
Algorithmic Debugging of Wrong Answers in
Constraint Functional-Logic Programming

Rafael Caballero Roldán, Mario Rodŕıguez Artalejo, and
Rafael del Vado Vı́rseda

TECHNICAL REPORT SIP - 03/2006

Dep. Lenguajes, Sistemas Informáticos y Programación

Univ. Complutense de Madrid ?

Dpto. de Sistemas Informáticos y Programación,
Universidad Complutense de Madrid
{rafa,mario,rdelvado}@sip.ucm.es

Abstract. We present a declarative method for diagnosing wrong com-
puted answers in CFLP (D), a newly proposed generic scheme for lazy
Constraint Functional Logic Programming which can be instantiated by
any constraint domain D given as parameter, and supports a powerful
combination of functional and constraint logic programming over D. Our
approach extends and combines declarative debugging techniques previ-
ously developed for less expressive programming paradigms, namely the
CLP (D) scheme and lazy functional logic languages. Debugging starts
with the observation of a wrong computed answer which the user regards
as incorrect w.r.t. an intended model that provides a declarative descrip-
tion of the program’s semantics. Debugging proceeds by exploring an
abridged proof tree that provides a purely declarative view of the com-
putation, so that the user does not need to understand the complex un-
derlying operational mechanisms. Debugging ends with the detection of
a function rule in the program that is incorrect w.r.t. the intended model.
We prove the logical correctness of the debugging method for any sound
CFLP (D)-system whose computed answers are logical consequences of
the program, and we describe a practical tool which implements the de-
bugging method for the domain of arithmetic constraints over the real
numbers.

1 Introduction

Debugging tools are a practical need for diagnosing the causes of erroneous com-
putations. Declarative programming paradigms involving complex operational
details, such as constraint solving and lazy evaluation, do not fit well to tradi-
tional debugging techniques relying on the inspection of low-level computation
traces. As a solution to this problem, declarative diagnosis uses Computation
Trees (shortly, CTs) in place of traces. CTs are built a posteriori to represent
? The authors have been partially supported by the Spanish National Project MELO-

DIAS (TIC2002-01167).

the structure of a computation whose top level outcome is regarded as an error
symptom by the user. Each node in a CT represents the computation of some
observable result, depending on the results of its children nodes. Declarative
diagnosis explores a CT looking for a so-called buggy node which computes an
incorrect result from children whose results are correct; such a node must point to
an incorrect program fragment. The search for a buggy node can be implemented
with the help of an external oracle (usually the user with some semiautomatic
support) who has a reliable declarative knowledge of the expected program se-
mantics, the so-called intended interpretation.

The generic description of declarative diagnosis in the previous paragraph
follows [14]. Declarative diagnosis was first proposed in the field of logic pro-
gramming [17, 8], and it has been successfully extended to other declarative pro-
gramming paradigms, including lazy functional programming [15, 16], constraint
logic programming [18, 9] and functional logic programming [4, 5]. In contrast to
recent approaches to error diagnosis using abstract interpretation (as e.g. [6, 11,
1] and some of the approaches described in [7]), declarative diagnosis often in-
volves complex queries to the user. This problem has been tackled by means
of various techniques, such as user-given partial specifications of the program’s
semantics [2, 5], safe inference of information from answers previously given by
the user [4], or CTs tailored to the needs of a particular debugging problem
over a particular computation domain [9]. Current research in declarative diag-
nosis has still to face many challenges regarding both the foundations and the
development of practical tools.

The aim of this report is to present a declarative method for diagnosing
wrong computed answers in CFLP (D), a newly proposed generic programming
scheme which can be instantiated by any constraint domain D given as parame-
ter, and supports a powerful combination of functional and constraint logic pro-
gramming over D [12]. Borrowing ideas from CFLP (D) declarative semantics we
obtain a suitable notion of intended interpretation, as well as a kind of abridged
proof trees with a sound logical meaning to play the role of CTs. Our aim is
to achieve a natural combination of previous approaches that were separately
developed for the CLP (D) scheme [18] and for lazy functional logic languages
[4]. We give theoretical results showing that the proposed debugging method
is logically correct for any sound CFLP (D)-system whose computed answers
are logical consequences of the program in the sense of CFLP (D) semantics.
We also present a practical debugger called DDT , developed as an extension of
previously existing but less powerful tools [3, 5]. DDT implements the proposed
diagnosis method for CFLP (R)-programming in the T OY system [13] using the
domain R of arithmetic constraints over the real numbers.

The rest of the report is organized as follows: Section 2 motivates our ap-
proach by presenting a debugging example which is used as illustration along
the rest of the report. Section 3 recalls the CFLP (D) scheme from [12] to the
extent needed for understanding the theoretical results in this report. Section
4 presents a correct method for the declarative diagnosis of wrong computed
answers in any soundly implemented CFLP (D)-system. Section 5 describes the

debugging tool DDT . Section 6 concludes and points to some plans for future
work.

The report includes only brief proof sketches for the main results. The final
appendix includes the detailed proofs.

2 A Motivating Example
As a motivation for the rest of the report, we consider the following program
fragment written in T OY [13], a programming system which supports several
instances of the CFLP (D) scheme:

Example 1 (Building ladders in T OY).

infixr 40 &&
(&&) :: bool → bool → bool
false && Y = false
true && Y = Y

head :: [A] → A
head [X|Xs] = X

type point = (real,real)
type figure = point → bool

rect :: point → real → real → figure
rect (X,Y) LX LY (X’,Y’) = (X’≥X)&& (X’≤X+LX) && (Y’≤Y)&& (Y’≤Y+LY)
% This program rule is incorrect. It should be . . . (Y’ ≥Y) . . .

intersect :: figure → figure → figure
intersect F1 F2 P = F1 P && F2 P

ladder :: point → real → real → [figure]
ladder (X,Y) LX LY = [rect (X,Y) LX LY | ladder (X+LX, Y+LY) LX LY]

5 20 35 70

5

20

40
45

Here, T OY is used to implement the instance CFLP (R) of the CFLP (D)
scheme, with the parameter D replaced by the real number domain R, which
provides real numbers, arithmetic operations and various arithmetic constraints,
including equalities, disequalities and inequalities. The type figure is intended to
represent geometric figures as boolean functions, the function rect is intended to
represent rectangles (more precisely, a rectangle (rect (X,Y) LX LY) is intended to
have two opposite vertices of coordinates (X,Y) and (X+LX,Y+LY), respectively);
and the function ladder is intended to build an infinite list of rectangles in the
shape of a ladder. Although the text of the program seems to include no con-
straints, it uses arithmetic and comparison operators that give rise to constraint
solving in execution time. More precisely, consider the following session in T OY:

Toy> /run(examples/debug/ladder) % compile ladder.toy
Toy> /cflpr % load CFLP (R)
Toy(R)> intersect (head (ladder (20,20) 50 20))

(head (ladder (5,5) 30 40)) (X,Y) == R % goal
{ R → true } { Y≤ 5, X≥2.0E+01, X≤35 } % computed answer

The goal asks for the membership of a generic point (X,Y) to the intersection of
the two rectangles (rect (20,20) 50 20) and (rect (5,5) 30 40), computed indirectly
as the first steps of two particular ladders. The diagram included in Example
1 shows these two rectangles as well as the rectangle corresponding to their
intersection (highlighted in black). The T OY system has solved the goal by a
combination of lazy narrowing and constraint solving; the computed answer con-
sists of the substitution R → true and three constraints imposed on the variables
X and Y 1. The only constraint imposed on Y (namely Y ≤ 5) allows for arbi-
trarily small values of Y, which cannot correspond to points belonging to the
rectangle expected as intersection. Therefore, the user will view the computed
answer as wrong w.r.t. the intended meaning of the program. As we will see in
Sections 4 and 5, the declarative debugging technique presented in this report
leads to the diagnosis of the program rule for the function rect as responsible
for the wrong answer. Indeed, this program rule is incorrect w.r.t. the intended
program semantics; as shown in Example 1, the third inequality at the right
hand side should be Y’ ≥ Y instead of Y’ ≤ Y. After this correction, no more
wrong computed answers will be observed for the goal discussed above.

As any debugging technique, declarative diagnosis has limitations. A ”correc-
ted” program fragment can still include more subtle bugs that can be observed
in the computed answers for other goals. In our case, we can consider the goal

Toy(R)> intersect (head (ladder (70,40) -50 -20))
(head (ladder (35,45) -30 -40)) (X,Y) == R

whose meaning w.r.t. the intended semantics is the same as for the previous goal,
except that the rectangles playing the role of initial steps of the two ladders are
represented differently. Since the boolean expression at the right hand side of the
”corrected” program rule for function rect yields the result false whenever LX or
LY is bound to a negative number, wrong answers including the substitution R →
false will be computed. Moreover, other answers including the substitution R →
true will be expected by the user but missing to occur among the computed ans-
wers. The traditional approach to declarative debugging in the CLP (D) scheme
includes the diagnosis of both wrong and missing computed answers [18]. How-
ever, the declarative diagnosis of missing answers falls outside the scope of this
report.

3 The CFLP (D) Programming Scheme

In this section we recall the essentials of the CFLP (D) scheme [12] for lazy
Constraint Functional Logic Programming over a parametrically given constraint
domain D, which serves as a logical and semantic framework for the declarative
diagnosis method presented in the report.

1 There are other five computed answers consisting of the substitution R → false and
various constraints imposed on X and Y.

3.1 Preliminary Notions

We consider a universal signature Σ = 〈DC, FS〉, where DC =
⋃

n∈NDCn and
FS =

⋃
n∈N FSn are countably infinite and mutually disjoint sets of data cons-

tructors resp. evaluable function symbols, indexed by arities. Evaluable functions
are further classified into domain dependent primitive functions PFn ⊆ FSn

and user defined functions DFn = FSn \ PFn for each n ∈ N. We write Σ⊥
for the result of extending DC0 with the special symbol ⊥, intended to denote
an undefined data value and we assume that DC includes the two constants
true and false and the usual list constructors. We use the notations c, d ∈ DC,
f, g ∈ FS and h ∈ DC ∪ FS. We also assume a countably infinite set V of
variables X,Y, . . . and a set U of primitive elements u, v, . . . (as e.g. the set
R of the real numbers) mutually disjoint and disjoint from Σ⊥. Expressions
e ∈ Exp⊥(U) have the following syntax:

e ::= ⊥ | u | X | h | (e e1)

where u ∈ U , X ∈ V, h ∈ DC ∪ FS. An important subclass of expressions is
the set of patterns s, t ∈ Pat⊥(U), whose syntax is defined as follows:

t ::= ⊥ | u | X | c tm | f tm

where u ∈ U , X ∈ V, c ∈ DCn with m ≤ n, and f ∈ FSn with m < n. Patterns
are used as representations of possibly functional data values. For instance, the
rectangle (rect (5, 5) 30 40) we met when discussing Example 1 is a functional
data value represented as pattern. 2

As usual, we define substitutions σ ∈ Sub⊥(U) as mappings σ : V → Pat⊥(U)
extended to σ : Exp⊥(U) → Exp⊥(U) in the natural way. By convention, we
write eσ instead of σ(e) for any e ∈ Exp⊥(U), and σθ for the composition of σ
and θ. A substitution σ such that σσ = σ is called idempotent.

3.2 Constraints over a Constraint Domain

Intuitively, a constraint domain provides a set of specific data elements, along
with certain primitive functions operating upon them. Primitive predicates can
be modelled as primitive functions returning boolean values. Formally, a con-
straint domain with primitive elements U and primitive functions PF ⊆ FS is
any structure D = 〈DU , {pD | p ∈ PF}〉 with carrier set DU the set of ground
patterns (i.e., without variables) over U and interpretations pD ⊆ Dn

U × DU
of each p ∈ PFn satisfying the technical monotonicity, antimonotonicity and
radicality requirements given in [12]. We use the notation pD tn → t to indicate
that (tn, t) ∈ pD.

Constraints over a given constraint domain D are logical statements built
from atomic constraints by means of logical conjunction ∧ and existential quan-
tification ∃. Atomic constraints can have the form ♦ (standing for truth), ¨
2 Note that (5, 5) can be seen as syntactic sugar for (pair 5 5), pair being a constructor

for ordered pairs.

(standing for falsity), or p en →! t , meaning that the primitive function p ∈ PFn

with parameters en ∈ Exp⊥(U) returns a total result t ∈ Pat⊥(U) (i.e, with
no occurrences of ⊥). Constraints whose atomic parts have the form ♦, ¨ or
p tn →! t with tn ∈ Pat⊥(U) are called primitive constraints. In the sequel we
use the notation PCon⊥(D) for the set of atomic primitive constraints over D
and DCon⊥(D) for the set of atomic user defined constraints over D.

Example 2 (Constraint domain R). The constraint domain R has the carrier set
DR of ground patters over R and the primitives defined below:
1. eqR, equality primitive for real numbers, such that: eqRR u u → true for all

u ∈ R; eqRR u v → false for all u, v ∈ R, u 6= v; eqRR t s → ⊥ otherwise.
2. seq, strict equality primitive for ground patterns over the real numbers, such

that: seqR t t → true for all total t ∈ DR; seqR t s → false for all t, s ∈ DR
such that t, s have no common upper bound w.r.t. the information ordering
introduced in [12] and defined in the Appendix; seqR t s → ⊥ otherwise. In
the sequel, e1 == e2 abbreviates seq e1 e2 →! true.

3. +, −, ∗, for addition, subtraction and multiplication, such that: x +R y →
x+Ry for all x, y ∈ R; t +R s → ⊥ whenever t /∈ R or s /∈ R; and analogously
for −R and ∗R.

4. <, ≤, >,≥, for numeric comparisons, such that: x <R y → true for all
x, y ∈ R with x <R y; x <R y → false for all x, y ∈ R with x ≥R y;
t <R s → ⊥ whenever t /∈ R or s /∈ R; and analogously for ≤R, >R, ≥R.
In the sequel, e1 < e2 abbreviates e1 < e2 →! true and e1 ≥ e2 abbreviates
e1 < e2 →! false (analogously for other comparison primitives).

The set of valuations over a constraint domainD is defined as the set V al⊥(D)
of ground substitutions (i.e. mappings from variables into ground patterns). The
semantics of constraints relies on the idea that a given valuation can satisfy or
not a given constraint. Therefore, the set of solutions of π ∈ PCon⊥(D) can be
defined as a subset SolD(π) ⊆ V al⊥(D) as follow: SolD(♦) = V al⊥(D), SolD(¨)
= ∅ and SolD(p tn →! t) = {η ∈ V al⊥(D) | tη is total and pD tnη → tη}.
Moreover, the set of solutions of Π ⊆ PCon⊥(D) is SolD(Π) =

⋂
π∈Π SolD(π).

3.3 Constraint Functional-Logic Programming

For any given constraint domain D, a CFLP (D)-program P is presented as a
set of constrained rewrite rules, called program rules, that define the behavior of
user-defined functions. More precisely, a constrained program rule R for f ∈ DFn

has the form R : f tn → r ⇐ ∆ (abbreviated as f tn → r if ∆ is empty) and is
required to satisfy the conditions listed below: 3

1. The left-hand side f tn is a linear expression (i.e, there is no variable having
more than one occurrence), and for all 1 ≤ i ≤ n, ti ∈ Pat⊥(U) are total
patterns. The right-hand side r ∈ Exp⊥(U) is also total.

3 In practice, T OY and similar languages require program rules to be well-typed in
a polymorphic type system. However, the CFLP (D) scheme can deal also with
untyped programs. Well-typedness is viewed as an additional requirement, not as
part of progam semantics.

2. ∆ ⊆ DCon⊥(D) is a finite set of total constraints, intended to be interpreted
as conjunction, and possibly including occurrences of user defined functions.

Program defined functions can be higher-order and/or non-deterministic. For
instance, the T OY program presented in Section 2 can be interpreted as an
example of CFLP (R)-program. The reader is referred to [12] for more explana-
tions and examples in other constraint domains.
The intended use of programs is to perform computations by solving goals pro-
posed by the user. An admissible goal for a given CFLP (D)-program must have
the form G : ∃U. (P 2 ∆), where U is a finite set of so-called existential variables
of the goal G (the rest of variables in G are called free variables and denoted by
fvar(G)), P is a finite conjunction of so-called productions of the form e → s
fulfilling the admissibility conditions given in [12], and ∆ ⊆ DCon⊥(D) is a
finite conjunction of total user defined constraints. Two special kinds of admis-
sible goals are interesting. Initial goals, where U and P are both empty (i.e.,
G has only a constrained part ∆ without occurrences of existential variables),
and solved goals (also called solved forms) of the form S : ∃U. (σ 2 Π), where
σ is a finite set of productions X → t or s → Y interpreted as the variable
bindings of an idempotent substitution (see Appendix) and Π ⊆ PCon⊥(D) is
a finite conjunction of total primitive constraints. Finally, a goal solving system
for CFLP (D) is expected to accept a program P and an initial goal G from
the user, and to obtain one or more solved forms Si as computed answers. For
instance, an initial goal G for the CFLP (R)-program shown in Example 1 could
be intersect (head (ladder (20, 20) 50 20)) (head (ladder (5, 5) 30 40)) (X, Y) == R,
and then a computed answer S for G is R → true 2 X ≤ 35 ∧ X ≥ 20 ∧ Y ≤ 5.

Goal solving systems can be implementations of CFLP languages such as
Curry [10] or T OY [13], or formal goal solving calculi including recent proposals
such as the CDNC(D) calculus [19], which is sound and complete w.r.t. the
declarative semantics discussed in the next subsection, and behaves as a faithful
formal model for actual computations in the T OY system.

3.4 Declarative Semantics

In this subsection we recall some notions and results on the declarative semantics
of CFLP (D)-programs which were developed in [12] and are needed for the rest
of this report. Given a constraint domain D we consider two different kinds of
constrained statements (briefly, c-statements) involving partial patterns t, ti ∈
Pat⊥(U), partial expressions e, ei ∈ Exp⊥(U), and a finite set Π ⊆ PCon⊥(D)
of primitive constraints:

1. c-productions e → t ⇐ Π, with e ∈ Exp⊥(U) (if Π is empty they boil
down to unconstrained productions written as e → t). As a particular kind
of c-productions useful for debugging we distinguish c-facts f tn → t ⇐ Π
with f ∈ DFn. A c-production is called trivial iff t = ⊥ or SolD(Π) = ∅.

2. c-atoms p en →! t ⇐ Π, with p ∈ PFn and t total (if Π is empty they
boil down to unconstrained atoms written as p en →! t). A c-atom is called
trivial iff SolD(Π) = ∅.

In the sequel we use ϕ to denote any c-statement. A c-interpretation over D
is defined as any set I of c-facts including all the trivial c-facts and closed
under D-entailment, a generalization of the entailment notion introduced in [4] to
arbitrary constraint domains. We write I `̀D ϕ to indicate that the c-statement
ϕ (not necessarily a c-fact) is semantically valid in the c-interpretation I. This
notation relies on a formal definition given in [12]. Now we are in a position to
define various semantics notions which rely on a given c-interpretation I over D.

Definition 1 (interpretation-dependent semantic notions).

1. The set of solutions of δ ∈ DCon⊥(D) is a subset SolI(δ) ⊆ V al⊥(D) defined
as follows:
(a) SolI(π) = SolD(π), for any π ∈ PCon⊥(D).
(b) SolI(δ) = {η ∈ V al⊥(D) | I `̀D δη}, for any δ ∈ DCon⊥(D) \

PCon⊥(D).
The set of solutions of a set of constraints ∆ ⊆ DCon⊥(D) is defined as
SolI(∆) =

⋂
δ∈∆ SolI(δ).

2. The set of solutions of a production e → t is a subset SolI(e → t) ⊆ V al⊥(D)
defined as SolI(e → t) = {η ∈ V al⊥(D) | I `̀D eη → tη}. The set of solutions
of a set of productions P is defined as SolI(P) =

⋂
(e→t)∈P SolI(e → t).

3. The set of solutions of an admissible goal G : ∃U. (P 2 ∆) is a subset
SolI(G) ⊆ V al⊥(D) defined as follows: SolI(G) = {η ∈ V al⊥(D) | η′ ∈
SolI(P) ∩ SolI(∆) for some η′ = η except perhaps over U}.
For primitive constraints one can easily check that SolI(Π) = SolD(Π).

Moreover, we note that SolI(S) = SolD(S) for every solved form S.

Definition 2 (model-theoretic semantics). Let P a CFLP (D)-program and
I a c-interpretation.

1. I is a model of P (in symbols, I |=D P) iff every constrained program rule
(ftn → r ⇐ ∆) ∈ P is valid in I: for any ground substitution η ∈ Sub⊥(U)
and t ∈ Pat⊥(U) ground such that (ftn → r ⇐ ∆)η is ground, I `̀D ∆η and
I `̀D rη → t one has I `̀D (ftn)η → t (or equivalently, ((ftn)η → t) ∈ I).

2. A solved form S is a semantically valid answer for a goal G w.r.t. a program
P (in symbols, P |=D G ⇐ S) iff SolD(S) ⊆ SolI(G) for all I |=D P.

4 Declarative Diagnosis of Wrong Answers in CFLP (D)

In this section we present a declarative diagnosis method for CFLP (D) and
prove its logical correctness. In what follows, we assume that a constraint domain
D and a CFLP (D)-program P are given.

4.1 Wrong Answers and Intended Interpretations

Declarative diagnosis techniques rely on a declarative description of the intended
program semantics. We will assume that the user knows (at least to the extent
needed for answering queries during the debugging sesion) a so-called intended

model I, which is a c-interpretation expected to satisfy I |=D P, unless P is
incorrect. For instance, rect (X, Y) LX LY (A, B) → false ⇐ A < X could belong
to the intended model I for the program fragment shown in Example 1. As
explained in Subsection 3.4, the c-facts belonging to c-interpretations can be
non-ground. Neverthless, the model notion I |=D P used here (see Definition
2 above) corresponds to the so-called weak semantics from [12], which depends
just on the ground c-facts belonging to I. Therefore, different presentations of
the intended model will be equivalent for the purposes of this report, as long as
they include the same ground c-facts.
The aim of declarative diagnosis is to start with an observed symptom of erro-
neous program behavior, and detect some error in the program. The proper
notions of symptom and error in our setting are as follows:

Definition 3 (symptoms and errors). Assume I is the intended interpreta-
tion for program P, and consider a solved form S produced as computed answer
for the initial goal G by some goal solving system. We define:

1. S is a wrong answer w.r.t I (serving as symptom) iff SolD(S) 6⊆ SolI(G).
2. P is incorrect w.r.t. I iff there exists some program rule (ftn → r ⇐ ∆) ∈ P

(manifesting an error) that is not valid in I (in the sense of Definition 2).

For instance, the computed answer shown in Example 1 is wrong w.r.t. the in-
tended model for the program assumed in that example, for the reasons already
discussed in Section 2. As illustrated by this example, computed answers typi-
cally include constraints on the variables occurring in the initial goal. However,
goal solving systems for CFLP (D) programs also maintain internal information
on constraints related to variables used in intermediate computation steps, but
not occurring in the initial goal. Such information is relevant for declarative
debugging purposes. Therefore, in the rest of this section we will assume that
computed answers S include also constraints related to intermediate variables.

4.2 A Logical Calculus for Witnessing Computed Answers

Assuming that S is a computed answer for an initial goal G using program P,
declarative diagnosis needs a suitable CT representing the computation. In our
setting we will obtain the CT from a logical proof P `CPPC(D) G ⇐ S which
derives the statement G ⇐ S from the program P in the Constraint Positive
Proof Calculus (shortly CPPC(D)) given by the inference rules in Fig. 1. We
will say that the CPPC(D)-proof witnesses the computed answer.

Most of these rules have been borrowed from the proof theory of CRWL(D),
a Constraint ReWriting Logic which characterizes the semantics of CFLP (D)
programs [12]. The main novelties in CPPC(D) are the addition of rule EX (to
deal with the existential quantifiers in computed answers) and a reformulation
of rule DFP , which is presented as the consecutive application of two inference
steps named ARf and FAf , which cannot be applied separately. The purpose
of this composite inference is to introduce the c-facts f tn → t ⇐ Π at the
conclusion of inference FAf , called boxed c-facts in the sequel. As we will see,

EX Existential Gσ ⇐ Π

G ⇐ ∃U. (σ 2 Π)
if fvar(G) ∩ U = ∅.

TI Trivial Inference
ϕ

if ϕ is a trivial c-statement.

RR Restricted Reflexivity
t → t ⇐ Π

if t ∈ U ∪ V.

SP Simple Production
s → t ⇐ Π

if s ∈ Pat⊥(U), s ∈ V or t ∈ V, and SolD(Π) ⊆ SolD(s → t).

DC Decomposition e1 → t1 ⇐ Π . . . em → tm ⇐ Π

hem → htm ⇐ Π

IR Inner Reduction e1 → t1 ⇐ Π . . . em → tm ⇐ Π

hem → X ⇐ Π
if hem /∈ Pat⊥(U), X ∈ V and SolD(Π) ⊆ SolD(htm → X)

PF Primitive Function e1 → t1 ⇐ Π . . . en → tn ⇐ Π

p en → t ⇐ Π

if p ∈ PF n, ti ∈ Pat⊥(U) for each 1 ≤ i ≤ n, and SolD(Π) ⊆ SolD(ptn → t).

DFP P-Defined Function
∆ ⇐ Π r → t ⇐ Π (FAf)

e1 → t1 ⇐ Π . . . en → tn ⇐ Π ftn → t ⇐ Π

f en → t ⇐ Π
(ARf)

∆ ⇐ Π r → s ⇐ Π (FAf)

e1 → t1 ⇐ Π . . . en → tn ⇐ Π ftn → s ⇐ Π s ak → t ⇐ Π

f enak → t ⇐ Π (ARf)

if f ∈ DF n (k > 0), (f tn → r ⇐ ∆) ∈ [P]⊥ ≡ {Rθ | R ∈ P, θ ∈ Sub⊥(U)}
and s ∈ Pat⊥(U).

AC Atomic Constraint e1 → t1 ⇐ Π . . . en → tn ⇐ Π

p en →! t ⇐ Π

if p ∈ PF n, ti ∈ Pat⊥(U) for each 1 ≤ i ≤ n, and SolD(Π) ⊆ SolD(ptn →! t).

Fig. 1. The Constraint Positive Proof Calculus CPPC(D)

only boxed c-facts will appear at the nodes of CTs obtained from CPPC(D)-
proofs. Therefore, all the queries asked to the user during a declarative debugging
session will be about the validity of c-facts in the intended model of the program,
which is itself represented as a set of c-facts. We also agree that the premises
Gσ ⇐ Π in rule EX (resp. ∆ ⇐ Π in rule DFP) must be understood as a
shorthand for several premises α ⇐ Π, one for each atomic ϕ in Gσ (resp. ∆).

Any CPPC(D)-derivation P `CPPC(D) G ⇐ S can be depicted in the form
of a Positive Proof Tree over D (shortly, PPT (D)) with G ⇐ S at the root and

c-statements at the internal nodes, and such that the statement at any node
is inferred from the statements at its children using some CPPC(D) inference
rule. In particular, the statement at the root must be inferred using rule EX,
which is then applied nowherelse in the proof tree. Fig. 2. shows a PPT (R)
representing a CPPC(R)-derivation which witnesses the computed answer from
Example 1, which is wrong w.r.t. the intended model of the program.

intersect (head (ladder (20, 20) 50 20)) (head (ladder (5, 5) 30 40)) (X, Y) == R

⇐ R → true 2 X ≤ 35 ∧ X ≥ 20 ∧ Y ≤ 5

intersect (head (ladder (20, 20) 50 20)) (head (ladder (5, 5) 30 40)) (X, Y) == true

⇐ X ≤ 35 ∧X ≥ 20 ∧ Y ≤ 5| {z }
Π

intersect (head (ladder (20, 20) 50 20))

(head (ladder (5, 5) 30 40)) (X, Y) → true ⇐ Π

true → true ⇐ Π

head (ladder (20, 20) 50 20) →
rect (20, 20) 50 20 ⇐ Π

head (ladder (5, 5) 30 40) →
rect (5, 5) 30 40 ⇐ Π

ladder (20, 20) 50 20 → [rect (20, 20) 50 20 | ⊥] ⇐ Π

head ([rect (20, 20) 50 20 | ⊥]) → rect (20, 20) 50 20 ⇐ Π

intersect (rect (20, 20) 50 20) (rect (5, 5) 30 40) (X, Y) → true ⇐ Π

[rect (20, 20) 50 20 |
ladder (20 + 50, 20 + 20) 50 20]

→ [rect (20, 20) 50 20 | ⊥] ⇐ Π

rect (20, 20) 50 20 →
rect (20, 20) 50 20 ⇐ Π

(rect (20, 20) 50 20) (X, Y)) &&

(rect (5, 5) 30 40) (X, Y)) → true ⇐ Π

rect (20, 20) 50 20 →
rect (20, 20) 50 20 ⇐ Π

ladder (20 + 50, 20 + 20) 50 20

→ ⊥ ⇐ Π

rect (20, 20) 50 20 (X, Y) → true ⇐ Π

rect (5, 5) 30 40 (X, Y) → true ⇐ Π

true && true → true ⇐ Π

true → true ⇐ Π

(X ≥ 5) && (X ≤ 5 + 30) && (Y ≤ 5) && (Y ≤ 5 + 40) → true ⇐ Π

true && true → true ⇐ Π true && true → true ⇐ Π true && true → true ⇐ Π

true → true ⇐ Π true → true ⇐ Π true → true ⇐ Π

EX

AC==

DC

ARintersect

ARladder

ARhead . . .

FAladder

FAhead

FAintersect

AR&&

FA&&

ARrect

ARrect

DC

TI

.

. . .

FArect

AR&&

FA&& FA&&FA&&

DC DC DC

DC

SolD(Π) ⊆ SolD(X ≥ 5 ∧X ≤ 35∧
Y ≤ 5 ∧ Y ≤ 45 → true)

SolD(Π) ⊆ SolD(true == true)

. . .

. . .

. . .

Fig. 2. A Positive Proof Tree in CPPC(R)

We say that a goal solving system is called CPPC(D)-sound iff for any
computed answer S obtained for an initial goal G using program P there is

some witnessing CPPC(D)-proof P `CPPC(D) G ⇐ S. The next result shows
that CPPC(D)-sound goal solving systems exist:

Theorem 1 (existence of CPPC(D)-sound goal solving systems). The
goal solving calculus CDNC(D) given in [19] is CPPC(D)-sound.

Proof. Straightforward adaptation of the soundness theorem for CDNC(D) pre-
sented in [19]. 2

In addition to CDNC(D), other formal goal solving calculi known for CFLP (D)
are also CPPC(D)-sound. Moreover, it is also reasonable to assume CPPC(D)-
soundness for implemented goal solving systems such as Curry [10] and T OY
[13] whose computation model is based on constrained lazy narrowing. Moreover,
any CPPC(D)-sound goal solving system is semantically sound in the sense of
item 2 in Definition 2:

Theorem 2 (Semantic correctness of the CPPC(D) calculus). If G is
an initial goal for P and S is a solved goal such that P `CPPC(D) G ⇐ S then
P |=D G ⇐ S.

Proof. It is sufficient to assume an arbitrarily given model I |=D P and to prove
that any CPPC(D) inference rule whose premises are valid in I has a conclusion
that is also valid in I. Details are given in the Appendix. 2

4.3 Declarative Diagnosis using Proof Trees

Now we are ready to present a declarative diagnosis method and to prove its
correctness. Our results apply to any CPPC(D)-sound goal solving system. First
we prove that the observation of an error symptom implies the existence of some
error in the program:

Theorem 3 (Wrong answers are caused by erroneous program rules).
Assume that a CPPC(D)-sound goal solving system computes S as answer for
the initial goal G using program P. If S is wrong w.r.t. the user’s intended
interpretation I then some program rule belonging to P is incorrect w.r.t. I.
Proof. Because of CPPC(D)-soundness of the goal solving system, we know
that P `CPPC(D) G ⇐ S. Then, from Theorem 2 we obtain P |=D G ⇐ S,
i.e. SolD(S) ⊆ SolJ (G) for each model J |=D P. Since S is wrong w.r.t. the
user’s intended model I, it must be the case that SolD(S) 6⊆ SolI(G) because
of Definition 3. Therefore, we can conclude that the intended model I is not
a model of P. Then, by Definition 2, some program rule belonging to P is not
valid in I. 2

The previous theorem does not yet provide a practical method for finding an
erroneous program rule. As explained in the Introduction, a declarative diagnosis
method is expected to find the erroneous program rule by inspecting a CT . We
propose to use abbreviated CPPC(D) proof trees as CTs. Since DFP is the

only inference rule in the CPPC(D) calculus that depends on the program,
abbreviated proof trees will omit the inference steps related to all the other
CPPC(D) rules. More precisely, given a PPT (D) T , its associated Abbreviated
Positive Proof Tree over D (shortly, APPT (D)) AT is defined as follows:

– The root of AT is the root of T .
– The children of a node N in AT are the closest descendants of N in T

corresponding to boxed c-facts introduced by DFP inference steps.

A node in an APPT (D) is called a buggy node iff the c-statement at the node
is not valid in the intended interpretation I, while all the c-statements at the
children nodes are valid in I. Our last theorem guarantees that declarative di-
agnosis with APPT (D)s used as CTs leads to the correct detection of program
errors. A proof is given in the Appendix.

Theorem 4 (Declarative diagnosis of wrong answers). Under the assump-
tions of Theorem 3, any APPT (D) witnessing P `CPPC(D) G ⇐ S (which must
exist due to CPPC(D)-soundness of the goal solving system) has some buggy
node. Moreover, each buggy node points to a program rule belonging to P which
is incorrect in the user’s intended interpretation.

5 A Practical Debugging Tool for CFLP (R)

Fig. 3 shows the APPT (R) associated to the PPT (R) of Fig. 2. as displayed
by DDT , the debugger tool included in the system T OY. Although in theory
all the c-facts in a PPT (R) should include the same constraint Π, in practice
the tool simplifies Π at each c-fact f tn → t ⇐ Π, keeping only those atomic
constraints related to the variables occurring on f tn → t. It can be checked that
such a simplification does not affect to the intended meaning of c-facts.

Fig. 3. The APPT (R) corresponding to the PPT (R) of Fig. 2.

Before starting a debugging session the user may inspect and simplify the tree
using several facilities. For instance the user could mark any node corresponding
to the infix function && as trusted, indicating that the definition of && is surely
not erroneous. This makes all the nodes corresponding to && automatically
valid. Valid nodes can be removed from the tree safely (the set of buggy nodes
doesn’t change) by using a suitable menu option.

Next, the user can start a debugging session by selecting one of the two pos-
sible strategies included in DDT : the top-down or the divide and query strategy
(see [5] for a comparative between both strategies in an older version of DDT
which did not yet support constraints). After selecting the divide and query
strategy, which usually leads to shorter sessions, DDT asks about the validity
of the following node:

The intended program model corresponds to the intuitions explained in Sec-
tion 2. Therefore, the question must be understood as: Is (X, Y) a point in
the intersection of the two rectangles for all possible values of X, Y satisfying
X ≤ 35, X ≥ 20, Y ≤ 5 is (X,Y)?. The answer is no, because with these con-
straints Y can take any value less than 5 and some of these values would yield
a pair (X, Y) out of the intersection for every X. Therefore the user marks the
cross meaning that the c-fact is non-valid. The next question is:

which is also reported as non-valid by the user. At this point a buggy node is
found by the tool, pointing out to the incorrect program rule and ending the
debugging session:

The current version of the debugger supports programs using the constraint
domain R, which provides arithmetic constraints over the real numbers as well
as strict equality and disequality constraints over data values of any type; see
Example 2 and [12] for details. The tool is as an extension of older versions which
did not yet support constraints over the domain R [5, 3], and it is part of the
public distribution of the functional logic programming system T OY, available
at http://toy.sourceforge.net. The APPT associated to a wrong answer is
constructed by means of a suitable program transformation. The yielded tree
is then displayed through a graphical debugging interface implemented in Java.
More detailed explanations on the practical use of DDT can be found in [5, 3].

6 Conclusions and Future Work

We have presented a declarative technique for diagnosing wrong computed ans-
wers in CFLP (D), a generic scheme for constraint functional logic programming
over a given constraint domain D. Our diagnosis technique represents the com-
putation which has produced a wrong computed answer by means of an abridged
proof tree whose inspection leads to the discovery of at some erroneous program
rule responsible for the wrong answer. The logical correctness of the method can
be formally proved thanks to the connection between abridged proof trees and
program semantics.

A debugging tool called DDT which implements the proposed technique over
the domain R of arithmetic constraints over the real numbers has been imple-
mented as a non-trivial extension of previously existing debugging tools. DDT
provides several practical facilities for reducing the number and the complexity
of the questions that are presented to the user during a debugging session.

As future work, we plan to develop a formal framework for the declarative di-
agnosis of missing answers in CFLP (D), using a suitable kind of abridged proof
trees as computation trees. On the practical level we plan several improvements
of DDT , such as enabling the diagnosis of missing answers, supporting finite
domain constraints, and providing new facilities for simplifying the presentation
of queries to the user.

References

1. M. Alpuente, D. Ballis, F.J. Correa and M. Falaschi. Correction of Functional Logic
Programs. Proc. ESOP’03, Springer LNCS, 2003.

2. J. Boye, W. Drabent, and J. MaÃluszyński. Declarative Diagnosis of Constraint Pro-
grams: an Assertion-based Approach. DiSCiPl Delieverable D.WP2.2.M1.1-2, 1997.

3. R. Caballero. A Declarative Debugger of Incorrect Answers for Constraint
Functional-Logic Programs. Proc. WCFLP’05, ACM SIGPLAN, pp. 8–13, 2005.

4. R. Caballero and M. Rodŕıguez-Artalejo. A Declarative Debugging System for Lazy
Functional Logic Programs. ENTCS 64, 63 pages, 2002.

5. R. Caballero and M. Rodŕıguez-Artalejo. DDT : A Declarative Debugging Tool for
Functional Logic Languages. Proc. FLOPS’04, Springer LNCS 2998, pp. 70–84, 2004.

6. M. Comini, G. Levi, M.C. Meo and G. Vitiello. Abstract diagnosis. Journal of Logic
Programming 39 (1–3):43–93, 1999.

7. P. Deransart, M. Hermenegildo and J. MaÃluszyński (Eds.) Analysis and Visualiza-
tion tools for Constraint Programming: Constraint Debugging. Springer LNCS 1870,
pp. 151–174, 2000.

8. G. Ferrand. Error Diagnosis in Logic Programming, an Adaptation of E.Y. Shapiro’s
Method. The Journal of Logic Programming 4(3), 177-198, 1987.

9. G. Ferrand, W. Lesaint and A. Tessier. Towards declarative diagnosis of constraint
programs over finite domains. ArXiv Computer Science e-prints, 2003.

10. M. Hanus (ed.), Curry: an Integrated Functional Logic Language, Version 0.8,
April 15, 2003. http://www.informatik.uni-kiel.de/∼mh/curry/.

11. M. Hermenegildo, G. Puebla, F. Bueno and P. López-Garćıa. Abstract Verification
and Debugging of Constraint Logic Programs. Proc. CSCLP’02, pp. 1–14, 2002.

12. F.J. López-Fraguas, M. Rodŕıguez-Artalejo and R. del Vado-Vı́rseda. A New
Generic Scheme for Functional Logic Programming with Constraints. To appear
in Higher-Order and Symbolic Computation, 2006. (Extended version of Constraint
Functional Logic Programming Revisited, WRLA’04, ENTCS 117, pp. 5–50, 2005.)

13. F.J. López-Fraguas, J. Sánchez-Hernández. T OY: A Multiparadigm Declarative
System. In Proc. RTA’99, Springer LNCS 1631, pp 244–247, 1999. System and docu-
mentation available at http://toy.sourceforge.net.

14. L. Naish. A Declarative Debugging Scheme. Journal of Functional and Logic Pro-
gramming, 1997-3.

15. H. Nilsson. How to look busy while being as lazy as ever: the Implementation of a
lazy functional debugger. Journal of Functional Programming, 11(6):629–671, 2001.

16. B. Pope and L. Naish. Practical aspects of declarative debugging in Haskell 98.
Proc. PPDP’03, ACM Press, pp. 230–240, 2003.

17. E.Y. Shapiro. Algorithmic Program Debugging. The MIT Press, Cambridge, 1982.
18. A. Tessier and G. Ferrand. Declarative Diagnosis in the CLP Scheme. In P. De-

ransart, M. Hermenegildo, J. MaÃluszyński (eds.), Analysis and Visualization Tools
for Constraint Programming, Chapter 5, pp. 151–174. Springer LNCS 1870, 2000.

19. R. del Vado-Vı́rseda. Declarative Constraint Programming with Definitional Trees.
In Proc. FroCoS’05, Springer LNAI 3717 pp. 184–199, 2005.

Appendix

In this Appendix, intended for the reviewers, we give the proofs of the main
results omitted in the report. Within these proofs, we will use the following
definition for the useful information ordering v introduced in [12] over partial
expressions: ⊥ v e for all e ∈ Exp⊥(U) and (e e1) v (e′ e′1) whenever e v e′

and e1 v e′1. Moreover, we will use the notation η =X η′ to indicate that η ¹X
= η′ ¹X for all η, η′ ∈ Sub⊥(U) and X ⊆ V, and we abbreviate η =V\X η′ as
η =\X η′ .

The first result proves that productions X → t or s→ Y occurring in a solved
form can be interpreted as the variable bindings of an idempotent substitution
σ, because of the following proposition:

Proposition 1. For any solved form S as presented above, SolD(∃U. (Xn → tn
∧ sm → Ym 2 Π)) = SolD(∃U. (Xn = tn ∧ sm = Ym 2 Π)).

Proof. Let η ∈ V al⊥(D) be any valuation. We prove that (a) η ∈ SolD(∃U.
(Xn → tn ∧ sm → Ym 2 Π)) ⇔ (b) η ∈ SolD(∃U. (Xn = tn ∧ sm = Ym 2

Π)). In this proof, the symbol → is interpreted as the symbol w. (b) ⇒ (a)
holds trivially because ”u = v” ⇒ ”u w v”. We proof now (a) ⇒ (b). If η ∈
SolD(∃U. (Xn → tn ∧ sm → Ym 2 Π)) then there exists η′ ∈ V al⊥(D) such
that η′ =\U η and η′ ∈ SolD(Xn → tn ∧ sm → Ym 2 Π), i.e. Xiη

′ w tiη
′

(1 ≤ i ≤ n), sjη
′ w Yjη

′ (1 ≤ j ≤ m) and η′ ∈ SolD(Π). By the admissibility
conditions of goals, the sequence of patterns t1 . . . tn Y1 . . . Ym is lineal and
it has only occurrences of variables in U . Therefore, we can take another η′′ ∈
V al⊥(D) such that η′′ w η′, η′′ =\U η′, Xiη

′′ = tiη
′′ (1 ≤ i ≤ n) and sjη

′′ =
Yjη

′′ (1 ≤ j ≤ m). Since η′′ =\U η′ =\U η, we conclude that η′′ =\U η such
that η′′ ∈ SolD(Xn = tn ∧ sm = Ym 2 Π) and then η ∈ SolD(∃U. (Xn = tn ∧
sm = Ym 2 Π)). 2

The two following auxiliary lemmas used in the proof of Theorem 2 can be
proved by simple (albeit tedious) inductive reasoning:

Lemma 1 (Substitution Lemma).
Assume a given c-interpretation I over D, an admissible goal G, a valuation η
∈ V al⊥(D) and an idempotent substitution σ ∈ Sub⊥(U) such that η ∈ SolD(σ)
(i.e. Xη = Xση for all X ∈ dom(σ)) and η ∈ SolI(Gσ). Then η ∈ SolI(G).

Lemma 2 (Coincidence Lemma).
Assume a given c-interpretation I over D, an admissible goal G, and two va-
luations η, η′ ∈ V al⊥(D) such that η =fvar(G) η′. Then η ∈ SolI(G) iff η′ ∈
SolI(G).

Proof of Theorem 2 (Semantic correctness of the CPPC(D) calculus):

Proof. The proof of this result is based on the inductive proof for the semantic
correctness of the CRWL(D) calculus presented in [12]. We have only to prove
that the new rules EX, ARf and FAf introduced in the CPPC(D) calculus
are semantically correct in the inductive part of this proof with respect to the
declarative semantics introduced in Subsection 3.4:

– The rule EX is semantically correct. We suppose by induction hypothesis
that P |=D Gσ ⇐ Π and we prove that also P |=D G ⇐ ∃U. (σ 2 Π). Let
I be an arbitrary model of P such that I |=D Gσ ⇐ Π, i.e. SolD(Π) ⊆
SolI(Gσ). We prove that I |=D G ⇐ ∃U. (σ 2 Π), i.e. SolD(∃U. (σ 2 Π))
⊆ SolI(G). Let η ∈ SolD(∃U. (σ 2 Π)). By the syntactic form of solved
goals, η ∈ SolD(∃U. (Xn → tn ∧ sm → Ym 2 Π)). From Proposition 1, η ∈
SolD(∃ U. (Xn = tn∧Ym = sm 2 Π)). By applying Definition 1, there exists
η′ ∈ V al⊥(D) such that η′ =\U η y η′ ∈ SolD(Xn = tn ∧ Ym = sm 2 Π),
and therefore, η′ ∈ SolD(Xn = tn ∧ Ym = sm) (i.e., η′ ∈ SolD(σ)) and η′ ∈
SolD(Π). Since by induction hypothesis SolD(Π) ⊆ SolI(Gσ), it follows that
η′ ∈ SolI(Gσ). Moreover, since η′ ∈ SolD(σ), using Lemma 1, we obtain η′

∈ SolI(G). In consequence, there exists η′ ∈ V al⊥(D) such that η′ =\U η

and η′ ∈ SolI(G). Finally, using the condition of applicability fvar(G) ∩ U
= ∅ associated to the rule EX and the Lemma 2, we can conclude that η ∈
SolI(G).

– The rule ARf is semantically correct. We suppose by induction hypothesis
that P |=D ei → ti ⇐ Π for each 1 ≤ i ≤ n, P |=D ftn → s ⇐ Π,
P |=D sak → t ⇐ Π and we prove that also P |=D fenak → t ⇐ Π.
Let I be an arbitrary model of P such that I |=D ei → ti ⇐ Π for each
1 ≤ i ≤ n (i.e., SolD(Π) ⊆ SolI(ei → ti) for each 1 ≤ i ≤ n), I |=D
ftn → s ⇐ Π (i.e., SolD(Π) ⊆ SolD(ftn → s)) and I |=D sak → s ⇐ Π
(i.e., SolD(Π) ⊆ SolI(sak → t)). We prove that I |=D fenak → t ⇐ Π,
i.e., SolD(Π) ⊆ SolI(fenak → t). Let η ∈ SolD(Π). We have then η ∈
SolI(ei → ti) for each 1 ≤ i ≤ n, and by Definition 1, I `̀D eiη → tiη
for each 1 ≤ i ≤ n. Analogously, η ∈ SolI(ftn → s), by Definition 1,
I `̀D ftnη → sη, and by the Conservation Property (see [12] for details),
(ftnη → sη) ∈ I. Analogously, η ∈ SolI(sak → t) and by Definition 1, I `̀D
(sη)(akη) → tη. But then, by applying of the rule DFI (see [12] for details),
we have that I `̀D f(enη)(akη) → tη. From Definition 1, we obtain finally η
∈ SolI(fenak → t).

– The rule FAf is semantically correct. We suppose by induction hypothesis
that P |=D ∆ ⇐ Π, P |=D r → s ⇐ Π and we prove P |=D ftn → s ⇐ Π
where (ftn → r ⇐ ∆) ∈ [P]⊥. By definition of [P]⊥, there are (ft′n → r′ ⇐
∆′) ∈ P and θ ∈ Sub⊥(U) such that (ft′n → r′ ⇐ ∆′)θ ≡ (ftn → r ⇐ ∆).
Let I be an arbitrary model of P such that I |=D ∆ ⇐ Π (i.e., SolD(Π)
⊆ SolI(∆)) and P |=D r → s ⇐ Π (i.e., SolD(Π) ⊆ SolI(r → s)). We
prove that I |=D ftn → s ⇐ Π, i.e., SolD(Π) ⊆ SolI(ftn → s). Let η ∈
SolD(Π). Then we have η ∈ SolI(∆), and by Definition 1, I `̀D ∆η, and

also, I `̀D ∆′θη. Analogously, η ∈ SolI(r → s), and by Definition 1, I `̀D
rη → sη, and also, I `̀D r′θη → sη. We have then (ft′n → r′ ⇐ ∆′) ∈
P, θη ∈ Sub⊥(U) ground substitution and sη ∈ Pat⊥(U) ground such that
(ft′n → r′ ⇐ ∆′)θη ≡ (ftn → r ⇐ ∆)η is ground, I `̀D ∆′θη and I `̀D
r′θη → sη. Since I is a model of P, by applying Definition 2, we obtain
((ft′n)θη → sη) ∈ I, i.e., ((ftn)η → sη) ∈ I, or also, (ftn → s)η ∈ I.
Finally, by applying the Conservation Property (see [12] for details), it is
equivalent to I `̀D (ftn → s)η, and by Definition 1, we can conclude that η
∈ SolI(ftn → s). 2

Proposition 2 (Weak completeness of declarative debugging).
Every finite computation tree with an erroneous root contains at least one buggy
node.

Proof. Induction on the depth of the computation tree T :

– Basis: In this case T only contains one node, which is trivially a buggy node.
– Inductive case: We consider again the root of T . Two possible cases:

• If there is no incorrect child, the root is a buggy node.
• If some child N is incorrect we consider its associated subtree TN . The

depth of Tn is less of the depth of T . Therefore, by induction hypotheses
TN contains a buggy node. 2

Proposition 3. Let T be any PPT (D) and AT the corresponding APPT (D).
Any buggy node N of AT corresponds to a boxed node of T introduced by an
application of the CPPC(D)-inference DFP . Moreover, N is also a buggy node
in T .

Proof. Let N be any buggy node of AT , and let N ′
1, . . . , N

′
p be the children of

N in AT , and let ϕ,ϕ′j (1 ≤ j ≤ p) be the answer collection statements labelling
N and the N ′

j . Since N is a buggy node, all the ϕ′j are valid in I while ϕ is
invalid in I. Due to the construction of AT from T , there are two possible cases
for the relationship between N and the N ′

j in T :

– Case 1: N is the root of T and N ′
j are the closest independent descendants

of N in T which are boxed nodes.
– Case 2: N is a boxed node of T and N ′

j are the closest independent descen-
dants of N in T which are boxed nodes.

In Case 1, all the inference steps going from ϕ′1, . . . , ϕ
′
m to ϕ in T would use

a CPPC(D)-inference other than DFP . As shown by the proof of Theorem 2,
all the inference rules in CPPC(D) with the single exception of DFP preserve
validity in arbitrary interpretations. Since all the ϕ′j are valid in I but ϕ is not,
this case is impossible. In Case 2, each of the children Ni (1 ≤ i ≤ m) of N in T
is labelled by some answer collection statement ϕi which follows from ϕ′1, . . . , ϕ

′
j

by means of CPPC(D)-inferences other than DFP , preserving validity in arbi-
trary interpretations. Therefore, ϕi is valid in I for all 1 ≤ i ≤ m, and N is a
buggy node in T . 2

Proof of Theorem 4 (Declarative diagnosis of wrong Answers):

Proof. Let T be a PPT (D) witnessing P `CPPC(D) G ⇐ S and let AT be the
corresponding APPT (D). Due to the weak completeness of declarative debugging
(see [14] or Proposition 2), AT has some buggy node. Due to Proposition 3,
any buggy node N of AT corresponds to a boxed node introduced in T by an
application of the CPPC(D)-inference DFP , which is also a buggy node in T .
Therefore, looking to the boxed node N in T we find:

1. N is labelled by ftn → s ⇐ Π invalid in I. Therefore, I 6|=D ftn → s ⇐ Π
and then SolD(Π) 6⊆ SolI(ftn → s).

2. N has a children labelled by ∆ ⇐ Π valid in I. Therefore, I |=D ∆ ⇐ Π
and then SolD(Π) ⊆ SolI(∆).

3. N has a children labelled by r → s ⇐ Π valid in I. Therefore, I |=D
r → s ⇐ Π and then SolD(Π) ⊆ SolI(r → s).

4. (ftn → r ⇐ ∆) ∈ [P]⊥. Therefore, by definition of [P⊥], there exists a
constrained program rule (ft′n → r′ ⇐ ∆′) ∈ P and a substitution θ ∈
Sub⊥(U) such that (ft′n → r′ ⇐ ∆′)θ ≡ (ftn → r ⇐ ∆) ∈ [P]⊥.

Let η ∈ SolD(Π). Then, according to items 2 and 3, η ∈ SolI(∆) (or equivalently
by item 4, θη ∈ SolI(∆′)) and η ∈ SolI(r → s) (or equivalently by item 4, η ∈
SolI(r′θ → s)). By Definition 1, we have I `̀D ∆η (or equivalently by item 4, I
`̀D ∆′θη) and I `̀D rη → sη (or equivalently by item 4, I `̀D r′θη → sη). Since η
is a valuation, θη ∈ Sub⊥(U) is a ground substitution, sη ∈ Pat⊥(U) is a ground
pattern and (ft′n → r′ ⇐ ∆′)θη is ground. In this situation, if we suppose that
the constrained program rule (ft′n → r′ ⇐ ∆′) ∈ P is valid in I, according
to item 1 in Definition 2, we obtain I `̀D (ft′n)θη → sη (or equivalently by
item 4, I `̀D (ftn)η → sη), and then η ∈ SolI(ftn → s). But then, SolD(Π) ⊆
SolI(ftn → s) and we have a contradiction with item 1. So, the f ’s constrained
program rule (ft′n → r′ ⇐ ∆′) in P is incorrect in I. 2

