
A logical approach to the verification of functional-logic
programs

José Miguel Cleva, Javier Leach and Francisco J. López-Fraguas ?

Departamento de Sistemas Informáticos y Programación
Universidad Complutense de Madrid, Spain
jcleva@sip.ucm.es, fraguas@sip.ucm.es, leach@sip.ucm.es

Abstract. We address in this paper the question of how to verify properties of functional logic programs
like those of Curry or Toy. The main problem to face is that equational reasoning is not valid for this
purpose, due to the possible presence of non-deterministic functions with call-time choice semantics. We
develop some logical conceptual tools providing sound reasoning mechanisms for such kind of programs,
in particular for proving properties valid in the initial model of a program. We show how CRWL, a well
known logical framework for functional logic programming, can be easily mapped into logic programming,
and we use this mapping as a starting point of our work. We explore then how to prove properties of the
resulting logic programming translation by means of different existing interactive proof assistants, and give
some initial proposals trying to overcome the limitations of the approach, both in terms of efficiency and
theoretical strength.

1 Introduction

One distinguished feature of modern functional logic languages like Curry [18] or Toy [20]
is that programs are constructor based rewrite systems allowed to be non-terminating and
non-confluent. Semantically this leads to the presence of non-strict and non-deterministic
functions, which have been shown quite useful for practical declarative programming.

However, non-determinism makes equational reasoning non valid for reasoning about
programs. The CRWL framework [13,14] - which is the theoretical basis of our work -
gives a well-established alternative logic for functional logic programming (FLP). In CRWL
the semantics of a program is given by its possible reductions, expressed by means of a
reducibility relation e → t between evaluable expressions and constructor terms, which are
the sensible kind of result of computations. CRWL provides a proof calculus prescribing
which reduction statements e → t hold for a given program1. Programs have initial models,
which are commonly accepted as the natural candidates to be intended models of programs.

CRWL has been extended with success to cope with many other features relevant to
productive programming: HO, objects, subsorts, algebraic datatypes, constraints and fail-
ure. See [29] for a recent survey of the CRWL-approach to FLP. Here we restrict ourselves
to first order programs.

Verification of properties of logic and functional programs have been frequently studied
[28,27,17]. We do not know of many results in the FLP setting. The work of Padawitz
[24,25] in equational logic programming constitute a serious effort, both at the theoretical
and the practical level. In Padawitz functions are deterministic and with strict semantics.
There is some other work contemplating the issue of FLP program properties from a specific
point of view. This includes different topics about declarative debugging [7,8,1], abstract
interpretation [6] or abstract diagnosis [2].

? The authors are partially supported by the Spanish project TIC2002-01167 ‘MELODIAS’.
1 CRWL considers also a different kind of semantic statements, called joinability statements, which are

useful for a good treatment of strict equality, a matter which we do not consider here.

The goal of our paper is to develop a logical basis from which quite general properties of
FLP programs (like those of Curry or Toy) can be formulated and proved. The main lines
of our approach can be summarized in advance as follows:

• Programs are CRWL-programs and the properties of interest are those valid in the
initial model of a given program P , expressed as first order logic (FOL) formulas with
reduction (→) as relation symbol.

• The CRWL-semantics of P is expressed by means of a FOL theory, which actually is a
logic program PL, whose least model corresponds closely to the CRWL-initial model of
P .

• We can prove properties valid in those models by FOL deduction from a FOL theory
consisting of the completion of PL extended with inductive axioms. The set of provable
valid properties can be enhanced by refining this theory, in particular by embedding in
it some meta-theory about CRWL-derivations.

The remainder of the paper is organized as follows. The next section presents some
preliminaries about CRWL. In section 3 we draw a parallel FOL theory PL – a logic program
indeed – for any given CRWL-program P such that CRWL-deducibility from P corresponds
to FOL-logical consequence from PL. In section 4, in order to prove properties of the initial
model of a sample CRWL-program P , we translate the inductive extension of the completion
of PL into several existing interactive proof assistants. In section 5 we introduce a variant
of the logic program PL emulating CRWL, where the derivation trees for statements e → t
are explicit. Finally, section 6 summarizes some conclusions. Due to lack of space, proofs
are omitted.

2 Preliminaries: CRWL programs and their logical semantics

We assume a signature Σ = DCΣ ∪ FSΣ where DCΣ =
⋃

n∈IN DCn
Σ is a set of constructor

symbols and FSΣ =
⋃

n∈IN FSn
Σ is a set of function symbols, all of them with associated

arity and such that DCΣ ∩FSΣ = ∅. We also assume a countable set V of variable symbols.
We write ExpΣ for the set of (total) expressions built up with Σ and V in the usual way, and
we distinguish the subset CTermΣ of (total) constructor terms or (total) c-terms, which
only make use of DCΣ and V. The subindex Σ will usually be omitted. Expressions intend
to represent possibly reducible expressions, while c-terms represent not further reducible
data values.

The signature Σ⊥ results of extending Σ with the new constant (0-arity constructor) ⊥,
that plays the role of the undefined value. The sets Exp⊥ and CTerm⊥ of (partial) expres-
sions and (partial) c-terms respectively are built up using Σ⊥. Partial c-terms represent the
result of partially evaluated expressions; thus, they can be seen as approximations to the
value of expressions. A partial c-term is called ground if it does not contain any variable.

As usual notation we will write X,Y, Z, ... for variables, c, d for constructor symbols, f, g
for functions, e for expressions and s, t for c-terms. In all cases, primes (’) and subindices can
be used. Expressions can be compared by the approximation ordering v, defined as the least
partial ordering verifying: ⊥v e and e1 v e′1∧ . . .∧ en v e′n ⇒ h(e1, . . . , en) v h(e′1, . . . , e

′
n),

for h ∈ DCn ∪ FSn.
We will use the sets of substitutions CSubst = {θ : V → CTerm} and CSubst⊥ = {θ :

V → CTerm⊥}. We write eθ for the result of applying θ to e.
In the next sections we will need some familiar notions about first order logic and logic

programming (see e.g. [11,5] for standard references). We will use ϕ,ϕ′, . . . for FOL-formulas

2

Table 1. Rules for CRWL-provability

(BT) Bottom
e → ⊥ for e ∈ Exp⊥

(DC) Decomposition
e1 → t1 ... en → tn

c(e1, ..., en) → c(t1, ..., tn)
c ∈ DCn, ti ∈ CTerm⊥, n ≥ 0

(FR) Function reduction
e1 → t1 ... en → tn e → t

f(e1, ..., en) → t
if t 6≡ ⊥, f(t1, ..., tn) → e ∈ [P]⊥

and the standard notation T |= ϕ, I |= ϕ for logical consequence from a FOL theory (i.e.,
set of formulas) T and validity in a given interpretation I. We write also I |= T to indicate
that I is a model of T .

2.1 The Proof Calculus for CRWL

In [13,14] programs are made of conditional rules, where conditions are conjunctions of
joinability (or strict equality) conditions. Since we are not dealing here with strict equality
as a specific, built-in construct, and it is known [4,30] that in programs like ours (follow-
ing constructor discipline) conditions can be replaced by semantically equivalent if-then
expressions, we consider here programs with non-conditional rules.

So, in this work a CRWL-program P is a finite set of rewrite rules of the form f(t1, ..., tn) →
e where f ∈ FSn, (t1, ..., tn) is a linear tuple (each variable in it occurs only once) of c-terms,
and e is an expression. Notice that e can contain variables not occurring in f(t1, ..., tn). We
write Pf for the set of defining rules of f in P.

From a given program P, the proof calculus for CRWL can derive reduction or approx-
imation statements of the form e → t, with e ∈ Exp⊥ and t ∈ CTerm⊥. The intended
meaning of such statement is that e can be reduced to t, where reduction may be done by
applying rewriting rules of P or by replacing subterms of e by ⊥. If e → t can be derived,
t represents one of the possible values of the denotation of e.

When using a function rule R to derive statements, the calculus uses the so called c-
instances of R, defined as [R]⊥ = {Rθ|θ ∈ CSubst⊥}. We write[P]⊥ for the set of c-instances
of all the rules of a program P . Parameter passing in function calls are expressed by means
of these c-instances in the proof calculus.

Table 1 shows the proof calculus for CRWL. We write P `CRWL ϕ for expressing that the
statement ϕ is provable from the program P with respect to this calculus. The rule (FR)
allows to use c-instances of program rules to prove approximations. Thesen c-instances may
contain ⊥ and by rule (BT) any expression can be reduced to ⊥. This reflects a non-strict
semantics, allowing non-terminating programs to be meaningful.

A distinguished feature of CRWL (shared by concrete systems like Curry or Toy) is that
programs can be non-confluent, defining thus non-deterministic functions. As a typical
example, consider the program (called Coin for future references) in Fig.1, which assumes
the constructors 0 and s for natural numbers.

Notice that coin is a non-deterministic function, for which the previous calculus can
derive the statements coin → 0 and coin → s(0). The use of c-instances in rule (FR)
instead of general instances corresponds to call time choice semantics for non-determinism
[19,13,14]). In the example, it is possible to build a CRWL-proof for double(coin) → 0 and

3

0 + Y → Y coin → 0
s(X) + Y → s(X + Y) coin → s(0)
double(X) → X + X

Fig. 1. CRWL sample program Coin

also for double(coin) → s(s(0)), but not for double(coin) → s(0). This semantic choice is
not a caprice of CRWL. Call-time choice is related to sharing, a well known operational
technique considered essential for the effective implementation of lazy funcional languages
like Haskell. Existing FLP languages like Curry or Toy also use sharing and call-time choice
semantics. The above described behaviour for the reduction of double(coin) corresponds
exactly with what happens in those systems. Run-time choice, an alternative semantics for
non-determinism with which double(coin) can be reduced also to s(0) is investigated for
the FLP setting in [3].

From the point of view of verifying properties of FLP programs, non-determinism and
call-time choice semantics have the unpleasant consequence that equational reasoning is
not valid for CRWL-programs. In the previous example, if the rules for coin were under-
stood as the equalities coin = 0 and coin = s(0), then we could deduce 0 = s(0), which
is not intended. Call-time choice implies that not only equational reasoning, but also ordi-
nary rewriting is invalid since, from the point of view of rewriting, the rule double(X) →
X + X should be applicable to any X, and not only to c-terms. Hence, we would have
double(coin) → coin + coin, and from this, double(coin) → s(0), which is not valid with
call-time choice. A remark about the CRWL-calculus presented here, with respect to the
original in [13,14]: in addition to the above mentioned elimination of joinability statements,
we have also dropped the so called restricted reflexivity rule:

(RR)
X → X

X ∈ V

At the end of this section we argue the advantages of having done so. But we first discuss
the relation between both calculi. Inside this discussion, let us call CRWL the calculus of
table 1, and CRWLRR the proof calculus with the rule (RR). Within CRWLRR we can
prove, for instance, 0 + X → X and all its c-instances while in CRWL only the ground
c-instances 0 + t → t, for any ground partial c-term t. The next result precises the relation
between both calculi:

Proposition 1. Let P be a CRWL-program. Then:
(i) P `CRWL e → t ⇒ P `CRWLRR

e → t
(ii) P `CRWLRR

e → t ⇒ P `CRWL e′ → t′, for all ground c-instances e′ → t′ of e → t

With respect to models the situation is the following. In CRWLRR Herbrand models of
programs have as support a Herbrand universe of partial c-terms with variables [13,14], and
every program P has a least Herbrand model MRRP

which is technically a free model, while
with CRWL as it has been presented here we must use the ordinary Herbrand universe of
ground c-terms, and it can be shown that every program P has a least Herbrand model
MP which is an initial model. Least models verify:

Proposition 2. For any CRWL-program P ,
(i) P `CRWLRR

e → t ⇔ MRRP
|= e → t

(ii) P `CRWL e → t ⇔ MP |= e → t, for any ground e → t
(iii) MRRP

|= e → t ⇒ MP |= ∀(e → t), where ∀ϕ indicates the universal closure of ϕ

4

We believe that, in some sense, MP is more natural than MRRP
as intended model

whose properties are to be formally verified. For instance, in the Coin example above, the
property ϕ ≡ ∀E, T.(E → T ⇒ E + 0 → T), which is intuitively a true property about
addition and reduction, is in fact valid in MP , but not in MRRP

, because with RR we
can CRWL-prove X → X (and then MRRP

|= X → X), but not X + 0 → X (and then
MRRP

6|= X + 0 → X).

3 CRWL as a logic program

In this section we will map CRWL into first order logic (FOL). We assume the reader is
familiar with standard notions of FOL (see e.g.[11]) and logic programming (see e.g. [5]).
We want to associate to a given CRWL-program P a FOL theory PL such that CRWL-
deducibility from P corresponds to FOL-logical consequence from PL. The theory PL will
be indeed a logic program, and we will use this logic program to prove properties of the
original CRWL program as stated by the results given in this section.

Consider a CRWL program P with signature Σ = DC ∪ FS . The logic program PL

associated with P is made of the following clauses (written as implications l ⇐ C1∧. . .∧Cn,
n ≥ 0) defining the relation →:

⊥→⊥
For every c ∈ DC :

c(E1, . . . , En) →⊥
c(E1, . . . , En) → c(T1, . . . , Tn) ⇐ E1 → T1 ∧ . . . ∧ En → Tn

For every f ∈ FS :
f(E1, . . . , En) →⊥
For every rule f(t1, . . . , tn) = e ∈ P :
f(E1, . . . , En) → T ⇐ E1 → t1 ∧ . . . ∧ En → tn ∧ e → T

Since PL is a logic program, we may consider for it standard notions, like that of the
completion of PL [5], Comp(PL). The following are well known results about logic programs:

Proposition 3. Let P be a CRWL-program and PL its associated logic program. Then:
(i) Comp(PL) |= PL

(ii) There exists a least Herbrand model MPL
of PL, which is also the least model of

Comp(PL).
(iii) If e → t is ground, then PL |= e → t ⇔ MPL

|= e → t

There is a close relation between a CWRL-program P and its associated PL, as given
by the following result:

Proposition 4. Let P be a CRWL-program and PL its corresponding logic program. Then,
for any expression e and term t,
(i) PL |= e → t ⇔ P `CRWL e → t.
(ii) Comp(PL) |= e 6→ t ⇒ P 6`CRWL e → t (where e 6→ t stands for ¬(e → t)).

We are interested in properties which are expressible as FOL formulas ϕ over the relation
→. In this sense, we consider the following FOL theories:

TPL
= {ϕ | PL |= ϕ}

TComp(PL) = {ϕ | Comp(PL) |= ϕ}
TMP

= {ϕ | MPL
|= ϕ}

5

We are mainly interested in the properties valid in MPL
, that is, in TMP

. But since MPL

is a model of PL and Comp(PL), we have TPL
⊆ TComp(PL) ⊆ TMP

, which means that in
practice we can use PL or Comp(PL) to obtain properties of MPL

by FOL deduction.
Of course, TPL

is a rather poor approximation to TMP
. We find in TComp(PL) more

interesting properties, in particular related to impossible reductions from a given expression.
For instance, in the Coin example we have Comp(CoinL) |= double(coin) 6→ s(0), where
e 6→ t stands for ¬(e → t).

There are nevertheless many interesting properties of MPL
which are not deducible from

Comp(PL), in particular many inductive properties. In order to cope with (some of) these
properties within the framework of FOL deduction, we consider the inductive extension of
the completion.

Definition 1 (Inductive extension). Let P be a CRWL program and consider its com-
pletion Comp(PL). The inductive extension of the completion, CompInd(PL), results of
adding to Comp(PL) the following axioms for the structural induction scheme:

For every formula ϕ with one free variable:
. . . ∧ ϕ(a) ∧ . . . ∧ ϕ(g) ∧ . . .∧
. . . ∧ ∀x1, . . . , xn.(ϕ(x1) ∧ . . . ∧ ϕ(xn) ⇒ ϕ(c(x̄))) ∧ . . .∧
. . . ∧ ∀x1, . . . , xn.(ϕ(x1) ∧ . . . ∧ ϕ(xn) ⇒ ϕ(f(x̄))) ∧ . . .
⇒ ∀x.ϕ(x)
where a, g range over DC0 and FS0, and c, f over DCn and FSn (n > 0).

All these FOL axioms for induction are valid in MPL
, and then MPL

|= CompInd(PL).
CompInd(PL) is powerful enough for proving many interesting properties of MPL

. One
example of formula valid in MPL

that can be proved from CompInd(PL) but not from
Comp(PL) is the above mentioned formula ∀E, T.(E → T ⇒ E + 0 → T).

Let us discuss now how good is CompInd(PL) as axiomatization of MPL
. If we call

TCompInd(PL) = {ϕ | CompInd(PL) |= ϕ}, we have the following chain of FOL theories:

TPL
⊆ TComp(PL) ⊆ TCompInd(PL) ⊆ TMP

where we know that the first two inclusions are strict. It is easy to give examples showing
that also TCompInd(PL) ⊆ TMP

is a strict inclusion (we start Sect. 5 with some of such
examples). But note that this is an old known limitation of formalizations which come back
to Gödel uncompleteness results. Since PL, Comp(PL) and CompInd(PL) are recursive,
TPL

, TComp(PL) and TCompInd(PL) are all recursively enumerable, while TMP
is not, except

for some very simple P .

4 Translation into some existing frameworks

In this section we put in practice the ideas introduced in the last section: to prove properties
of the initial model of a CRWL-program, use the inductive extension of the completion of
its associated logic program, and perform FOL deduction.

To this purpose, we have translated into several existing interactive proof assistants the
inductive extension of the completion of some CRWL-programs. Actually, since all the used
systems include induction as a built-in reasoning mechanism, it suffices to translate the
completion.

To guide the discussion in this section, we use in all cases the program Coin in Fig. 1.
and consider for it the following very simple properties:

6

(P1) double(coin) → 0: This formula is in fact a consequence of CoinL.
(P2) double(coin)9 s(0): This formula is in fact a consequence of Comp(PL).
(P3) ∀X,Y, T.(term(X)∧ term(Y)∧X +Y → T ⇒ Y +X → T): This is an inductive

property deducible from CompInd(PL), but not from Comp(PL). We make use
of the auxiliary predicate term - defined in the natural way- to recognize if an
expression is indeed a constructor term.

We have used ITP [10], LPTP [31] and Isabelle [23] as proof assistants. Different reasons
are behind the choice of each one of these systems: our interest in ITP is explained by the
relative proximity (see [26]) of CRWL and rewriting logic [22], the underlying logic of ITP;
we expect LPTP to be useful for our purposes, because we translate CRWL into logic
programming and LPTP is a specific tool for proving properties of logic programs; finally,
Isabelle is a general purpose and widely used powerful proof assistant.
The ITP prover [10]: The ITP tool is designed to prove properties of the initial model
of an equational specification written in Maude [9]. As it has been explained from the very
beginning in this work, it would be unsound to introduce in ITP a CRWL program as an
equational specification, because of the semantics of CRWL . Instead, we must specify the
reduction relation → by means of equations giving the value true or false. In figure 2 part
of this specification is shown. As it can be seen, the possible reductions are split by the
rules that can be applied at this moment. The condition in the rules giving the value false
is, in consequence, the negation of the disjunction of the conditions of the rules giving true.
To specify universal quantification we need to use new constants, which are denoted as C∗.

op _->_ : Expression Expression -> Bool .

op _+_ : Expression Expression -> Expression [ctor] .

op double : Expresison -> Expression [ctor] .

op coin : -> Expression [ctor] .

...

ceq (X + Y) -> T = true if eq(T, bottom) [label sumbot] .

ceq (X + Y) -> T = true if ((X -> 0) and (Y -> T)) .

ceq (X + Y) -> T = true if ((X -> s(T1)) and (s(T1 + Y) -> T)) [label sumI] .

ceq (X + Y) -> T = false if ((not eq(T, bottom)) and (not ((X -> 0) and (Y -> T)))

and (not ((X -> s(Z*)) and ((s(Z* + Y) ->T))))) [label redmas] .

ceq double(X) -> T = true if eq(T, bottom) [label doublebot] .

ceq double(X) -> T = true if ((X -> T1) and ((T1 + T1) -> T)) [label pdob] .

ceq double(X) -> T = false if ((not eq(T, bottom)) and (not (((X -> Y*)

and ((Y* + Y*) -> T))))) [label nredd] .

ceq coin -> T = true if eq(T, bottom) .

ceq coin -> T = true if (0 -> T) .

ceq coin -> T = true if (s(0) -> T) .

ceq coin -> T = false if ((not eq(T, bottom)) and (not(0 -> T)) and

(not (s(0) -> T))) .

...

Fig. 2. Part of Maude specification for Coin

Using this specification we obtain a perfect control on the nondeterministic reduction
possibilities and therefore on the call-time choice semantics, but there is also a loss of
automation when using the theorem prover tool.

7

We have tested this system with the three simple properties already mentioned. The
property P1 is easily proved using this tool, but not automatically, as one would desire.
This is because we need to make explicit which of the possible reductions of coin is ad-
equate to instantiate the existential variable T1 which appears in the rule for double. In
ITP, in general, rules having new variables on their right hand side cannot be applied auto-
matically, and the user must apply the rule manually by making explicit the rule instance
which is interesting to apply. When dealing with negative properties like P2, it is needed an
application of a rule for false reductions. Such rules cannot be applied neither automatically
nor manually because of the introduction of the variables C∗. Therefore, we need to prove
lemmas specifying the condition with universally quantified variables. Many of this lemmas
introduce numerous impossible cases increasing the length of the proof. Non-determinism
of the reductions of expressions bring supplementary complexity because all possible ways
to obtain the result are explored. Large proofs like that of P3 evolve into a chain of impli-
cations. This chain of implications is not directly treated as the tool does not have methods
for reasoning on logical formulas. For example, to prove e → t = true ⇒ e′ → t′ = true
we do not simplify e → t to e′ → t′ because this cannot be done by any rewriting rule.
Therefore we split the proof into two different modules, one using e′ → t′ and another using
e′ 9 t′. The first one is the original one adding the implication step as assumption and
therefore simulating the next step of the chain of implications. For the second one we have
to prove, using a new lemma, the impossibility of such an assumption. When reasoning on
the chain of implications we also introduce many negative proofs increasing the complexity.
The successive steps of the proof are not automatic because they use internal assumptions
of the module.

The LPTP prover [31]: LPTP is a theorem prover for success, failure and termination
properties of Prolog programs. To use this tool we only have to translate a logic program
expressing CRWL properties into a Prolog program. LPTP automatically generates the
inductive completion of the program. One of the advantages of using this tool is that, being
LPTP a prover for Prolog properties, the introduction of non-determinism does not cause
as many problems as in ITP. Therefore, proving P1 is simpler with LPTP.

Testing the second and third properties LPTP has as many problems as ITP. First, there
are too many possibilities in the reduction relation for negative or universally quantified
properties. Second, the proof simplifies the goal adding the corresponding assumptions to
the theory. This causes a growing on the number of variables. For properties as simple as
those introduced here the system generates a complex proof of more than one thousand lines.

Isabelle [23]: Isabelle/HOL is a theorem prover where specifications and validations are
considered on Higher-Order logic. In this case we specify the system as an inductive set
for the least model of the logic program. In such a least model we can prove positive and
negative facts about the reduction relation and also inductive properties of it. In figure 3
appears part of the theory on which the results are proved.

Isabelle provides methods to reason on logic formulas, relations and sets. Using these
methods the property P1 was proved automatically. Negative properties like P2 require
reasoning on the completion. This can be done using axioms for inductive sets. Similarly as
in the other systems, the different ways to derive the same term in CRWL introduce many
repeated facts to be proved. On the other hand it is not difficult to prove known facts of
this calculus such as transitivity of the reduction relation. Inductive properties like P3 can

8

theory Arrows = Main:

datatype exp = bottom | zero | s exp | coin | sum exp exp | double exp

consts arrow :: "(exp * exp) set"

inductive arrow

intros

bt [intro]: "(x, bottom) : arrow"

dczero [intro]: "(zero, zero) : arrow"

dcs [intro]: "(x, t):arrow ==> (s x, s t):arrow"

fcoin1 [intro]: "(zero, t):arrow ==> (coin, t):arrow"

fcoin2 [intro]: "(s(zero), t):arrow ==> (coin, t):arrow"

sum1 [intro]: "[|(x, zero):arrow ; (y, t):arrow|] ==> (sum x y,t):arrow"

sum2 [intro]: "[|(x, s(t1)):arrow ; (y,t2):arrow ; (s(sum t1 t2),t):arrow|]

==> (sum x y , t):arrow"

double [intro]: "[|(x, t1):arrow ; (sum t1 t1,t):arrow|] ==> (double(x), t):arrow"

...

Fig. 3. Part of Isabelle specification for Coin

be expressed by a first order logic formula, then applying the rules for such formulas it is
not difficult to prove the property. This translation does not introduce limitations on the
formulas that can be specified nor on the induction mechanisms.

4.1 Improving determinism of CRWL

A common problem arising in the three approaches is the repetition of essentially the same
proofs. The problem comes from the source logic CRWL. For a constructor term t, CRWL
provides many different approximations t → t′, for all t′ v t, that is, for all different
t′ obtained by replacing some subterms of t by ⊥. This kind of non-determinism of →
can be avoided, since for constructor terms t, only the maximal approximation t → t is
really necessary. In this section we present a simplified CRWL calculus eliminating all those
superfluous reductions associated to terms.

Definition 2 (CRWL’). The proof calculus CRWL’ results of replacing the rule (BT) in
CRWL (Fig. 1) by the new rule (BT’)

if e = f(e1, . . . , en) or e =⊥
e →⊥

The next result relates the provable statements of CRWL and CRWL’.

Proposition 5. Let P be a CRWL-program. For any expression e and any term t:

(i) P `CRWL e → t ⇒ P `CRWL’ e → t′ for some t′ w t.
(ii) P `CRWL’ e → t ⇒ P `CRWL e → t
As a consequence, if t is a total term: P `CRWL e → t ⇔ P `CRWL’ e → t

We have tested our sample properties with the refined calculus CRWL’, conveniently
translated to the different systems, obtaining significant shortenings in the proofs. Further-
more, since reduction between c-terms is now deterministic, it is possible to use equational
reasoning in those parts of the proofs involving this kind of reductions. This has been a
further source of simplification of the proofs while using ITP.

9

5 Beyond the completion: axiomatizing derivability

As we discussed at the end of Sect. 3, no FOL axiomatization can be complete for the
least model of a program. In the case of CompInd(PL), although it covers many interesting
properties, it is nevertheless quite easy to find examples revealing its limitations. Consider
for example the following simple program Loop:

loop → loop

It is not difficult to see that loop 9 0 is valid in MLoopL
, but CompInd(LoopL) 6|=

loop 9 0. A less trivial example is given by the following program Even:

even(0) → true an even → 0
even(s(0)) → false an even → s(s(an even))
even(s(s(X))) → even (X)

Notice that an even admits an infinite number of reductions giving all the even natural
numbers. The property even(an even) 9 false is valid in MEvenL

but, again, is not de-
ducible from CompInd(EvenL).

We remark that the two given examples express negative properties involving nontermi-
nation. It is not so strange that completion is not able to prove them, since it is known that
completion is related to finite failure. But nontermination analysis by itself does not suffice
to prove the properties. Notice also that, in both cases, the properties can be proved by in-
ductive reasoning over the universe of CRWL-derivations. This suggests some meta-theory
at the object level, by considering a variant of CRWL (to be precise, of the logic program
mirroring CRWL) where the CRWL-derivation trees for statements e → t are made explicit.

We first introduce some constructor terms representing CRWL-derivations.

Definition 3 (Derivation terms). The set of derivation constructors symbols CSDer
consists of the following symbols:

bt ∈ CSDer0

dcc ∈ CSDerk for every c ∈ DC k

faf,R ∈ CSDerk+1 for every f ∈ FSk and every R rule for f .

Constructor terms built up with derivation constructors are called derivation terms.

We will use d, d′, . . . to denote derivation terms.
Now, given a CRWL-program P , we associate to it a logic program defining a ternary

relation d ` e → t whose intended meaning is ‘d represents a CRWL-derivation of e → t’.

Definition 4 (Axiomatization of derivability (logic program)). Given a CRWL pro-
gram P the associated logic program making explicit the proofs, Der(P), consists of the
following clauses defining the ternary relation ` → :

bt `⊥→⊥
For every c ∈ DC :

bt ` c(E1, . . . , En) →⊥
dcc(D1, . . . , Dn) ` c(E1, . . . , En) → c(T1, . . . , Tn)

⇐ D1 ` E1 → T1 ∧ . . . ∧ Dn ` En → Tn

10

For every f ∈ FS :
bt ` f(E1, . . . , En) →⊥
For every rule R f(t1, . . . , tn) = e for this f :

faf,R(D1, . . . , Dn, D) ` f(E1, . . . , En) → T
⇐ D1 ` E1 → t1 ∧ . . . ∧Dn ` En → tn ∧ D ` e → T

As we did with PL in Sect. 3, we can think on the least model MDer(P) of Der(P), the
completion Comp(Der(P)) and its inductive extension CompInd(Der(P)).

In the Loop and Even examples, we have CompInd(Der(Loop)) |= loop 9 0 and
CompInd(Der(Even)) |= even(an even)9 false.

We explore now some logical relations between Der(P) and the original program. Our
first result relates the reduction statements derived using this approach and those of the
original calculus.

Proposition 6. For every P CRWL program, and for every e expression and t term:

(i) Der(P) |= ∃D.D ` e → t ⇔ PL |= e → t ⇔ P `CRWL e → t
(ii) Comp(Der(P)) |= @D.D ` e → t ⇒ P 0CRWL e → t

In order to compare the behavior of Der(P) with respect to more general properties ϕ,
we define a natural conversion of FOL formulas using the relation → into formulas using
` → , as well as a natural relation between models of PL and of Der(P).

Definition 5. (i) If ϕ is a FOL formula using the relation → , we write ϕ̂ for the result
of replacing in ϕ each subformula e → t by ∃D.D ` e → t (with D not occurring in e → t).
(ii) Let M be a model for PL, we define the following set SM of models of Der(P):

SM = {M ′ |= Der(P) | ∀e, t(M |= e → t ⇔ exists d such that M ′ |= d ` e → t}

Proposition 7. (i) M ′ |= Der(P) iff there exists M |= PL such that M ′ ∈ SM

(ii) MDer(P) ∈ SMPL

The following result relates validity in a model of PL with validity in the corresponding
model of Der(P)

Proposition 8. Let ϕ be a formula and M model of PL and M ′ ∈ SM then:

M |= ϕ ⇔ M ′ |= ϕ̂

In particular,
MPL

|= ϕ ⇔ MDer(P) |= ϕ̂

As a consequence of the previous results, we conclude also that the properties derived
from PL and from Der(P) are the same (via ̂), as stated by the following proposition:

Proposition 9. For any ϕ, PL |= ϕ ⇔ Der(P) |= ϕ̂.

All these results show that nothing new can be obtained from Der(P) and MDer(P)

with respect to PL and MPL
. The Loop and Even examples show that the real gain comes

from CompInd(Der(P)) with respect to CompInd(PL) . Therefore, those properties not
involving reasoning on the structure of the CRWL-derivation will be proved using the
first approach, where the proofs are simpler. Only when reasoning on the structure of the
derivation is needed the second approach will we used.

11

We have tested this new approach with ITP and Isabelle. As it was expected, with
this approach we can prove properties reasoning by structural induction on the derivation
terms. As an example, consider the program Loop. Its associated translation into Isabelle
is shown in figure 4. It is not too difficult to prove loop 9 0 reasoning by induction on the
derivations and discarding all those incorrect derivations. The proof is slightly complicated
because of the introduction of such incorrect cases, but the steps are not difficult.

As it has been previously remarked, the resulting proofs with the new approach can
be in general more complicated than the corresponding ones with the original approach,
whenever the latter is applicable. But this is not always true. For instance, consider again the
program Coin and the sample properties of section 4. The property P1, rephrased as ∃D.D `
coin → 0, can be still proved automatically in Isabelle. The situation is different for negative
properties like P2, that are expressed in the new approach as universal quantifications over
derivations. Therefore, when trying to prove such negative properties we have to inspect all
possible derivations. There are only a few of them possible for a given expression as can be
deduced from the logic program DerP , but all the possibilities have to be explored, hence
complicating the proof.

theory Demos = Main:

datatype exp = bottom | zero | s exp | coin | sum exp exp | double exp | loop

datatype dem = bt | dczero | dcs dem | facoin1 dem | facoin2 dem | fasum1 dem dem

|fasum2 dem dem dem | fadouble dem dem | faloop dem

consts demo :: "(dem * exp * exp) set"

inductive demo

intros

rbt [intro]: "(bt, x, bottom) : demo"

rdczero [intro]: "(dczero, zero, zero) : demo"

rcs [intro]: "(d, x, t):demo ==> (dcs d, s x, s t):demo"

rfcoin1 [intro]: "(d, zero, t):demo ==> (facoin1 d, coin, t):demo"

rfcoin2 [intro]: "(d, s(zero), t):demo ==> (facoin2 d, coin, t):demo"

rsum1 [intro]: "[|(d, x, zero):demo ; (d1, y, t):demo|]

==> (fasum1 d d1, sum x y, t):demo"

rsum2 [intro]: "[|(d, x, s(t1)):demo ; (d1, y,t2):demo ; (d2, s(sum t1 t2), t):demo|]

==> (fasum2 d d1 d2, sum x y , t):demo"

rdouble [intro]: "[|(d, x, t1):demo ; (d1, sum t1 t1,t):demo|]

==> (fadouble d d1, double(x), t):demo"

rloop [intro]: "(d, loop, t):demo ==> (faloop d, loop, t):demo"

Fig. 4. Isabelle specification of the least model of Der(P)

6 Conclusions

We have presented some logical conceptual tools for proving properties of first order func-
tional logic programs. Programs consist of constructor based rewrite systems possibly non-
terminating and non-confluent, defining thus non-strict non-deterministic functions, with
call-time choice semantics. This corresponds to the first order core of existing modern FLP
systems like Curry or Toy.

Our logical starting point has been CRWL, a well known semantic framework for FLP.
CRWL includes a proof calculus giving logical semantics to programs, and a model theory

12

satisfying that every program has an initial model. The program properties of interest are
those valid in that initial model, which are then typically inductive properties.

In order to prove such program properties, we have mapped CRWL into logic program-
ming in the following sense: to each CRWL-program P we associate in a simple manner a
logic program PL such that the least model of PL consists exactly of the reduction statements
which are CRWL-provable from P . As a nice consequence, all the machinery (theoretical
and practical) of logic programming is available to us. For instance, the completion of PL

can be used to deduce negative results, and with its inductive extension we can deduce
inductive properties of the least model.

We have made experiments with this approach by encoding into several existing proof
assistants the completion of simple programs (the inductive extension is implicit in all these
systems). Namely, we have used: ITP [10], a tool based on rewriting logic [22] and designed
for proving properties of equational specifications; LPTP [31], a tool designed specifically
for logic programs; and Isabelle [23], a well known general purpose proof assistant. In all
cases, to prove simple properties of CRWL-programs is not as easy as one would desire.
We have detected two particular aspects having great impact in the simplicity of proofs.
One is, of course, the concrete encoding: for instance, in the ITP case, an unsorted version
was clearly worse than the sorted one (distinguishing terms and expressions). The other
one is the formulation of the CRWL logic itself: we have proposed a refinement eliminating
superfluous sources of non-determinism of the reduction relation→, with which some proofs
are remarkably simpler and shorter.

Of course, due to Gödel-like arguments, no deductive system can prove all properties
of initial models. The limits of the completion+induction approach are easily reachable
by considering properties which are valid due to non-termination. This is natural, since
completion is closely related to finite failure.

To enlarge the class of provable properties we have then sophisticated the logic pro-
gramming specification PL of the semantics of a CRWL-program P , by making explicit the
CRWL-proof tree corresponding to CRWL-provable reduction statements for P . The re-
sulting logic program Der(P) has its own completion Comp(Der(P)), inductive extension
of the completion CompInd(Der(P)), and its least model MDer(P)). An interesting point
is that the logical consequences of Der(P) and Comp(Der(P)) are essentially the same of
PL and Comp(PL), and the same happens with the valid properties in MPL

and MDer(P).
What produces new results is CompInd(Der(P)) with respect to CompInd(PL), as we
have indeed shown in our implementations.

We have in mind many things to do as future work. In the practical side it is important
to test the approach with interesting non trivial case studies and to use other existing
theorem provers like SPASS [12] and SATURATE [32]. In the theoretical side we plan to
improve the approach by making the mapping of logics more precise, refining the target
logic by considering many sorted logic programs, and refining the source logic by considering
extensions of CRWL with other features like HO [15,16] or failure [21].

References

1. M. Alpuente, F.J. Correa, M. Falaschi. A Debbugging Scheme of Functional Logic Programs, Proc.
WFLP’01, Electronic Notes on Theoretical Computer Science, Vol 64, 2002.

2. M. Alpuente , D. Ballis , F.J. Correa , M. Falaschi Automated Correction of Functional Logic Programs,
Proc. European Symp. on Programming (ESOP’03), Springer LNCS 2618, pp. 54-68, 2003.

3. S. Antoy. Optimal Non-deterministic Functional Logic Computations, Proc. ALP/HOA 1997, Springer
LNCS 1298, pp. 16–30, 1997.

13

4. S. Antoy Constructor-based Conditional Narrowing. Proc. Principles and Practice of Declarative Pro-
gramming (PPDP’01), 199–206, ACM Press, 2001.

5. K.R. Apt. Logic Programming. In J. van Leeuwen (ed.), Handbook of Theoretical Computer Science,
Vol. B, Chapter 10, Elsevier and The MIT Press, pp. 493–574, 1990.

6. D. Bert, R. Echahed. Abstraction of Conditional Term Rewriting Systems. Proc ILPS 1995 , pp. 162–176,
1995.

7. R. Caballero, F.J. López-Fraguas, M. Rodŕıguez-Artalejo. DDT : Theoretical Foundations for the Declar-
ative Debugging of Lazy Functional Logic Programs. Proc. of the 5th International Symposium on
Functional and Logic Programming (FLOPS’2001), Springer LNCS 2024, pp. 170–184, 2001.

8. R. Caballero, M. Rodŕıguez-Artalejo. A Declarative Debugging System for Lazy Functional Logic Pro-
grams. Electronic Notes in Theoretical Computer Science 64, 63 pages, 2002.

9. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, C. Talcott. Maude 2.0 Manual.
http://maude.cs.uiuc.edu, 2003.

10. M. Clavel. The ITP tool. In A. Nepomuceno, J. F. Quesada, and J. Salguero, editors, Logic, Language
and Information. Proc. of the 1st Workshop on Logic and Language, Kronos, 55–62, 2001. System
available at http://www.ucm.es/info/dsip/clavel/itp.

11. H.B. Enderton. A Mathematical Introduction to Logic, Academic Press, 2001.

12. H. Ganzinger, R. Nieuwenhuis, P. Nivela. The Saturate System. In http://www.mpi-
sb.mpg.de/SATURATE, 1994.

13. J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, M. Rodŕıguez-Artalejo. A Rewriting
Logic for Declarative Programming. Proc. European Symp. on Programming (ESOP’96), Springer LNCS
1058, pp. 156–172, 1996.

14. J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, M. Rodŕıguez-Artalejo. An Ap-
proach to Declarative Programming Based on a Rewriting Logic. Journal of Logic Programming 40(1),
pp. 47–87, 1999.

15. J.C. González-Moreno, M.T. Hortalá-González, M. Rodŕıguez-Artalejo. A Higher Order Rewriting Logic
for Functional Logic Programming. Proc. Int. Conf. on Logic Programming, The MIT Press, pp. 153–
167, 1997.

16. J.C. González-Moreno, M.T. Hortalá-González, M. Rodŕıguez-Artalejo. Polymorphic Types in Func-
tional Logic Programming. FLOPS’99 special issue of the Journal of Functional and Logic Programming,
2001. http://danae.uni-muenster.de/lehre/kuchen/JFLP.

17. M.J.C. Gordon and T.F. Melham. Introduction to HOL, Cambridge Univ. Press, 1993.

18. M. Hanus (ed.), Curry: an Integrated Functional Logic Language, Version 0.8, April 15, 2003.
http://www-i2.informatik.uni-kiel.de/∼curry/.

19. H. Hussmann. Nondeterministic Algebraic Specifications and Nonconfluent Term Rewriting. Journal of
Logic Programming 12, pp. 237–255, 1992.

20. F.J. López Fraguas, J. Sánchez Hernández. T OY: A Multiparadigm Declarative System. Proc. RTA’99,
Springer LNCS 1631, pp 244–247, 1999.

21. F.J. López-Fraguas, J. Sánchez-Hernández. A Proof Theoretic Approach to Failure in Functional Logic
Programming. Theory and Practice of Logic Programming 4(1), pp. 41–74, 2004.

22. J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency. Theoretical Computer
Science 96, pp. 73–155, 1992.

23. T. Nipkow, L.C. Paulson, M. Wenzel. Isabelle/HOL — A Proof Assistant for Higer-Order Logic. Springer
LNCS 2283, 2002.

24. P. Padawitz. Inductive Theorem Proving for Design Specifications, J. Symbolic Computation 21, 41–99,
1996.

25. P. Padawitz. Swinging Types = Functions + Relations + Transition Systems, Theoretical Computer
Science 243, 93–165, 2000.

26. M. Palomino Tarjuelo. Comparing Meseguer’s Rewriting Logic with the Logic CRWL. Electronic Notes
in Theoretical Computer Science 64, 22 pages, 2002.

27. L.C. Paulson. Logic and Computation: Interactive Proof with Cambridge LCF, Cambridge Univ. Press,
1987.

28. D. Pedreschi, S. Ruggieri. Verification of Logic Programs. J. Log. Program. 39 (1-3), pp. 125-176, 1999.

29. M. Rodŕıguez-Artalejo. Functional and Constraint Logic Programming. in H. Comon, C. Marché and
R. Treinen (eds.), Constraints in Computational Logics, Theory and Applications, Revised Lectures of
the International Summer School CCL’99, Springer LNCS 2002, Chapter 5, pp. 202–270, 2001.

30. Jaime Sánchez-Hernández, Una Aproximación al fallo en programación declarativa multiparadigma.
PhD Univ. Complutense Madrid, 2004 (in spanish).

14

31. R.F. Stäerk. The theoretical foundations of LPTP (A logic program theorem prover). Journal of Logic
Programming 36, pp. 241–269, 1998.

32. C. Weidenbach, U. Brahn, T. Hillenbrand, E. Keen, C. Theobald and D. Topic. SPASS version 2.0
Proc. of the 18th International Conference on Automated Deduction CADE’02, Springer LNCI 2392,
pp. 275-279, 2002.

15

