 17 49 8
P4 191 19 19 36 8
P5 198 15 15 29 8
P6 195 44 6 10 7
P7 191 14 13 24 8
P8 200 42 42 83 8
P9 196 16 12 23 8
P10 197 31 9 39 7

Table 1. Comparison of strategies (I)

these cases is to look for some non-valid node in the bottom part of
the tree, where the constraint basic facts are usually simpler. Then,
we can select the subtree rooted by such a node for debugging, by
using the optionMake Selected Node New Rootof the menuTree
(see figure 5). The situation can become harder when more com-
plex constraints are involved, such as arithmetic constraints.

Number of questions. The number of questions performed by the
debugger depends on the strategy. The table 1 shows a comparison
between the top-down strategy and the divide and query (called
D&Q in the table) for 10 different programs. The first two numbers
correspond to the number of nodes and the depth of the CT. The
two columns corresponding to the top-down strategy show the to-
tal number of questions (represented byQ.) and the total number
of nodes that must be examined by the user during the debugging
session (in top-down each question includes all the children nodes
of an non-valid node). Similarly, the number in the column labelled
by Q. of the divide and query part stands for the number of ques-
tions asked by the tool during the debugging session following this
strategy (which is the same as the number of examined nodes in this
strategy). We have tried in each case the goal that better approxi-
mates the number of 200 nodes in the CT. This is a brief description
of the programs:

P1: Incorrect program for reversing a list.
P2: Erroneous quick-sort algorithm.
P3: Erroneous bubble-sort algorithm.
P4: Erroneous permutation-sort algorithm.
P5: Obtaining prime numbers.
P6: Arithmetic with Peano numbers.
P7: Sorting a tree.
P8: Computing the golden ratio.
P9: N-Queens problem.
P10: Using functional-logicextensions.

All of them can be located at theexamples/debuggerfolder of
theT OY distribution. In the table it can be seen that the top-down
strategy, adopted by several declarative debuggers, does not seem
to be suitable, since the number of questions is very often directly
related to the depth of the CT. On the contrary, the experimental
results indicate that the divide-and-query strategy works well in
most of the cases, requiring a number of questions close tolog2 N ,
with N the number of nodes in the CT. This is expected, since
this strategy roughly divides by 2 the number of nodes of the
CT after every question. The same situation holds when we try
goals that require a CT with a greater number of nodes. In the
table 2 we can observe the increment in the number of questions
in the program P9. The goalSi corresponds to try the solution
of the N-Queens problem forN = i. The top-down strategy

CT Top-Down D & Q
Goal Nodes Depth Q Nodes Q
S7 98 12 15 8 7
S11 196 16 12 23 8
S14 292 20 15 29 8
S17 403 22 18 35 9
S19 488 24 20 39 9
S26 850 32 27 53 10
S30 1100 36 31 61 11
S35 1456 40 36 71 11
S40 1865 46 41 81 11
S45 2321 50 46 91 11
S50 2830 56 51 101 12
S55 3386 60 56 111 12

Table 2. Comparison of strategies (II)

requires the examination of 111 nodes forS55, while the divide and
query only requires 12. The situation is similar for other examples,
although there exists also cases like P6, P10 where the number of
questions performed by the top-down strategy is constant and does
not depend on the number of nodes of the CT. Nevertheless we
can resume the comparison indicating that the top-down strategy
is more unpredictable, while the number of questions asked by the
debugger using the divide and query is related tolog2 N in all
the experiments. Thus we can expect an approximate number of
16 questions for a computation with a CT of 30000 nodes, which
corresponds to a realistic computation size.

Memory overhead The memory overhead required by the gener-
ation of the CT is actually the major drawback of the technique.
The size of the tree is so huge that the system usually is not able
of producing CTs with more than 5000 nodes. In certain examples
this number can be reduced even to a few hundreds of nodes. A
possible solution would be to evaluate the CT lazily, but this alter-
native is difficult to conciliate with the use of the divide and query
strategy, which traverses the whole tree before each question. An-
other alternative was proposed in [?], where H. Nilsson presented a
declarative debugger for a subset of Haskell which was not based in
a program transformation but on a modification of the underlying
abstract machine. Adapting these ideas to a functional-logic lan-
guage could improve the efficiency and make the tool suitable for
debugging large computations.

7. Conclusions and future work
We have presented a graphical environment for finding incorrect
program rules in constraint lazy functional-logic programs. The de-
bugger is equipped with a graphical user interface and has been im-
plemented for the languageT OY , although the same approach can
be used for debugging similar languages such as Curry [7]. In fact,
a textual version of the debugger, which uses a top-down strategy
for detecting buggy nodes, is already part of the Curry system of the
Münster University [2]. The debugger currently supports programs
with equality and disequality constraints, but the implementation
is almost independent of the constraint domain. The only change
that must be done in order to apply the debugger to other constraint
domains is the redefinition in each case of the primitivegetCon-
straintStore, which is used by the debugger for obtaining the con-
straint store at the end of the computation. We plan to extend the
debugger to programs including arithmetic constraints and also for
programs allowing constraints over finite domains.

A different task is to extend the debugger for dealing with
missing answers, which currently are not admitted by the prototype.
A missing answer is obtained when the set of computed answers

for a given goal does not cover some expected answer. In this case
the computation tree is different and more complex, since it must
represent all the computations that occur while solving the goal.

Acknowledgments
I would like to thank Mario Rodŕıguez-Artalejo for his useful
suggestions.

References
[1] M. Abenǵozar-Carneros et al. Toy: A multiparadigm declarative

language. Version 1.0. Technical Report SIP-119/00, Universidad
Complutense de Madrid, February 2002.

[2] R. Caballero and W. Lux. Declarative Debugging of Encapsulated
Search. Electronic Notes in Theoretical Computer Science, 76, pages
1–13 2002.

[3] R. Caballero, F. Ĺopez-Fraguas, and M. Rodrı́guez-Artalejo. Theo-
retical Foundations for the Declarative Debugging of Lazy Functional
Logic Programs. InProc. FLOPS’01, number 2024 in LNCS, pages
170–184. Springer, 2001.

[4] R. Caballero and M. Rodrı́guez-Artalejo. A Declarative Debugging
System for Lazy Functional Logic Programs. Electronic Notes in
Theoretical Computer Science, 64, 2002.

[5] R. Caballero and M. Rodrı́guez-Artalejo. DDT: a Declarative De-
bugging Tool for Functional-Logic Languages. InProc. FLOPS’04,
number 2998 in LNCS, pages 70–84. Springer, 2004.

[6] M. Hanus. The Integration of Functions into Logic Programming: A
Survey. J. of Logic Programming 19-20. Special issue “Ten Years of
Logic Programming”, pages 583–628, 1994.

[7] M. Hanus. Curry: An Integrated Functional Logic Language (version
0.8, April 15, 2003). Available at:

http://www.informatik.uni-kiel.de/~mh/curry/, 2003.
[8] S. P. Jones, editor.Haskell 98 Language and Libraries: The Revised

Report. Cambridge University Press, 2003.
[9] F. López-Fraguas, M. Rodrı́guez-Artalejo, and R. d. Vado-Vı́rseda.

Constraint functional logic programming revisited. InProc.
WRLA’2004, volume 117 ofElec. Notes on Theor. Comp. Science,
pages 5–50, 2004.

[10] H. Nilsson. How to look busy while being lazy as ever: The
implementation of a lazy functional debugger. Journal of Functional
Programming 11(6), pages 629–671, 2001.

[11] E. Shapiro.Algorithmic Program Debugging. The MIT Press, 1982.
[12] P. Wadler. Why no one uses Functional Languages. SIGPLAN

Notices 33(8), pages 23–27, 1998.

