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Abstract

This paper presents SOCLP (Set Oriented Calculus for Logic Programming), a
proof calculus for pure Prolog programs with negation. The main difference of this
calculus w.r.t. other related approaches is that it deals with the answer set of a
goal as a whole, instead of considering each single answer separately. We prove that
SOCLP is well defined, in the sense that, at most, one answer set can be derived from
a goal, and that the derived set is correct and complete w.r.t. the logical meaning
of the program. However, not all the answer sets admit a proof in SOCLP. For
this reason, the paper also introduces another calculus, SOCLP→, which allows to
prove finite approximations of (possibly infinite) answer sets. SOCLP→ is coupled,
through the inference rule for dealing with negation, with a third calculus SOCLP←,
which proves whether a set is a superset of the answer set of a given goal. The paper
also shows how the three calculi are related and their main properties.
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1 Introduction

The semantics of logic programs was firstly studied in the seminal paper [5],
which introduced the ubiquitous immediate consequence operator TP . In [4],
the negation as failure rule was introduced as an effective means of deducing
negative information for logic programs, and proposed the completion of a
program as a description of its meaning. These and further approaches are
based on SLD resolution for logic programming, as proposed by [7], a partic-
ular refinement of the resolution principle [10]. The drawback of this point
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of view is that one cannot directly reason about the meaning of a program
in terms of answer sets. In particular, this is an inconvenience when using
algorithmic debugging [11] for detecting missing answers, where the complete
set of answers for any subgoal of the subcomputation is needed. Also, deduc-
tive databases, for which semantics is usually defined in the same way as logic
programming [14], may be better described with a set oriented calculus, since
the natural answer in this context is a set of tuples, as in relational databases.

This paper presents SOCLP (Set Oriented Calculus for Logic Program-
ming), a proof calculus for pure Prolog programs with negation, which deals
with the set of answers of a goal as a whole, instead of considering each single
answer separately. However, we will see that the completeness of SOCLP can
only be ensured for a restrictive class of logic programs, namely the hierarchi-
cal programs [8,6] over finite Herbrand universes. For this reason, the paper
also introduces another calculus, SOCLP→, which establishes whether a given
set is a subset of the (possibly infinite) answer set of a certain goal. Therefore,
SOCLP→ allows to prove finite approximations of the answer set. SOCLP→
is coupled, through the inference rule for dealing with negation, with a third
calculus SOCLP←, which proves whether a set is a superset of the answer set
of a given goal.

We also include theoretical results proving properties of the three calculi.
For the sake of clarity and brevity, proofs of the results are not included in
this paper but can be consulted at [3].

Among these results we prove that SOCLP is well defined, in the sense
that only one set can be derived from a goal, and that such set represents
faithfully the answer set of a goal. We also show how the three calculi are
related by proving that a set of answers can be inferred from a given goal in
SOCLP iff the set can be inferred from both SOCLP← and SOCLP→.

To the best of our knowledge, only few papers in the field of declarative
debugging address calculi involving goal answer sets (e.g., [12]). However,
these works do not consider programs with negation, and usually represent
the sets as disjunctions of logic formulas with variables instead of dealing
directly with set of ground terms. While their approach is more useful for
representing the answers of Prolog systems, ours is more oriented to the case
of deductive databases where the answers are assumed to be sets of ground
terms.

The limitation of our approach is that, in general, infinite proofs should be
needed for recursive goals with function symbols, and hence it seems no ade-
quate for describing logic programs. But if we consider deductive databases,
termination is guaranteed provided some conditions. These conditions can
avoid infinite proof trees and restrict both function symbols and negation.
This is the case of safe Datalog programs with stratified negation [13], where
finiteness and termination is ensured.

Our paper will be organized as follows: First, a motivating section in-
troduces our setting and highlights their advantages. Second, we pose some
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preliminaries about the logic language we adhere to. The third section presents
the set oriented calculus SOCLP intended to represent goal meanings as tuple
sets. Section four introduces the two calculi SOCLP← and SOCLP→ and their
properties. Finally, some conclusions and future work are pointed out.

2 Preliminaries

In this section, we present the notation and definitions used throughout the
paper which somehow differ from other approaches to logic programming. For
other basic definitions about this paradigm, we refer the reader to [1].

We consider programs with the syntax of pure Prolog programs with nega-
tion but without ”impure” features. A program P is therefore a set of normal
clauses [8]. In order to distinguish the different clauses defining the same
predicate p, we use subindices following any arbitrary criterium (such as the
textual order in the program). Thus, if a predicate p is defined through r
clauses we will denote them as p1, . . . , pr. Each normal clause pi must have
the form:

pi(tn)︸ ︷︷ ︸
head

:− l1(ā
1
k1

), . . . , lm(ām
km

).︸ ︷︷ ︸
body

corresponding to the first order logic formula pi(tn) ← l1(ā
1
k1

)∧ . . .∧ lm(ām
km

),
where the variables whose first occurrence is on the head of the clause have
implicit universal quantifiers and the variables whose first appearance is in
the body of the clause have implicit existential quantifiers. The notation (t̄n)
denotes the n-ary tuple (t1, . . . , tn). In particular, we represent by () the 0-ary
tuple, commonly called the unit tuple. The symbols ti (with 1 ≤ i ≤ n) and
au

v with 1 ≤ u ≤ m, 1 ≤ v ≤ ku represent terms, defined as usual in logic
programming: any variable and constant is a term, and any expression f(t̄n)
(with a function symbol f of arity n and terms ti (1 ≤ i ≤ n)) is a term as
well. The set of all the tuples of n terms that can be built using the constants
and functions of a program P is denoted in the rest of the paper as Un. Notice
that Un is infinite if the set of terms (the Herbrand universe) is infinite. The
symbols li(ā

i
ki

) with 1 ≤ i ≤ m stand for literals which can be either positive
atoms of the form p(āi

ki
) or negated atoms ¬p(āi

ki
). Sometimes, we will also

be interested in extended literals which can be of the form p(āi
ki

), pj(ā
i
ki

) and
¬p(āi

ki
). Including names of clauses as possible (extended) literals is consistent

with considering each clause pi as a predicate defined by just one clause, and
any predicate p defined by the implicit formula:

∀X1, . . . , Xn (p(X̄n) ← p1(X̄n) ∨ · · · ∨ pm(X̄n))

where n is the predicate arity and Xj is a variable for every 1 ≤ j ≤ n.

Goals will be literals l(tn) with (tn) ∈ Un and with all the variables in
the goal assumed to be existentially quantified. Although the usual defi-
nition of goals in logic programming considers conjunctions of literals, ours
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topicArea1(logic,maths) : − true.

topicArea2(topology,maths) : − true.

topicArea3(logic,computers) : − true.

main1(X) : − topicArea(X,maths), ¬ topicArea(X,computers)).

Fig. 1. Relating topics to areas of knowledge

has no lack of generality; whenever we need to use a conjunction of literals
l1(ā

1
k1

), . . . , lm(ām
km

) as a goal, we replace it by the goal main(X̄n), assuming
the existence of a new predicate main defined by only one clause of the form:

main1(X̄n) :- l1(ā
1
k1

), . . . , lm(ām
km

)

where {X1, . . . , Xn} is the set of variables in l1(ā
1
k1

), . . . , lm(ām
km

).

Example 2.1 Figure 1 presents a small program written following the con-
ventions described so far. The predicate topicArea relates topics to their area
of knowledge. The three clauses of this predicate are facts, which are dis-
played in our setting by including the special propositional constant true as
the body of each clause. The main predicate of the example holds for those
values X such that are topics of the field of mathematics but not of the field
of computers.

An answer of a positive goal p(t̄n) w.r.t. a program P is a tuple of terms
(ān) such that:

i) (ān) ∈ Un.

ii) There exists a substitution θ verifying (t̄n)θ = ān.

iii) p(ān) is a logical consequence of the set of logic formulas represented by
the program.

We say that θ is the associated substitution to the answer (ān). The first
condition limits our possible answers to ground terms. For instance, the only
answer of the goal main(Y) w.r.t. the program of Figure 1 is (topology).

An answer for a negative goal ¬p(t̄n) w.r.t. a program P is a tuple of terms
(ān) such that (ān) is not an answer of p(t̄n). We use the expression answer set
to indicate the set containing all the answers of a given goal. For instance, the
answer set of the goal ¬main(X) is the set {(logic), (maths), (computers)},
since these are the elements of U1 that are not answers of main(X).

Finally, we define a special kind of programs: we say that a program
is hierarchical [8,6] if there exists some level mapping such that every clause
pi(tn) :−l1(ā

1
k1

), . . . , lm(ām
km

) verifies that the level of every predicate occurring
in the body is less than the level of p. A level mapping of a program is a
mapping from its set of predicate symbols to the natural numbers. We call
level of a predicate to the value of predicate under such mapping. For instance,
the program in Figure 1 is a hierarchical program because we can define the
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SOCLP

(TR↔)
true ↔ {()}

(EMP↔)
pi(tn) ↔ ∅

if (pi(ān) :− l1(b̄1
k1

), . . . , lm(b̄m
km

)) ∈ P , and

m.g.u.((ān), (t̄n)) does not exist.

(NEG↔)
p(t̄n) ↔ S2

¬p(tn) ↔ S1

if S1 = Un\S2

(PR↔)
p1(t̄n) ↔ S1 . . . pk(t̄n) ↔ Sk

p(tn) ↔ S

if S =
⋃k

i=1 Si, and p1, . . . , pk

are all the clauses of p in P

(CL↔)
l1(b̄1

k1
)θ ↔ S1 . . . lm(b̄m

km
)θ ↔ Sm

pi(tn) ↔ S
if:

- S ⊆ Un

- (pi(ān) :− l1(b̄1
k1

), . . . , lm(b̄m
km

)) ∈ P

- θ = m.g.u.((an), (tn))

- (t̄n)θθ′ ∈ S for all θ′ s.t. (b̄i
ki

)θθ
′ ∈ Si with i = 1 . . . m

- for all (t′n) ∈ S exists θ′ s.t. (t′n) = (t̄n)θθ′

and (b̄i
ki

)θθ
′ ∈ Si for each i = 1 . . . m

Fig. 2. The SOCLP calculus

following mapping: { true 7→ 0, topicArea 7→ 1, main 7→ 2 }.

3 The SOCLP Calculus

In this section, we present the proof calculus SOCLP, which allows to prove
that a set S is the answer set of a goal G w.r.t. a program P . We will use
the notation P S̀OCLP G ↔ S, with G a goal and S a set of ground terms, to
indicate that the statement G ↔ S can be deduced in SOCLP using a finite
number of steps. In this case, we will say that G ↔ S has a proof in SOCLP,
and that S is the SOCLP-set of G. The five rules of SOCLP can be seen in
Figure 2. The first two inference rules correspond to the trivial cases of a goal
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being either true or pi(ān) with (ān) not unifiable with the head of any clause
for pi. In the first case, the SOCLP-set only contains the unit tuple (), since
we assume that this 0-ary predicate always holds. In the second case, if the
most general unifier of (ān) and the tuple at the head of pi does not exist, it
is easy to check that the goal has no answer. Thus, the SOCLP-set is ∅. The
inference rule (NEG↔) says that the SOCLP-set of a negated atom ¬p(tn)
is the complementary of the SOCLP-set of the corresponding positive atom
w.r.t. Un. That is, we use the closed world assumption [9], which assumes that
all atoms not entailed by a program are false. This point of view is convenient
for working with answer sets, which makes it widely used in database logic
languages (see for instance [14], chapter 10). (PR↔) defines the SOCLP-set
of a positive atom as the union of the SOCLP-sets obtained by using its
defining clauses. Finally, (CL↔) explains how to obtain the SOCLP-set S
of a clause pi(tn) from the SOCLP-sets of the literals of its body. The clause
(pi(ān) :− l1(b̄

1
k1

), . . . , lm(b̄m
km

)) ∈ P is assumed to have new variables, different
from those in (tn). This rule says that all the premises must be affected by
the most general unifier of (an) and (tn). Then, each substitution θ′ that
generalizes the associated substitutions of one element of the SOCLP-set of
each body literal produces an element in S. Conversely, each substitution
associated to an element of S must correspond to the restriction of a more
general θ′ that generalizes the associated substitutions of one element of the
SOCLP-set of each body literal.

Example 3.1 As an example of inference using SOCLP, Figure 3 includes a
SOCLP proof tree for P S̀OCLP main(Y ) ↔ {(topology)}. The root contains
the initial statement, and the children of any node correspond to the premises
of the SOCLP inference rule applied at the node. Below the tree are listed the
renaming of the clauses and the m.g.u. associated to each application of the
(CL↔) inference rule. For instance, the first application of (CL↔) corresponds
to the clause for main. The children correspond to the body of the clause after
applying the m.g.u.:

topicArea(Y,maths), ¬ topicArea(Y,computers))

The SOCLP-set for the first literal topicArea(Y,maths) is { logic, topology },
corresponding to the substitutions θ′ = {Y 7→ logic} and θ′ = {Y 7→ topology},
respectively. The SOCLP-set of the second literal is { maths, computers,
topology }, with associated substitutions θ′ = {Y 7→ maths}, θ′ = {Y 7→
computers}, and θ′ = {Y 7→ topology}. Only the substitution θ′ = {Y 7→
topology} corresponds to the SOCLP-sets of both literals, and for that reason
topology (underlined in the tree) is the only element in the SOCLP-set for
main1, following the requirements of the fourth and fifth conditions of (CL↔).

This example shows that in SOCLP neither the order of the literals in the
body of a clause nor the textual order of the clauses of the same predicate
is important. The following proposition ensures that the calculus defines at
most one SOCLP-set for any given goal.
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main(Y) ↔ {(topology)}
(PR↔)

main1(Y) ↔ {(topology)}XXXXXXXXXX

»»»»»»»»»»
(CL↔)(1)

topicArea(Y,maths) ↔ {(logic, topology)}
(PR↔)

¬ topicArea(Y,computers) ↔
{(maths, computers, topology)}»»»»»»

topicArea1(Y,maths) ↔
{(logic)}

(CL↔)(2)

true ↔ {()}
(TR)↔

topicArea2(Y,maths) ↔ {(topology)}
(CL↔)(3)

true ↔ {()}
(TR)↔

HHH
topicArea3(Y,maths) ↔ ∅

(EMP↔)
(NEG↔)

topicArea(Y,computers) ↔ {(logic)}
³³³³³³³³³³

topicArea1(Y,computers) ↔ ∅

¡
¡

¡
¡

¡
¡

topicArea2(Y,computers) ↔ ∅

@
@

@
topicArea3(Y,computers) ↔

{logic }

(PR↔)

(EMP↔)

(EMP↔)
(CL↔)(4)

true ↔ {()}
(TR)↔

(1) Clause main1(X) : − topicArea(X,maths), ¬ topicArea(X,computers)), θ = {X 7→ Y }
(2) Clause topicArea1(Y,maths)), θ = {Y 7→ logic}
(3) Clause topicArea2(Y,maths)), θ = {Y 7→ topology}
(4) Clause topicArea3(Y,computers)), θ = {Y 7→ logic}

Fig. 3. Inference using the Calculus SOCLP↔

Proposition 3.2 Let P be a program, l(t̄n) a goal, and Sa, Sb two sets such
that P S̀OCLP l(t̄n) ↔ Sa and P S̀OCLP l(t̄n) ↔ Sb. Then Sa = Sb.

The next theorem establishes the relationship between the SOCLP proofs
and the logical meaning of the program, proving that the SOCLP-set of any
goal is actually its answer set.

Theorem 3.3 (Soundness and weak completeness of SOCLP)

Let P be a program, l(t̄n) a goal, and S a set such that P S̀OCLP l(t̄n) ↔ S.
Then (ān) ∈ S iff (ān) is an answer of l(t̄n).

The theorem states that, whenever a SOCLP-proof for l(t̄n) ↔ S exists, we
can ensure that S is precisely the answer set of l(t̄n). Hence, we can trust the
SOCLP proofs as suitable descriptions of the answer set of a goal. However,
not all the answer sets admit a SOCLP proof tree.

Example 3.4 Consider, for instance, the small program:
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¬ main(X) ↔ {(suc(zero)), (suc(suc(zero))), . . . }
(NEG↔)

main(X) ↔ {(zero)}
(PR↔)

main1(X) ↔ {(zero)}
(CL↔)(1)

less(X,suc(zero)) ↔ {(zero,suc(zero))}XXXXXXXXXX

»»»»»»»»»»
(PR↔)

less1(X,suc(zero)) ↔ {(zero,suc(zero))} less2(X,suc(zero)) ↔ ∅
(CL↔)(2) (CL↔)(3)

true ↔ {()}
(TR↔)

less(U, zero) ↔ ∅XXXXXX
»»»»»»

less1(U, zero) ↔ ∅ less2(U, zero) ↔ ∅
(EMP↔) (EMP↔)

(1) Clause main1(Y) : − less(Y,suc(zero)), θ = {Y 7→ X}
(2) Clause less1(zero,suc(V)) : − true, θ = {X 7→ zero, V 7→ zero}
(3) Clause less2(suc(U), suc(V)) : − less(U,V), θ = {X 7→ suc(U), V 7→ zero}

Fig. 4.

p1(a) : − true.

p2(X) : − p(X).

It is easy to check out that the answer set of the goal p(X) is {(a)}. However,
the statement p(X) ↔ {(a)} cannot be proved in SOCLP.

The next proposition establishes that the answer set of a goal admit a
SOCLP proof if we restrict our setting to hierarchical programs over finite
Herbrand universes:

Proposition 3.5 (Completeness of hierarchical programs over finite Herbrand
universes)
Let P be a hierarchical program over a finite Herbrand universe and l(t̄n) a
goal. Then, there exists some set S such that P S̀OCLP l(t̄n) ↔ S.

By Proposition 3.2, the set S is unique, and, by Theorem 3.3, this set is
the answer set of the goal. Thus, the SOCLP calculus defines correctly the
semantics of hierarchical programs [6] over finite Herbrand universes from the
point of view of the answer sets. Although the proposition provides a rather
restrictive set of programs for which SOCLP is complete, this does not mean
that SOCLP cannot be applied to non-hierarchical programs.
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Example 3.6 The predicate main of the following program defines the set of
natural numbers which are less than one (i.e., only the number zero):

less1(zero,suc(Y)) : − true.

less2(suc(X),suc(Y)) : − less(X,Y).

main1(X) : − less(X,suc(zero)).

This program is not hierarchical, due to the second rule for less, and its Her-
brand Universe is infinite. However, as Figure 4 shows, using SOCLP is possi-
ble to prove that P S̀OCLP ¬main(X) ↔ {(suc(zero)), (suc(suc(zero))), . . . },
i.e., that all the natural numbers different from zero are not less than suc(zero).

In the previous example, it is also interesting to note that SOCLP proofs
are not always limited to finite answer sets. This is due to the rule for negation,
which can convert the proof of an infinite answer set in the proof of a finite
answer set, and vice versa (as the first inference step of Figure 4 shows). This
rule also makes the set of provable statements different from those of pure
Prolog programs with negation. For instance, the previous goal ¬main(X)
has no solution using negation as failure because main(X) does not fail (it
succeeds with X 7→ zero).

4 The SOCLP← and SOCLP→ Calculi

The previous section presented some examples of SOCLP proofs for finite and,
even, infinite answer sets. It also showed that it is very easy to find programs
and goals whose answer set does not admit a SOCLP proof. Consider for
instance the following program:

Example 4.1 A predicate nat defining the natural numbers using Peano’s
axioms:

nat1(zero) : − true.

nat2(suc(X)) : − nat(X).

The answer set of the goal nat(N) is the infinite set of program terms repre-
senting the set of the natural numbers { (zero), (suc(zero)), (suc(suc(zero)),
. . . }. The SOCLP calculus cannot build a proof for this set because of the
recursive definition of nat2.

Figure 5 introduces two new calculi, SOCLP← and SOCLP→, that can
substitute SOCLP when we are interested in proving that a given set is in-
cluded in the answer set of a given goal. The two calculi are coupled through
the inference rule for negation. Given a goal G and a set of ground terms S,
we use the notation P S̀OCLP← G ← S to indicate that there exists a finite
inference for G ← S using the calculus SOCLP←, and P S̀OCLP→ G → S
to indicate that there exists a finite inference for G → S using the calculus
SOCLP→.
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SOCLP← SOCLP→

(TR←)
true ← {()} (TR→)

true → {()}

(EMP←)
pi(t̄n) ← ∅ (UNI→)

pi(t̄n) → S

if:

- S ⊆ Un

- (pi(ān) :− l1(b̄1
k1

), . . . , lm(b̄m
km

)) ∈ P ,

and m.g.u.((ān), (t̄n)) does not exist

(NEG←) (NEG→)

p(t̄n) → S2

¬p(t̄n) ← S1

if S1 ⊆ Un\S2

p(t̄n) ← S2

¬p(t̄n) → S1

if S1 = Un\S2

(PR←) (PR→)

p1(t̄n) ← S1 . . . pk(t̄n) ← Sk

p(t̄n) ← S

p1(t̄n) → S1 . . . pk(t̄n) → Sk

p(t̄n) → S

if S ⊆ ⋃
i=1 ... k Si if

⋃
i=1 ... k Si ⊆ S

(CL←) (CL→)

l1(b̄1
k1

)θ ← S1 . . . lm(b̄m
km

)θ ← Sm

pi(t̄n) ← S

l1(b̄1
k1

)θ → S1 . . . lm(b̄m
km

)θ → Sm

pi(t̄n) → S

if: if:

- S ⊆ Un - S ⊆ Un

- (pi(ān) :− l1(b̄1
k1

), . . . , lm(b̄m
km

)) ∈ P - (pi(ān) :− l1(b̄1
k1

), . . . , lm(b̄m
km

)) ∈ P

- θ = m.g.u.((ān), (t̄n)) - θ = m.g.u.((ān), (t̄n))

- For all (t̄′n) ∈ S, exists θ′ s.t. - (t̄n)θθ
′
is in S for all θ′ s.t.

(t̄′n) = (t̄n)θθ
′
and (b̄i

ki
)θθ

′ ∈ Si for i = 1 . . .m

(b̄i
ki

)θθ
′ ∈ Si for i = 1 . . . m

Fig. 5. The SOCLP← and SOCLP→ Calculi

The purpose of the calculi is to prove partial approximations to the answer
set of a given goal. Their inference rules are similar to the inference rules for
SOCLP, but ”relaxing” the associated conditions, which increase the set of
provable statements. Considering again the Example 4.1, now it is possible
to prove that P S̀OCLP→ nat(N) → S, with S any finite approximation of the
answer set { zero, suc(zero), suc(suc(zero), . . . }.

For instance, Figure 6 shows the proof tree proving that P S̀OCLP← nat(N) ←
{(zero), (suc(suc(zero)))}. The relationship between the two calculi and
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nat(N) ← {(zero), (suc(suc(zero))) }
(PR←)
ÃÃÃÃÃÃÃÃÃÃÃÃ

``````````
nat1(N) ← {(zero)}

(CL←)(1)

true ← {()}
(TR←)

nat2(N) ← { (suc(suc(zero))) }
(CL←)(2)

nat(U) ← {(suc(zero))}
(PR←)
³³³³³³³³

PPPPPPPP
nat1(U) ← ∅

(EM←)
nat2(U) ← {(suc(zero))}

(CL←)(3)

nat(V) ← {(zero)}
(PR←)
³³³³³

PPPPP
nat1(V) ← {(zero)}

(CL←)(1)

true ← {()}
(TR←)

nat2(V) ← ∅
(EM←)

(1) Clause nat1(zero) : − true, θ = {N 7→ zero}
(2) Clause nat2(suc(U)) : − nat(U), θ = {N 7→ suc(U)}
(3) Clause nat2(suc(V)) : − nat(V), θ = {U 7→ suc(V )}

Fig. 6. Inference using the calculus SOCLP←

SOCLP is stated in the next proposition:

Proposition 4.2 Let P be a program, l(t̄n) a literal, and S a set of tuples
of arity n. Then, P S̀OCLP l(t̄n) ↔ S implies P S̀OCLP→ l(t̄n) → S and
P S̀OCLP← l(t̄n) ← S.

That is, the existence of a SOCLP proof for l(t̄n) ↔ S determines the
existence of both a SOCLP← proof for l(t̄n) ← S, and a SOCLP→ proof for
l(t̄n) → S. But the main goal of SOCLP← and SOCLP→ is not proving
the answer set of a goal, but approximations to this answer set. The next
proposition states that the two calculi are also useful for this purpose:

Proposition 4.3 Let l(t̄n) be a literal and S a set such that P S̀OCLP l(t̄n) ↔
S. Then, the two following statements hold:

i) S ′ ⊆ S for every S ′ such that P S̀OCLP← l(t̄n) ← S ′

ii) S ′ ⊇ S for every S ′ such that P S̀OCLP→ l(t̄n) → S ′

Therefore, given P S̀OCLP← l(t̄n) ← S1, P S̀OCLP→ l(t̄n) → S2 and
P S̀OCLP l(t̄n) ↔ S, the two sets S1, S2 provide, respectively, lower and upper
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bounds on the set S (considering ⊆ as an ordering between sets). Thus, the set
S1 is correct in the sense that contains only answers of the goal, but not neces-
sarily complete, while S2 is always complete but may be incorrect, since it can
include more tuples than those of the answer set. The situation of proposition
4.2 is, in this sense, the limit case, when the inclusions S1 ⊆ S ⊆ S2 become
equalities.

A straightforward corollary of Proposition 4.3 is that for every goal l(t̄n)
and sets S, S1 and S2 such that P S̀OCLP l(t̄n) ↔ S, P S̀OCLP← l(t̄n) ← S1,
and P S̀OCLP→ l(t̄n) → S2, S1 is less or equal than S2, i.e., S1 ⊆ S2. The
following proposition shows that this happens even after removing the premise
of the existence of a proof for l(t̄n) ↔ S:

Proposition 4.4 Let P be a program, l(t̄n) a literal with arity n, and S1, S2

two sets such that P S̀OCLP← l(t̄n) ← S1 and P S̀OCLP→ l(t̄n) → S2. Then,
S1 ⊆ S2.

The following and last proposition defines the relationship between positive
and negative atoms in both calculi

Proposition 4.5 Let P be a program, p a predicate with arity n, and S1, S2

two sets. The two following statements hold:

i) If P S̀OCLP← p(t̄n) ← S1 and P S̀OCLP← ¬p(t̄n) ← S2, then S1 ∩ S2 = ∅.
ii) If P S̀OCLP→ p(t̄n) → S1 and P S̀OCLP→ ¬p(t̄n) → S2, then S1 ∪ S2 = Un.

The two statements of the proposition point out the different and com-
plementary nature of the two calculi: in SOCLP←, a term cannot belong
simultaneously to the sets associated by the calculus to a literal and to its
negation, while this is otherwise possible in SOCLP→. Conversely, SOCLP←
does not ensure that every term is either in the set associated to an atom or
in the set of its negation, while SOCLP→ always satisfies this completeness
property.

5 Conclusions and Future Work

The usual operational mechanisms used in logic programming implementa-
tions successively yield the answers for a given goal. While this is a good
approach in practical implementations, from the point of view of semantics
it is worth considering the set of answers of a goal as a whole. The SOCLP
calculus presented in this paper represents this point of view. The calculus
derivations can be seen as proof trees proving that a set includes all the possible
ground answers for a given goal with respect to a logic program. In Theorem
3.3, we have proved that SOCLP proofs represent faithfully the answer set
of a given goal. The main limitation of this calculus is that SOCLP proofs
do not always exist; we have only proved completeness (Proposition 3.5) with
respect to the class of hierarchical programs over finite Herbrand universes.
Nevertheless, SOCLP proofs are often possible in more general programs and
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it is part of our future work to extend the completeness result to a broader
class of programs. In order to (partially) overcome this limitation, the paper
also introduces a calculus SOCLP← intended for proving subsets of the an-
swer set of a goal. SOCLP← is coupled through the rule for negation with
SOCLP→, a third calculus which can be used for proving that a given set is
a superset of the goal’s answer set. The paper proves some basic properties
of the three calculi, highlighting that, together, they constitute an useful tool
for working with answer sets in logic programming.

As future work, we plan to define a calculus based on SOCLP for defin-
ing the semantics of deductive databases [14] and, in particular, of Datalog
programs. Notice that SOCLP has already several features that already fit in
the usual framework of Datalog, such as the notion of sets of ground tuples as
natural answers, and the closed world assumption as a basis for the treatment
of negation [2]. Also, the requirement of a finite Herbrand universe for com-
pleteness is a condition for Datalog programs, in which no function symbols
are allowed. Thus, the future extension of SOCLP should keep these features
while extending the class of complete programs to include non-hierarchical
programs, which is the case of Datalog.
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