
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Implementing Dynamic-Cut in T OY 1

R. Caballero2 Y. Garćıa-Ruiz3

Departamento de Sistemas Informáticos y Programación
Universidad Complutense de Madrid

Madrid, Spain

Abstract

This paper presents the integration of the optimization known as dynamic cut within the functional-logic
system T OY . The implementation automatically detects deterministic functions at compile time, and
includes in the generated code the test for detecting at run-time the computations that can actually be
pruned. The outcome is a much better performance when executing deterministic functions including either
or-branches in their definitional trees or extra variables in their conditions, with no serious overhead in
the rest of the computations. The paper also proves the correctness of the criterion used for detecting
deterministic functions w.r.t. the semantic calculus CRWL.

Keywords: determinism, functional-logic Programming, program analysis, programming language
implementation.

1 Introduction

Nondeterminism is one of the characteristic features of Logic Programming shared
by Functional-Logic Programming. It allows elegant algorithm definitions, increas-
ing the expressiveness of programs. However, this benefit has an associated draw-
back, namely the lack of efficiency of the computations. There are two main reasons
for this:

- The complexity of the search engine required by the nondeterministic programs,
which slows the execution mechanism.

- The possible occurrence of redundant subcomputations during a computation.

In the Logic Programming language Prolog, the second point is partially solved
by introducing a non-declarative mechanism, the so-called cut. Programs using cuts
are much more efficient, but at the price of becoming non-declarative.

In the case of Functional-Logic Programming the situation is somehow alleviated
by the demand driven strategy [2,8], which is based on the use of definitional trees

1 This work has been funded by the projects TIN2005-09207-C03-03 and S-0505/TIC/0407.
2 Email: rafa@sip.ucm.es
3 Email: ygruiz@gmail.com

c©2006 Published by Elsevier Science B. V.

Caballero, Garćıa-Ruiz

[1,8]. Given any particular program function, the strategy uses the structure of the
left-hand sides of its program rules in order to reduce the number of redundant
subcomputations. The implementation of modern Functional-Logic languages such
as T OY [9] or Curry [6] is based on this strategy. Our proposal also relies in
the demand driven strategy, but introduces a safe and declarative optimization to
further improve the efficiency of deterministic computations. This optimization is
the dynamic cut, first proposed by Rita Loogen and Stephan Winkler in [10]. In
[4,3] the same ideas were adapted to a setting including non-deterministic functions
and a demand driven strategy, showing by mean of examples the efficiency of the
optimization.

However, in spite of being well-known and accepted as an interesting opti-
mization, the dynamic cut had not been implemented in any real system up to
now. In this paper we present this implementation in the functional-logic system
T OY (available at http://toy.sourceforge.net).

The system considers two special situations where the computations can be safely
pruned: rules with existential variables in the conditions and sets of overlapping
rules occurring in deterministic functions. The first situation is detected simply
by examining the structure of each rule. During this process the try nodes of the
definitional trees corresponding to program rules with existential variables in the
conditions are labeled as tryCut nodes. The implementation of the second situation,
detecting deterministic functions with overlapping rules, relies in a determinism
analysis performed by the system. Using this information the system will label
the or nodes occurring in the definitional trees of deterministic functions as or-cut
nodes. The code generator of T OY has been extended to handle both try-cut and
orCut nodes, including the dynamic cut code in the corresponding generated code.

The information about deterministic functions is required not only at compile
time but also at run-time, when it is used for checking dynamically if the cut must
take place in a particular computation. As previous works [10,4,3] have shown,
this dynamic test is necessary for ensuring the correctness of the cut, i.e. that the
optimization does not affect the set of solutions of any goal.

The determinism analysis performed by the system follows the well-known cri-
terion of non-ambiguity already introduced in [10]. From the theoretical point of
view, the novelty of this paper w.r.t. previous works is that we have proved for-
mally the correction of such criterion w.r.t. the semantic calculus CRWL, proposed
as suitable logic foundations for Functional-Logic Programming in [5]. Of course
the completeness cannot be established because this is an undecidable property
[13]. For that reason we also allow the user to select explicitly some functions as
deterministic.

The paper is organized as follows. Next section introduces the non-ambiguity
criterion for detecting deterministic functions and the correctness theorem. Section
3 shows by means of examples the cases where the optimization will be applied.
Section 4 presents the steps followed during the implementation of the dynamic cut
in T OY, and Section 5 finalizes presenting some conclusions.

2

Caballero, Garćıa-Ruiz

2 Detecting Deterministic Functions in Functional-
Logic Programs

This section proves the correctness of the non-ambiguity condition used for detecting
deterministic functions w.r.t. the semantic calculus CRWL [5].

2.1 Deterministic Functional-Logic Functions

Before defining and characterizing deterministic functions we need to establish
briefly some basic notions and terminology. We refer to [5] for more detailed defi-
nitions.

We assume a signature Σ = 〈DC,FS〉, where DC and FS are ranked sets
of constructor symbols resp. function symbols. Given a countably infinite set V
of variables, we build CTerms (using only variables and constructors) and Terms
(using variables, constructors and function symbols). We extend Σ with a special
nullary constructor ⊥ (0-arity constructor) obtaining a new signature Σ⊥ and we
will write Term⊥ and CTerm⊥ (partial terms) for the corresponding sets of terms
in this extended signature.

A T OY program P is composed of data type declarations, type alias, infix op-
erators, function type declarations and a set of defining rules for functions symbols.
Each defining rule for a function f ∈ FS has a left-hand side, a right-hand side and
a optional condition: f t1 . . . tn| {z }

left-hand side

→ r|{z}
right-hand side

⇐ C|{z}
condition

where t1 . . . tn must be linear Cterms and C must consist of finitely many (possibly
zero) joinability statements e1 == e2 with e1, e2 ∈ Term. A natural approximation
ordering v for partial terms can be defined as the least partial ordering over Term⊥
satisfying the following properties:

• ⊥ v t, for all t ∈ Term⊥
• X v X, for all variable X

• if t1 v s1, ..., tn v sn, then c t1 . . . tn v c s1 . . . sn, for all c ∈ DCn and ti, si ∈
CTerm⊥.

A partially ordered set (poset in short) with bottom is a set S equipped with a partial
order v and a least element ⊥ (w.r.t. v). D ⊆ S is a directed set iff for all x, y ∈ D

there exists z ∈ D such that x v z, y v z. A subset A ⊆ S is a cone, iff ⊥ ∈ A

and for all x ∈ A, y ∈ S y v x ⇒ y ∈ A. An ideal I ⊆ S is a directed cone.
The program semantics is defined by the semantic calculus CRWL presented in
[5]. CRWL (Constructor Based ReWriting Logic) is a theoretical framework for
the lazy functional logic programming paradigm. Given any program P , CRWL
proves statements of the form e → t with e ∈ Term⊥ and t ∈ CTerm⊥. We denote
by P `CRWL e → t that the statement e → t can be proved in CRWL w.r.t. P .
The intuitive idea is that t is a valid approximation of e in P. The denotation of
any e ∈ Term⊥, written [[e]], is defined as: [[e]] = {t ∈ CTerm⊥ | P `CRWL e → t}.

Now we are ready for presenting the formal definition of deterministic function
in our setting.

3

Caballero, Garćıa-Ruiz

Definition 2.1 (Deterministic Functions)
Let f be a function defined in a program P. We say that f is a deterministic function
iff [[f tn]] is an ideal for every tn s.t. ti is a CTerm⊥ for all i = 1 . . . n.

We call non-deterministic to the functions that don’t fulfill the previous defini-
tion. The intuitive idea behind a deterministic function is that given some arbitrary
ground values it can return at most one result [7]. However, in a lazy setting when-
ever a function can return a value t it is expectable that it can return all the less
defined terms s, s v t as well. The previous definition takes this idea into account.
Consider for instance the following small program:

data pair = pair int int f 1 = pair 1 2 g 1 = 1 g 1 = 2

Using CRWL it can be proved that [[f 1]] = {⊥, pair ⊥ ⊥, pair 1 ⊥, pair ⊥ 2,

pair 1 2}, [[f t]] = {⊥} if t 6= 1, [[g 1]] = {⊥, 1, 2}, [[g t]] = {⊥} if t 6= 1. Then g is
a non-deterministic function because for the parameter 1 the set {⊥, 1, 2} is not an
ideal, in particular because it is not directed: taking x = 1, y = 2 is not possible to
find z ∈ {⊥, 1, 2} s.t. x v z, z v 2. On the contrary, it is easy to check that f is a
deterministic function.

2.2 Non-ambiguous functions

The definition 2.1 is only a formal definition and cannot be used in practice. In
[4] an adaptation of the non-ambiguity condition of [11] is presented, which we will
use as an easy mechanism for the effective recognition of deterministic functions.
Not all the deterministic functions are non-ambiguous. However, the non-ambiguity
criterion will be enough for detecting several interesting deterministic functions.

Definition 2.2 (Non-ambiguous functions)
Let P be a program defining a set of functions G. We say that F ⊆ G is a set of
non-ambiguous functions if all f ∈ F verifies:

(i) If f t̄n = e ⇐ C is a defining rule for f , then var(e) ⊆ var(t̄) and all function
symbols in e belong to F .

(ii) For any pair of variants of defining rules for f , f t̄n = e ⇐ C, f t̄′n = e′ ⇐ C ′,
one of the following two possibilities holds:
(a) Left-hand sides do not overlap, that is, the terms (f t̄n) and (f t̄′n) are not

unifiable.
(b) If θ is the m.g.u. of f t̄n and f t̄′n, then eθ ≡ e′θ.

In [3,4] the inclusion of the set on non-ambiguous functions in the set of deterministic
functions was claimed. Here, and thank to the previous formal definition, we can
prove this result:

Theorem 2.3 . Let P be a program and f be a non-ambiguous function defined in
P. Then f is deterministic.

Proof. (see Appendix A, which is intended only for the referees and not for the
final version) 2

The non-ambiguity condition characterizes set of functions F as deterministic.

4

Caballero, Garćıa-Ruiz

% P1: ’Parallel’ multiplication

data nat = zero | s nat

add zero Y = Y

add (s X) Y = s (add X Y)

multi zero = zero

multi zero = zero

multi (s X) (s Y) = s (add X (add Y (multi X Y)))

power N zero = s zero

power N (s M) = multi N (power N M)

odd zero = false

odd (s zero) = true

odd (s (s N)) = odd N

toNat N = if (N==0) then zero

else s (toNat (N-1))

% P2: ’Classical’ multiplication

data nat = zero | s nat

add zero Y = Y

add (s X) Y = s (add X Y)

multi zero = zero

multi (s X) Y = add Y (add X Y)

power N zero = s zero

power N (s M) = multi N (power N M)

odd zero = false

odd (s zero) = true

odd (s (s N)) = odd N

toNat N = if (N==0) then zero

else s (toNat (N-1))

Fig. 1. Two methods for multiplying

This is because the value of a function may depend on other functions, and in
general this dependence can be mutual. In practice the implementation starts with
an empty set F of non-ambiguous functions, adding at each step to F those functions
that satisfy the definition and that only depend on functions already in F . This is
done until a fix value for F is reached.

Although most of the deterministic functions that occur in a program are non-
ambiguous as well, there are some functions which are not detected. This happens
for instance in the function f of following example: f 1 = 1 f 1 = g 1 g 1 = 1.
It would be useful to use additional determinism criteria, such as those based on
abstract interpretation proposed in [12], but the detection of deterministic function
will be still incomplete. For that reason the system allows programmer to distinguish
deterministic functions annotating them by using --> instead of =, as in the following
example: f 1 --> 1 f 1 --> g 1 g 1 = 1,
which indicates that f is deterministic. The non-annotated functions like g will be
analyzed following the non-ambiguity criterion.

3 Pruning Deterministic Computations

In this section we present briefly the two different situations where the dynamic cut
can be introduced.

3.1 Deterministic Functions Defined through Overlapping Program Rules

Sometimes deterministic functions can be defined in a natural way by using over-
lapping rules. Consider for instance the two programs of Figure 1. Both programs
contain functions for computing arithmetic using Peano’s representation. The func-
tion toNat is used for easily converting positive numbers of type int to their Peano
representation. The only difference between P1 and P2 is the method for multiply-
ing numbers. The function multi at P2, which we have called ’classical’ reduces the
first argument before each recursive call until it becomes zero. The method multi

5

Caballero, Garćıa-Ruiz

X Y P1 P2

0 100000 0 0

0 50000 0 0

100 1000 2.7 2.7

400 400 4.1 4.1

1000 100 4.9

50000 0 0 3.5

100000 0 0

multi (toNat X) (toNat Y)

N P1 P2

104 0.7 0

105 6.1 0

106 60.0 0

107 0

odd (power zero (toInt N))

without dynamic cut

N P1 P2

104 0 0

105 0 0

106 0 0

107 0 0

odd (power zero (toInt N))

with dynamic cut

Fig. 2. Comparative tables

at P1, which we have called ’parallel’, reduces both arguments before the recursive
call. Observe that the first two rules of multi in P1 are overlapping. However it is
easy to check that it is a non-ambiguous and hence a deterministic function.

The first table at Figure 2 shows the time 4 required for solving goals of the form
multi (toNat X) (toNat Y) == R in both programs. The symbol means that the
system has run out of memory for the goal. From these data is clear that the parallel
multi of P1 behaves better than its classical counterpart of P2. The reason is that in
P1 the computation of multi reduces the two arguments simultaneously saving both
time and space. However this kind of ’parallel’ definitions are not used very often in
Functional-Logic Programming because programmers know that overlapping rules
can produce unexpected behaviors due to the backtracking mechanism. Indeed
using P1 a goal like multi zero zero == R has two solutions, both giving to R the
value zero, instead as only one as expected (and as the program P2 does). Such
redundant computation can affect the efficiency of other computations. The central
table of Figure 2 contains the time required by both programs for checking if the
N-th power of zero is odd without the dynamic cut optimization. The goal returns
no in both cases as expected, but we observe that now P1 behaves rather worse
than P2, even running out of memory for large enough numbers. This is because
the subgoal power zero (toInt N) needs to compute N multiplications, and in P1 this
means N redundant computations. Thus using P1 without dynamic cut the goal
odd (power zero (toInt N)) will check N times if zero is odd, while in P2 this is done
only once. The dynamic cut solves this situation, detecting that multi in P1 is a
deterministic function and cutting the possibility of using the second rule of multi
if the first one has succeeded producing a result (and satisfying some conditions
explained below). The third table, at the right of Figure 2 has been obtained after
activating the dynamic cut. The problem of the redundant computations has been
solved. It is worth pointing out that the times of the first table do not change after
activating the optimization.

3.2 Existential variables in conditions

Consider now the program of Figure 3. It includes a simple representation of DNA
molecules, which are build by two chains of nucleotides. The nucleotides of the two
strands are connected in compatible pairs, defined in the program through function
compatible. The function dna detects if its two input parameters represent two

4 All the results displayed in seconds, obtained on a computer at 2.13 GHz with 1 Gb of RAM

6

Caballero, Garćıa-Ruiz

data nucleotides = adenine | guanine | cytosine | thymine

compatible adenine thymine = true

compatible thymine adenine = true

compatible guanine cytosine = true

compatible cytosine guanine = true

dna [] [] = true

dna [N1|R1] [N2|R2] = true ⇐= compatible N1 N2, (dna R1 R2)

dnaPart S1 S2 L = true ⇐= part P1 S1 L , part P2 S2 L, dna P1 P2

part X Y L = true ⇐= (U ++ X) ++ V == Y, length X == L

Fig. 3. Detecting DNA strands

strands that can be combined in a DNA molecule. Function dnaPart checks if the
two input sequences S1 and S2 contain some subsequences P1 and P2 of length L
that can occur associated in a DNA molecule. This function relies in function part
which checks if the parameter X is sublist of length L of the list Y. The functions
++ and length, represent respectively the concatenation of lists and the number of
elements in a list. Consider the following session in the system T OY :

Toy> dnaPart (repeat 1000 adenine) (repeat 1000 thymine) 5

yes. Elapsed time: 844 ms.

more solutions? y

yes. Elapsed time: 40390 ms.

The goal dnaPart (repeat 1000 adenine) (repeat 1000 thymine) 5 asks if in two strands
of 1000 nucleotides of adenine and thymine respectively it is possible to find two
subsequences of 5 nucleotides, one from each strand, which can occur associated in
a DNA molecule. The answer given by the system after 0.8 seconds is yes (actually
all the subsequences of n elements of the first strand are compatible with all the
subsequences of n elements of the second strand). If the user asks for a second
answer, the same redundant answer yes is obtained after more than 40 seconds. The
second answer is useless because it doesn’t provide new information, and greatly
affects the efficiency. It can be argued that there is no point in asking for a second
answer after the first, but this situation can occur as subcomputations of a bigger
computation and cannot be avoided in general.

Examining the code we find out easily the source of the redundant computation:
the condition of function part includes two existential variables U and V. When the
user asks for more solutions the backtracking mechanism looks for new values of
the variables satisfying the conditions. But this is unnecessary because the rule
already as returned true and cannot return any new value. The dynamic cut will
avoid this redundant computation. Here is the same goal running after activating
the dynamic cut optimization in T OY :

Toy>dnaPart (repeat 1000 adenine) (repeat 1000 thymine) 5

yes. Elapsed time: 844 ms.

more solutions ? y

no. Elapsed time: 0 ms.

Now the system detects automatically that there are no more possible solutions
after the first one, reducing the 40 seconds to 0. The interested reader can find in [4]
more experimental results. The experiments in that paper were tested introducing

7

Caballero, Garćıa-Ruiz

manually the code for the dynamic cut before the optimization was part of the
system. However the results have been confirmed by the current implementation.

3.3 Dynamic conditions for the cut

From the previous examples one could consider that the cut can be introduced safely
in the code of functions multi and part without taking into account any run-time
test. But the cut also depends on dynamic conditions. There are two situations
that must be taken into account before applying the cut:

i) Variable bindings.
Consider the goal: multi X zero == R, with X a logical variable. Using the program
P1 of Figure 1 this goal produces two answers: { X 7→zero, R7→zero } and { R7→zero
}. The first answer is obtained using the first rule for multi and the second answer
through the second rule. Introducing a cut after the first answer would be unsafe;
the second answer is not redundant, but gives new information w.r.t. the first one.
As it includes no binding for X it can be interpreted as ’for every X, the equality
multi X zero == zero holds’, and therefore subsumes the first answer.

ii) Non deterministic functions computed.
Suppose we include a new function zeroAndOne in the program P1 of Figure 1
defined as: zeroAndOne = zero zeroAndOne = s zero

Then a goal like multi zeroAndOne (s zero) == R will return two answers: { R 7→
zero } and { R 7→ s zero }. Introducing the cut after the first answer would be
again unsafe. But in this case it is not because it prevents the use of the second
rule, but because it would avoid the backtracking of the non-deterministic function
zeroAndOne that leads to the application of the third rule of multi, yielding the
second answer.

Therefore the cut must not take place if after obtaining the first result of the de-
terministic function any of the variables in the input arguments has been bound or a
non-deterministic function has been computed. As we will see in the following para-
graph the implementation generates a dynamic test for checking these conditions
before introducing the cut.

4 Implementing the Dynamic Cut

4.1 Compiling programs into Prolog

The T OY compiler transforms T OY programs into Prolog programs following ideas
described in [8]. A main component of the operational mechanism is the compu-
tation of head normal forms (hnf) for expressions. The translation scheme can be
divided into three phases:

1) Higher order T OY programs are translated into programs in first order syntax.

2) Function calls f(e1, . . . , en) occurring in the first order T OY program rules are
replaced by Prolog terms of the form susp(f(e1, . . . , en), R, S) called suspensions.
The logical variable S is a flag which it is bound to a concrete value, say hnf, once
the suspension is evaluated. R contains the result of evaluating the function call.

8

Caballero, Garćıa-Ruiz

Its value is meaningful only if S==hnf holds.

3) Finally the Prolog clauses are generated, adding code for strict equality and hnf
(to compute head normal forms). Each n-ary function f is translated into a Prolog
predicate f(X1, . . . , Xn,H). When computing a hnf for an unevaluated suspension
susp(f(X1,. . . ,Xn),R,S), a call f(X1,. . . ,Xn,H) will occur in order to obtain in H the
desired head normal form.

We are particularly interested in the third phase (code generation), since it will be
affected by the introduction of dynamic cuts. Before looking more closely at this
phase we need to introduce briefly our notation for definitional trees.

4.2 Definitional Trees in T OY

Before generating the code for any function the compiler builds its associated defi-
nitional tree. In our setting the definitional tree dt of a function f , can be of either
of the following three forms:

• dt(f) = f(t̄n) → case X of 〈c1(Xm1) : dt1; . . . ; ck(Xmk
) : dtk〉, where X is the

variable at position u in f(t̄n) and c1 . . . ck are constructor symbols, with dti a
definitional tree for i = 1 . . . k.

• dt(f) = f(t̄n) → or 〈dt1 | . . . | dtk〉, with dti a definitional tree for i = 1 . . . k.
• dt(f) = f(t̄n) → try (r ⇐ C), with f t̄n = r ⇐ C corresponding to an instance

of a program rule for f .

If each case we say that the tree has a case/or/try node at the root, respectively.
A more precise definition together with the algorithm that produces a definitional
tree from a function definition can be found in [8]. The only difference is that we do
not allow ’multiple tries’, i.e. try nodes including several program rules, replacing
them by nodes or with multiple try children nodes, one for each rule included in the
initial multiple try. The tree obtained by this modification is obviously equivalent
and will be more suitable for our purposes. As an example of definitional tree,
consider again the definition of function multi in the program P1 of Figure 1:

(R1) multi zero = zero

(R2) multi zero = zero

(R3) multi (s X) (s Y) = s (add X (add Y (multi X Y)))

Its definitional tree, denoted as dt(multi), is defined in T OY as:

dt(multi) =

multi(A,B)→ or 〈
multi(A,B)→ case A of

〈 zero : multi (zero, B) → try (zero) % (R1)

; s(X) : multi (s(X),B) → case B of

〈 s(Y) : multi (s(X), s(Y)) → try (s (add C (add D (multi(C,D))))) % R3

〉
| multi(A,B)→ case B of 〈 zero: multi (A,zero) → try (zero) % R2

〉

9

Caballero, Garćıa-Ruiz

4.3 Definitional trees with cut

From the definitional tree dt of each function the system T OY generates a defi-
nitional tree with cut, dtc. Definitional trees with cut have the same structure as
usual definitional trees. The only difference is that they rename some or and try
nodes as orCut and tryCut, respectively. We define a function Γ transforming a def-
initional tree dt into its corresponding definitional tree with cut straightforwardly
by distinguishing cases depending on the root node of dt:

• Γ(f(t̄n) → case X of 〈c1(Xm1) : dt1; . . . ; ck(Xmk
) : dtk〉) =

f(t̄n) → case X of 〈c1(Xm1) : Γ(dt1); . . . ; ck(Xmk
) : Γ(dtk)〉

• Γ(f(t̄n) → or〈dt1 | . . . | dtk〉) =
f(t̄n) → orCut 〈Γ(dt1) | . . . | Γ(dtk)〉, if f is deterministic.

• Γ(f(t̄n) → or〈dt1 | . . . | dtk〉) =
f(t̄n) → or 〈Γ(dt1) | . . . | Γ(dtk)〉, if f is non-deterministic.

• Γ (f(t̄n) → try (r ⇐ C) = f(t̄n) → tryCut (r ⇐ C) if some existential variable
occurs in C (i.e. some variable occurs in C but not in the rest of program rule).

• Γ (f(t̄n) → try (r ⇐ C) = f(t̄n) → tryCut (r ⇐ C) if no existential variable
occurs in C.

For instance the dt of function multi displayed above is transformed into the
following definitional tree with cut dct (denoted dtc(multi)):

dt(multi) =

multi(A,B)→ orCut 〈
multi(A,B)→ case A of

〈 zero : multi (zero, B) → try (zero) % (R1)

; s(X) : multi (s(X),B) → case B of

〈 s(Y) : multi (s(X), s(Y)) → try (s (add C (add D (multi(C,D))))) % R3

〉
| multi(A,B)→ case B of 〈 zero: multi (A,zero) → try (zero) % R2

〉
Notice that the only difference corresponds to the root, which has been transformed
into a orCut node because multi is a deterministic function.

4.4 Generating the code

Now we can describe the function prolog(f, dtc) which generates the code for a
function f from its definitional tree with cut dtc. The function definition depends
on the node found at the root of dtc. There are five possibilities:
Case 1. dtc = f(s̄) → case X of 〈c1(Xm1) : dtc1; . . . ; cm(Xmk

) : dtcm〉. Then:

prolog(g, dtc) = {g(s̄, H) : − hnf(X, HX), g′(s̄σ,H).} ∪
prolog(g′, dtc1) ∪ . . . ∪ prolog(g′, dtcm)

where σ = X/HX and g′ is a new function symbol. The first call to hnf ensures
that the position indicated by X is already in head normal form, and that therefore
can be used in order to distinguish the different alternatives.

Case 2. dtc = f(s̄) → or〈dtc1 | . . . | dtcm〉. Then:

10

Caballero, Garćıa-Ruiz

prolog(g, dtc) = {g(s̄, H) : − g1(s̄, H).} ∪ . . . ∪ {g(s̄, H) : − gm(s̄, H).} ∪
prolog(g1, dtc1) ∪ . . . ∪ prolog(gm, dtcm)

where g1, . . . , gm are new function symbols. In this case each new function symbol
represent one of the non-deterministic choices.

Case 3. dtc = f(s̄) → orCut〈dtc1 | . . . | dtcm〉. Then

prolog(g, dtc) = {g(s̄, H) : − varlist(s̄, Vs), g′(s̄, H),

(checkvarlist(Vs), !, ; true). } ∪
{g′(s̄, H) : −{g1(s̄, H).} ∪ . . . ∪ {g′(s̄, H) : − gm(s̄, H).} ∪
prolog(g1, dtc1) ∪ . . . ∪ prolog(gm, dtcm)

where g′, g1, . . . , gm are new function symbols. Observe the differences with the
case 2:

• A new function g′ is used as an intermediate auxiliary function between g and
the non-deterministic choices.

• g starts calling a predicate varlist. This predicate, whose definition is tedious but
straightforward returns in its second parameter Vs a list containing all the logical
variables in the input parameters, including those used as flags for detecting the
evaluation of suspensions of non-deterministic functions.

• After g′ succeeds, i.e. after an or-branch has produced a result, the test for the
dynamic cut is performed. This test, represented by predicate checkvarlist, checks
if any of the variables in the list produced by varlist has been bound. This will
mean that either an input logical variable has been bound or a non-deterministic
function has been evaluated. In any of this cases the cut is avoided. Otherwise the
dynamic cut, which is implemented as an ordinary Prolog cut, is safely performed.
The definition of checkvarlist is simple:

checkVarList([]).

checkVarList([X|Xs]):- var(X), \+varInList(X,Xs), checkVarList(Xs).

The literal \+varInList(X,Xs), checks if the variable X occurs twice in the list,
detecting bindings among variables of the list.

Case 4. dtc = try (e ⇐ l1 == r1, . . . , ln == rn). Then

prolog(g, dtc) = { g(s̄, H) : − equal(l1, r1), . . . , equal(ln, rn), hnf(e,H). }
If all the equalities in the conditions are satisfied the program rule returns the head
normal form of its right-hand side e.

Case 5. dtc = tryCut (e ⇐ l1 == r1, . . . , ln == rn). Then

11

Caballero, Garćıa-Ruiz

prolog(g, dtc) = {g(s̄, H) :−varlist((s̄, e), Vs),

equal(l1, r1), . . . , equal(ln, rn),

(checkvarlist(Vs), ! ; true),

hnf(e,H).}
This case is similar to the case of the orCut. The main difference is that in this
case we also collect the possible new variables of the right-hand side, because if the
condition binds any of them the cut must be discarded.

4.5 Examples

New we show the Prolog code generated by T OY for some of the function examples
presented through the paper:

• Prolog code for function part of Figure 3:
part(A, B, C, true):-

varList([A, B, C], Vs),
equal(susp(++, [susp(++, [D,A]),J]),B),
equal(susp(length, [A]), C),
(checkVarList(Vs), !; true).

This corresponds to the implementation of a tryCut node. The variables of the
right-hand side are not included because in this rules was the ground term true.

• Prolog code for function multi of Figure 1
multi(A, B, H):-

varList([A,B], Vs),
multi’(A, B, H),
(checkVarList(Vs), ! ; true).

multi’(A, B, H):-
hnf(A, F),
multi’_1(F, B, H).

multi’(A, B, zero):-
hnf(B, zero).

multi’_1(zero, B, zero).
multi’_1(s(X), B, s(susp(add,[X,susp(add,[Y,susp(multi,[X,Y])])]))):-

hnf(B, s(Y)).

The code of this example corresponds to the implementation of an orCut node.
The two branches are represented here be the two clauses for multi′ (correspond-
ing to function g′ in the case 3 of the previous subsection). The cut is introduced
if the first alternative, which corresponds to a case node with two possibilities,
succeeds.

5 Conclusions

In this paper we have presented the implementation of the dynamic cut optimization
in the Functional-Logic system T OY . The optimization improves dramatically the
efficiency of the computations in the situations explained in the paper. Moreover,
we claim that in practice it allows the use of some elegant and expressive function
definitions that were disregarded due to its inefficiency up to now.

The cut is introduced automatically by the system following the next steps:

(i) The deterministic functions of the program are detected using the non-

12

Caballero, Garćıa-Ruiz

ambiguity criterium. The correctness of the criterium in ensured by theorem
2.3. Also the user can indicate explicitly that any function is deterministic.

(ii) The definitional tree associated to each program function is examined. The
or nodes occurring in deterministic functions are labeled during this process
as or-cut nodes. Also the try nodes corresponding to program rules including
existential variables in the conditions are labeled as try-cut nodes.

(iii) During the code generation the system will generate the dynamic cut code
for or-cut and try-cut nodes. However the cut only will be performed is the
dynamic conditions explained in subsection iii are fulfilled.

We think that a similar scheme might also be used for incorporating the dynamic
cut to the Prolog-based implementations of the Curry language [6].

Currently the dynamic cut must be turn on in T OY by typing the command /cut
at the prompt. However, we have checked that the optimization produces almost
no overhead in the cases where it cannot be applied, and we plan to provide it
activated by default in the future versions of the system.

References

[1] Antoy, S., Definitional trees, in: Int. Conf. on Algebraic Logic Programming (ALP’92), number 632 in
LNCS (1992), pp. 143–157.

[2] Antoy, S., R.Echahed and M. Hanus, A needed narrowing strategy, Journal of the ACM 47 (2000),
pp. 776–822.

[3] Caballero, R. and F. López-Fraguas, Dynamic-cut with definitional trees, in: Proceedings of the 6th
International Symposium on Functional and Logic Programming, FLOPS 2002, number 2441 in LNCS
(2002), pp. 245–258.

[4] Caballero, R. and F. Lpez-Fraguas, Improving deterministic computations in lazy functional logic
languages, Journal of Functional and Logic Programming 2003 (2003).

[5] Gonzlez-Moreno, J., M. Hortal-Gonzlez, F. Lpez-Fraguas and M. Rodrguez-Artalejo, An approach to
declarative programming based on a rewriting logic, The Journal of Logic Programming 40 (1999),
pp. 47–87.

[6] Hanus, M., Curry: An Integrated Functional Logic Language (version 0.8.2. march 28, 2006), Available
at: http://www.informatik.uni-kiel.de/ curry/papers/report.pdf (2006).

[7] Henderson, F., Z. Somogyi and T. Conway, Determinism analysis in the mercury compiler (1996).
URL citeseer.ist.psu.edu/henderson96determinism.html

[8] Loogen, R., F. López-Fraguas and M. Rodŕıguez-Artalejo, A demand driven computation strategy for
lazy narrowing, in: Int. Symp. on Programming Language Implementation and Logic Programming
(PLILP’93), number 714 in LNCS (1993), pp. 184–200.

[9] Loogen, R., F. López-Fraguas and M. Rodŕıguez-Artalejo, Toy: a multiparadigm declarative system, in:
Int. Symp. RTA’99, number 1631 in LNCS (1999), pp. 244–247.

[10] Loogen, R. and S. Winkler, Dynamic detection of determinism in functional-logic languages, in: Int.
Symp. on Programming Language Implementation and Logic Programming (PLILP’91), number 528
in LNCS (1991), pp. 335–346.

[11] Loogen, R. and S. Winkler, Dynamic detection of determinism in functional logic languages,
in: J. Maluszynski and M. Wirsing, editors, Programming Language Implementation and Logic
Programming: Proc. of the 3rd International Symposium PLILP’91, Passau, Springer, Berlin,
Heidelberg, 1991 pp. 335–346.

[12] na, R. P. and C. Segura, Non-determinism analyses in a parallel-functional language, Journal of Logic
Programming 2004 (2005), pp. 67–100.

[13] Sawamura, H. and T. Takeshima, Recursive Unsolvability of Determinacy, Solvable Cases of
Determinacy and Their Applications to Prolog Optimization, in: Proceedings of the Symposium on
Logic Programming, 1985, pp. 200–207.

13

Caballero, Garćıa-Ruiz

Appendix A

In this appendix we present the proof of theorem 2.3. Since it uses widely the
CRWL calculus we first introduce the calculus inference rules:

5.1 The CRWL calculus

CRWL is an inference system consisting of six inference rules:

BT Bottom:
e → ⊥ RF Reflexivity:

X → X

DC Decomposition
e1 → t1 . . . em → tm

c e1 . . . em → c t1 . . . tm
c ∈ CDn ∪ FSn+1, m ≤ n, ti ∈ CTerm⊥

FA Function Application:
e1 → t1 . . . , en → tn C r → a a a1 . . . ak → t

f e1 . . . en a1 . . . ak → t
(k ≥ 0)

if t 6= ⊥, (f t1 . . . tn → r ⇐ C) ∈ [R]⊥

JN Join:
e1 → t e2 → t

e1 == e2
t ∈ CTerm

The notation [R]⊥ In rule FA represents the set of all the possible instances of pro-
gram rules, where each particular instance is obtained from some function defining
rule in R, by some substitution of (possibly partial) terms in place of variables. See
[5] for a detailed description of this and related calculi.

5.2 Previous Lemmata

The first two lemmata establish substitution properties that will play an important
role in the proof. The lemmata use the symbol CSubst for the set of all the c-
substitutions, which are mappings θ : V → CTerm, and the notation CSubst⊥ for
the set of all the partial c-substitutions θ : V → CTerm⊥ defined analogously. We
note as tθ the result of applying the substitution θ to the term t.

Lemma 5.1

Let t ∈ CTerm, s ∈ CTerm⊥ be such that t v s. There there exists a substitution
θ ∈ CSubst⊥ verifying tθ = s.

Proof. Straightforward by using induction on the structure of t. 2

Lemma 5.2

Let t, t′ ∈ CTerm be such that: 1) t, t′ are linear, 2) var(t) ∩ var(t′) = ∅ and 3)
There exists γ = m.g.u.(t,t’). Let s ∈ Cterm⊥ be a term and θ, θ′ ∈ CSubst⊥ such
that tθ v s, t′θ′ v s. Then there exists a substitution θ′′ s.t. tγθ′′ = t′γθ′′ = s.

Proof.
We define u = tγ = t′γ. u cannot be ⊥ because this would mean that t and t′ are
variables X and Y resp. and that γ = {X 7→ ⊥, Y 7→ ⊥}, but in this case γ would
not be the m.g.u. of t and t′. Observe also that it is easy to check that u must be
linear because t and t′ are two linear terms with no common variables and γ is their
most general unifier.

14

Caballero, Garćıa-Ruiz

We next prove that exists a substitution θ′′ s.t. uθ′′ = s by using induction on the
structure of the CTerm u.

• If u = X, we define θ′′ as {X 7→ s}. Obviously uθ′′ = s.
• If u = c, c ∈ DC0 then it can be that: 1) t = c and t′ a variable X, or 2) t′ = c

and t a variable X, or 3) t = t′ = c. In any case s must be c and the result holds
defining θ′′ = {X 7→ c} in cases 1), 2) and θ′′ = id in the case 3).

• If u = c(u1, . . . , un), we distinguish again three possibilities:
· If t = c(u1, . . . , un) and t′ = X, then s must be of the form s = c(s1, . . . , sn)

with uiθ v si for i = 1, . . . , n. Since u es linear, using the induction hypotheses
there exist substitutions θ′′i s.t. uiθ

′′
i = si. Then we can define the substitution

θ′′ as:

θ′′(X) =





θ′′i (X) if X ∈ var(ui) for some i, 1 ≤ i ≤ n

X otherwise
and uθ′′ = s holds.

· If t = X y t′ = c(u1, . . . , un) is analogous to the previous case.
· If t = c(t1, . . . , tn) and t′ = c(t′1, . . . , t

′
n), since t and t′ are linear and unifiable,

there must exist substitutions γi = u.m.g(ti, t′i) for i = 1 . . . n such that tiγi =
t′iγi = ui. s must then be of the form s = c(s1, . . . , sn) with tiθ v si, t′iθ

′ v si.
Then, by the induction hypothesis there exist substitutions θ′′i with domain

the variables of ui such that uiθ
′′
i = si. We define θ′′ as:

θ′′(X) =





θ′′i (X) if X ∈ var(ui) for some i, 1 ≤ i ≤ n

X otherwise
and uθ′′ = s holds.

2

The next lemma introduces some basic properties of CRWL . They can be proved
by straightforward induction on the depth of the CRWL proof and are omitted.

Lemma 5.3
Let P,e ∈ Term⊥ be a program and a partial term respectively. Then:

i) Let t, t′ ∈ CTerm⊥ be such that P `CRWL e → t and t′ v t. Then P `CRWL

e → t′.

ii) Let P be a program and e ∈ Term⊥ and θ ∈ CSubst⊥ be s.t. P `CRWL eθ → t.
Then P `CRWL eθ′ → t for all θ′ s.t. θ v θ′.

iii) Let ēn s.t. ei ∈ Term⊥ for all i = 1 . . . n, and s.t. P `CRWL e ēn → t, and
a ∈ Term⊥ such that e v a. Then P `CRWL a ēn → t.

5.3 Theorem proof

Now we can prove that every non-ambiguous function is a deterministic function,
as theorem 2.3 states:

Proof. In order to check that f is a deterministic function, we must prove that
[[f t̄n]] is an ideal, for every t̄n with ti ∈ CTerm⊥ for i = 1 . . . n. Thus, we must
prove that [[f t̄n]] is both a cone an a directed set.

15

Caballero, Garćıa-Ruiz

- [[f t̄n]] is a cone.

• ⊥ is in [[f t̄n]] by the inference rule BT.
• Let t ∈ [[f t̄n]] be s.t. t ∈ CTerm⊥, i.e. P `CRWL f t̄n → t. Let t′ ∈ CTerm⊥ be

s.t. t′ v t. Then by lemma 5.3.i), P `CRWL f t̄n → t′ and hence t′ ∈ [[f t̄n]].

- [[f t̄n]] is a directed set.

We prove a more general result: Consider e ∈ Term⊥ and suppose that all the
function symbols occurring in e are correspond to non-ambiguous functions. Then,
[[e]] is a directed set.

Let t, t′ be s.t. t, t′ ∈ Cterm⊥ verifying

(R1) : P `CRWL e → t (R2) : P `CRWL e → t′

We next prove that exists some s ∈ Cterm⊥ such that: a) t v s, b) t′ v s and c)
P `CRWL e → s by induction on the depth l of a CRWL -proof for e → t:

l = 0 Three possible inference rules:

• BT. Then t = ⊥ and defining s = t′ we have: a) ⊥ v s, b) t′ v s and c)
P `CRWL e → s (by (R2)).

• RF. Then the proof for (R1) must be of the form X → X, and hence e = X

and t = X. Then t′ only can be X or ⊥ (otherwise no CRWL inference could
be applied and (R2) would not hold). We define s as X and then: a) t v X b)
t′ v X c) P `CRWL e → s by (R1).

• DC. Then e = c, t = c, with c ∈ DC0. Then t′ must be either c or ⊥. In any
case defining s as c the result holds.

l > 0 There are three possible inference rules applied at the first step of the proof:

• DC. Then e = c e1 . . . em, t = c t1 . . . tm with c ∈ DCn ∪ FSn+1, m ≤ n.
Analogously t′ = c t1 . . . tm and the first inference rules of any proof for (R1) y
(R2) must be of the form:

(R1) :
e1 → t1 . . . em → tm

c e1 . . . em → c t1 . . . tm
(R2) :

e1 → t′1 . . . em → t′m

c e1 . . . em → c t′1 . . . t′m

The proofs for P `CRWL ei → ti and P `CRWL ei → t′i have a maximum depth of
l−1. Therefore by induction hypotheses exists si ∈ Cterm⊥ satisfying ti, t

′
i v si,

and P `CRWL ei → si for all 1 ≤ i ≤ m. Then defining s = c s1 . . . sm, t v s,
t′ v s hold and P `CRWL e → s with a proof starting with a DC inference.

• JN. Very similar to the previous case.
• AF. Then e is of the form f ēn with ei ∈ CTerm⊥ for i = 1 . . . n. Moreover n is

greater of equal to the program arity of f . Hence an AF inference must have been
applied at the first step of any proof of (R2). In each case a suitable instance
(I1) y (I2) must have been used. We call θ and θ′ to the substitutions associated
to the first and to the second instance respectively, θ, θ′ ∈ CSubst⊥.
The first inference step of each proof will be of the following form:

16

Caballero, Garćıa-Ruiz

(1) :
e1 → t1θ, . . . , ek → tkθ, Cθ, rθ → a, a ek+1 . . . en → t

f e1 . . . ek ek+1 . . . en → t

(2) :
e1 → t′1θ

′, . . . , ek → t′kθ
′, C ′θ′, r′θ′ → a′, a′ ek+1 . . . en → t′

f e1 . . . ek ek+1 . . . en → t′

with (k > 0), t, t′ 6= ⊥ and the rule instances:

I1: (f t1 . . . tk → r ⇐ C)θ ∈ [R]⊥ I2: (f t′1 . . . t′k → r′ ⇐ C ′)θ′ ∈ [R]⊥
Now we consider separately two cases: a) I1 e I2 correspond to the same program
rule, and b) each instance correspond to a different program rule.

a) Assume that I1, I2 Correspond to the same program rule, i.e. ti = t′i, r = r′,
C = C ′. We look for some s ∈ CTerm⊥ such that t v s, t′ v s, and also for some
θ′′ ∈ CSubst⊥ that allows us to build a CRWL proof for P `CRWL fēn → s

starting with a first inference rule application of the form

(3) :
e1 → t1θ

′′, . . . , ek → tkθ
′′, Cθ′′, rθ′′ → a′′, a′′ ek+1 . . . en → s

f e1 . . . ek ek+1 . . . en → s

We must check that it is possible to find CRWL -proofs for all the premises
in (3). From the premises of (1), (2) we know that P `CRWL ei → tiθ and
P `CRWL ei → tiθ

′ for each i = 1 . . . k. Then by induction hypotheses,
for every i = 1 . . . k exists a term si s.t. a) tiθ v si, b) tiθ

′ v si and c)
P `CRWL ei → si. By a) and the lemma ?? exists also a substitution θi s.t.
tiθi = si. Since (t1, . . . , tk) is linear, we can define θ′′ as:

θ′′(X) =





θi(X), if X ∈ var(ti) for some i

θ(X), otherwise

By the definition si = tiθ
′′ and therefore the premises ei → tiθ

′′ of (3) admit
a CRWL proof for all i = 1 . . . k.
The condition C is of the form d1 == d2, with d1, d2 ∈ Term. We know by (1)
that Cθ has a CRWL proof, which means that each d1 == d2 has a CRWL
-proof, which must be of the form:

d1θ → u, d2θ → u

d1θ == d2θ
u ∈ CTerm

Since θ v θ′′, we have by Lemma 5.3.ii) that d1θ
′′ → u and d2θ

′′ → u

have CRWL proofs. Therefore the premise Cθ′′ of (3) also has a CRWL
-proof. Now we observe that θ(X) v θ′′(X) and θ′(X) v θ′′(X) for
X ∈ var(t̄n). From the premises of (1) and (2) we have: P `CRWL rθ → a and
P `CRWL rθ′ → a′. Since in addition var(r) ⊆ var(t̄n), by Lemma 5.3.ii) we
can have that P `CRWL rθ′′ → a, P `CRWL rθ′′ → a′.

17

Caballero, Garćıa-Ruiz

Then by induction hypotheses, there must exist some a′′ ∈ CTerm⊥ c s.t.:
a) a v a′′, b) a′ v a′′ and c) P `CRWL rθ′′ → a′′, which crwl-proves the premise
rθ′′ → a′′ in (3). Moreover since we have P `CRWL a ek+1 . . . en → t,
P `CRWL a′ ek+1 . . . en → t′ we have from Lemma 5.3, item iii):
P `CRWL a′′ ek+1 . . . en → t, P `CRWL a′′ ek+1 . . . en → t′, and by in-
duction hypotheses there exists some s ∈ CTerm⊥ such that a) t v s, b)
t′ v s c) P `CRWL a′′ ek+1 . . . en → s, which proves the last premise of (3):
a′′ ek+1 . . . en → s.

b) Now assume that I1, I2 are instances of two different program rules. In such
case by the non-ambiguity criterion (remember that f is occurring in e and
therefore by hypotheses is non-ambiguous) there exists γ=m.g.u. (f t̄k, f t̄′k),
i.e. tiγ = t′iγ for i = 1 . . . k and rγ = r′γ. Calling ui to tiγ = t′iγ, the rule
instances can be seen as:

(f u1 . . . uk → r′′ ⇐ Cγ) and (f u1 . . . uk → r′′ ⇐ C ′γ).
Now we must look for some s ∈ CTerm⊥ such that: a) t v s, b) t′ v s and

c) P `CRWL fēn → s for some substitution θ′′. The proof of c) can be of one
of these two forms

(4) :
e1 → u1θ

′′, . . . , ek → ukθ
′′, Cγθ′′, r′′θ′′ → a′′, a′′ ek+1 . . . en → s

f e1 . . . ek ek+1 . . . en → s

(5) :
e1 → u1θ

′′, . . . , ek → ukθ
′′, C ′γθ′′, r′′θ′′ → a′′, a′′ ek+1 . . . en → s

f e1 . . . ek ek+1 . . . en → s

We observe that γ unifies the heads and fusions the right-hand sides, but
it doesn’t relation C y C ′. We consider the form (4) (the (5) is analo-
gous). From the premises of (1) y (2) we know that P `CRWL ei → tiθ

and P `CRWL ei → t′iθ
′ for i = 1 . . . k. By induction hypotheses exists

si ∈ CTerm⊥ s.t.: a)tiθ v si, b) t′iθ
′ v si, and c) P `CRWL ei → si. Since ti, t

′
i

are unified by γ, we can apply the Lemma 5.1. Then there exist substitutions
θi which we can restrict to the variables in ui s.t. uiθi = si. (u1, . . . , uk) is a
linear tuple because (t1, . . . , tk) and (t′1, . . . , t

′
k) are both linear. Then we can

define a substitution θ′′ as:

θ′′(X) =





θi(X) if X ∈ var(ti, t′i) for some i, 1 ≤ i ≤ k

θ(X) otherwise

ensuring that there exist CRWL -proofs of ei → uiθ
′′ for all i = {1, . . . , k} in

(4) (this is because uiϕ = uiθ
′′).

Checking that rest of the premises of (4) also have CRWL -proof requires
similar arguments to those employed in the case a) and we omit the details.

2

18

