
A Metamodel-Based Approach for Analyzing
Security-Design Models

David Basin1, Manuel Clavel2, Jürgen Doser1, and Marina Egea2

1 Information Security Group, ETH Zurich
{basin,doserj}@inf.ethz.ch

2 Computer Science Department, U. Complutense, Madrid
clavel@sip.ucm.es, marina egea@fdi.ucm.es

Abstract We have previously proposed an expressive UML-based lan-
guage for constructing and transforming security-design models, which
are models that combine design specifications for distributed systems
with specifications of their security policies. Here we show how the same
framework can be used to analyze these models: queries about proper-
ties of the security policy modeled are expressed as formulas in UML’s
Object Constraint Language and evaluated over the metamodel of the
security-design language. We show how this can be done in a semanti-
cally precise and meaningful way and demonstrate, through examples,
that this approach can be used to formalize and check non-trivial se-
curity properties of security-design models. The approach and examples
presented have been implemented and checked in the SecureMOVA tool.

1 Introduction

Model driven development [9] holds the promise of reducing system development
time and improving the quality of the resulting products. Recent investigations
[2,6,7,8] have shown that security can be integrated into system-design models
and that the resulting security-design models can be used to generate systems
along with their security infrastructures. Moreover, when the models have a
formal semantics, they can be reasoned about: one can query their properties
and understand potentially subtle consequences of the policies they define.

In previous work [2], we presented a UML-based security modeling language,
called SecureUML, closely related to Role Based Access Control (RBAC) [5]. We
showed how to systematically combine different design modeling languages with
SecureUML in a way that allows users to formalize authorization restrictions
on systems implementing the design. The combination scheme was defined both
syntactically and semantically and we also described translators that automati-
cally generate distributed, middleware-based systems with complete, configured,
access control infrastructure from security-design models.

Our focus in this paper is on formalizing and automatically analyzing security
properties of security-design models. In our setting, security-design models con-
stitute formal objects with both a concrete syntax (or notation) and an abstract
syntax. Security-design models themselves are described by a metamodel that

formalizes the structure of well-formed models. We show that, in this setting,
security properties of security-design models can be expressed as formulas in the
Object Constraint Language (OCL) [11] over this metamodel. We can formal-
ize queries in this language that ask questions about the relationships between
users, roles, permissions, and actions. An example of a typical query (taken from
Section 5) is: are there two roles such that one includes the set of actions of the
others, but the roles are not related in the role hierarchy? Such queries can be
answered by evaluating the OCL expressions over the metamodel of the security
modeling language.

The idea of formulating OCL queries about role-based access control policies
is not new. Our work is inspired by [1,12], who first explored the use of OCL
for querying RBAC policies, and we make comparisons in Section 7. Given this
previous work, we see our contributions as follows. First, we clarify the metathe-
ory required to make query evaluation formally well-defined. This requires, in
particular, precise definitions of both the metamodel of the modeling language
and the mapping from models to the corresponding instances of this metamodel.
Second, we show the feasibility of this approach and illustrate some of its key
aspects on a nontrivial example: a security-design modeling language from [2]
that combines SecureUML and a component modeling language named Com-
ponentUML. Finally, we provide evidence that OCL expressions, evaluated in
the context of such a metamodel, can be used to formalize and check non-trivial
security properties of security-design models. The approach presented here has
been implemented and tested in SecureMOVA, a security-design modeling tool
whose implementation is directly based on our metamodel-based approach for
analyzing security-design models.

2 General Approach

Background: models and meaning. A modeling language provides a vocabulary
(concepts and relations) for building models, as well as a notation to graphically
depict them as diagrams. Diagrams have to conform with the metamodel of the
modeling language. The precise definition of well-formed diagrams is based on
the underlying mapping from diagrams (or graphical models) to instances of
the metamodel (or abstract models): well-formed diagrams are those that are
mapped to instances of the metamodel that satisfy the metamodel’s invariants.

Some modeling languages explain the meaning of the diagrams using natural
language. In this situation, analyzing the models represented by the diagrams
can only be done informally and no rigorous tool support can be expected. Other
modeling languages explain the meaning of the diagrams using a formal seman-
tics: that is, they define an interpretation function [] that associates mathemat-
ical structures to well-formed diagrams, or, more precisely, to the instances of
the metamodel that correspond to well-formed diagrams. In this case, proper-
ties of the models represented by the diagrams can be formally proven, possibly
with the assistance of automated tools. In the following, let M be a graphical
model (for a modeling language M), M be the corresponding abstract model,

and [M] be the mathematical structure associated to the abstract model by the
interpretation function.

Problem statement: rigorously analyzing security models. Given a language with
a formal semantics, one can reason about models by reasoning about their se-
mantics. That is, a security model M has a property P (where P is expressed in
some logical language) if and only if [M] |= P . While this approach is standard,
it either requires deductive machinery for reasoning about the semantics of mod-
els (i.e., a semantic embedding [3] and deduction within the relevant semantic
domains) or an appropriate programming logic for reasoning at the level of the
models. These are strong requirements and a hurdle for many practical applica-
tions. Hence, the question we address is whether there are other ways of formally
analyzing security policies modeled by M , but in a more familiar setting.

Approach taken. Our approach for analyzing properties of security-design mod-
els M reduces deduction to evaluation: we formalize the desired properties as
OCL queries and evaluate these queries over instances M of the metamodel.
Observe that these queries are formulated over the abstract models, not the
(graphical) models that the modeler sees and works with. Hence, for the results
to be meaningful, we require that the mapping relating graphical models to ab-
stract models, along with the interpretation function [], correctly interacts with
the evaluation of OCL expressions. If the mapping is not explicitly given or the
requirements are not satisfied, then the validity of the results may be open, or
even wrong (for examples, see the related work section).

To be more precise, we state the following requirements. Let f be a function
on the semantic domain and let expf be an expression intended to formalize f
in OCL. We require the following diagram to commute:

graphical abstract semantic
Model Model Domain

M 7→ M 7→ [M]
↓ ↓

ev(expf ,M) 7→ f([M])

In this diagram, the downward arrow on the left side denotes the evaluation of
the OCL expression expf (the result of which, denoted by the function ev(,),
constitutes another abstract model). The downward arrow on the right side
corresponds to the evaluation of the function f in the semantic domain. The
requirement says that the OCL expression expf can be used to analyze the
behavior of f if and only if [ev(expf ,M)] = f([M]). Roughly speaking, this
means that an OCL expression can be correctly used for checking a property P
if and only if, for arbitrary models M , the result of evaluating this expression
over M corresponds to the value of the property P in [M].

Rigorously proving this correspondence requires detailed metareasoning that
involves the semantics of the underlying formal system, the formal semantics of
OCL, and the translation scheme from terms in the semantic domain to OCL

expressions. This is a large undertaking and outside the scope of this paper. In
many practical cases however, one may settle for the next best thing: it may
be sufficient to have a careful understanding of the metamodel of the modeling
languages, its invariants, and of the underlying mapping from models to the
corresponding instances of the metamodel. Note that this is already a necessary
condition for stating meaningful OCL expressions on models in the first place.

Overall, our approach has a number of advantages over more traditional
deductive approaches. First, OCL is a formal language defined as a standard
add-on to UML. Hence, as noted in [14], “it should be easily read and written
by all practitioners of object technology and by their customers, i.e., people who
are not mathematicians or computer scientist.” Second, there are tools that can
automatically evaluate OCL expressions. The limitations are also clear: there
may be interesting properties that cannot be naturally expressed using OCL or
that cannot be proved by simply evaluating OCL expression over the metamodel.

3 SecureUML+ComponentUML

In this section, we describe SecureUML and Component UML, the security and
design modeling languages that we use to illustrate our approach and some of
its key aspects, like the mapping from models to instances of the metamodel.

3.1 The SecureUML+ComponentUML Metamodel

SecureUML [2,10] is a modeling language for formalizing access control require-
ments that is based on RBAC [5]. In RBAC, permissions specify which roles
are authorized to perform given operations. RBAC additionally allows one to
organize these roles in a hierarchy, where roles can inherit permissions along
the hierarchy. In this way, the security policy can be described closely following
the hierarchical structure of an organization. Users are then granted permissions
by being assigned to the appropriate roles, based on their competencies and
responsibilities in the organization.

SecureUML provides a language for specifying access control policies for ac-
tions on protected resources. However, it leaves open what the protected re-
sources are and which actions they offer to clients. These are specified in a
so called dialect and depend on the primitives for constructing models in the
system-design modeling language. Figure 1 shows the SecureUML metamodel.
The system-design modeling language that we consider here, ComponentUML,
is a simple language for modeling component-based systems. Essentially, it pro-
vides a subset of UML class models: Entities can be related by Associations and
have Attributes and/or Methods. The metamodel of ComponentUML is shown
in the right part of Figure 2. The dialect definition, shown in the left part of
Figure 2, additionally specifies:

– The model element types of the system-design modeling language that repre-
sent protected resources. Here, Entities, as well as their Attributes, Methods,
and AssociationEnds (but not Associations as such) are protected resources.

Role
default: Boolean

Permission
default: Boolean

Action Resource

User AuthorizationConstraint
body: String
language: String

CompositeAction AtomicAction

+hasrole

+includes

UserAssignment

+superrole

+subrole

RoleHierarchy

+givesaccess
+haspermission

PermissionAssignment

+isconstraintby

+constrains

ConstraintAssignment

+isassigned +accesses
ActionAssignment

+resource+action
ResourceAssignment

+subordinatedactions

+compositeaction

ActionHierarchy

Figure 1. SecureUML Metamodel.

CompositeAction AtomicAction

Action

CompositeAction AtomicAction

Resource+resource+action ResourceAssignment

EntityMethod

isQuery(): Boolean

Attribute

AssociationEnd

Association

+hasmethod

EntityMethod

+hasattribute

EntityAttribute

+hasassociationend
EntityAssociationEnd

EntityFullAccess EntityUpdate EntityRead

AttributeFullAccess AssociationEndFullAccess

AtomicUpdate AtomicRead

AtomicCreate AtomicDelete AtomicExecute

Figure 2. ComponentUML Dialect Metamodel.

– The actions these resources types offer and hierarchies classifying these ac-
tions. The actions offered here are shown in the following table:

Resource Actions
Entity create, read, update, delete, full access
Attribute read, update, full access
Method execute
Association end read, update, full access

The atomic actions are intended to directly map onto actual operations of
the modeled system. The composite actions are used to group more prim-
itive actions into a hierarchy of more higher-level ones. Here, for exam-
ple, the composite action AttributeFullAccess contains both the read and
the update action of the attribute. The precise definition of the actions of-
fered by the different resources, and their hierarchical relationship, is made
by adding OCL invariants to the metamodel. The interested reader can
find the complete list of these constraints in the references given at http:
//maude.sip.ucm.es/securemova.

– the default access control policy for actions where no explicit permissions
is defined (i.e., whether access is allowed or denied by default). Here, by
default, access is allowed.

3.2 The SecureUML+ComponentUML Models

We use Figure 3 as a running example to illustrate the concrete syntax of Se-
cureUML and ComponentUML. In this example, the system should maintain a

«Role»

UserRole

«Role»

SuperVisorRole

«Role»

SystemAdministratorRole

«Permission»

UserMeeting
«entityaction» Meeting:create
«entityaction» Meeting:read

«Permission»

OwnerMeeting
«entityaction» Meeting:update
«entityaction» Meeting:delete

«Permission»

SupervisorCancel
«methodaction» Meeting.cancel: execute
«methodaction» Meeting.notify: execute

«Permission»

ReadMeeting
«entityaction» Meeting: read

caller = self.owner.name

«Entity»

Meeting
start: Date
duration: Time
notify()
cancel()

«Entity»
Person

name: String

0..*

+owner1

0..*

+participants 2..*

Figure 3. Example Security Policy.

list of users and records of meetings. A meeting has an owner, a list of partici-
pants, a time, and a place. Users may carry out standard operations on meetings,
such as creating, reading, editing, and deleting them. A user may also cancel a
meeting, which deletes the meeting and notifies all participants by email. The
system should obey the following (here informally given) security policy:

– All users of the system are allowed to create new meetings and read all
meeting entries.

– Only the owner of a meeting is allowed to change meeting data and cancel
or delete the meeting.

– A supervisor is allowed to cancel any meeting.
– A system administrator is allowed to read meeting data.

Figure 3 formalizes this security policy using the UML profile for SecureUML
and ComponentUML defined in [2]. In this profile, a role is represented by a
UML class with the stereotype �Role� and an inheritance relationship between
two roles is defined using a UML generalization relationship. The role referenced
by the arrowhead of the generalization relationship is considered to be the su-
perrole of the role referenced by the tail. A permission, along with its relations
to roles and actions, is defined in a single UML model element, namely an asso-
ciation class with the stereotype �Permission�. The association class connects
a role with a UML class representing a protected resource, which is designated
as the root resource of the permission. The actions that such a permission refers
to may be actions on the root resource or on subresources of the root resource.
Each attribute of the association class represents the assignment of an action to
the permission, where the action is identified by the name and the type of the
attribute. Stereotypes for these permission attributes specify how the attribute
is mapped to an action. The stereotype �entityaction�, for example, specifies

that a permission attribute refers to an action on an entity. The name of the
permission attribute specifies the name of the attribute, method, or association
end targeted by this permission. The type of the permission attribute specifies
the action (e.g., read, update, or full access) that is permitted by this permission.
The authorization constraint expressions are attached to the permissions’ asso-
ciation classes. ComponentUML entities are represented by UML classes with
the stereotype �Entity�. Every method, attribute, or association end owned by
such a class is automatically considered to be a method, attribute, or association
end of the entity.

3.3 The Mapping From Models to Metamodel Instances

Recall that, in our approach, the specification of security properties using OCL
directly depends on the mapping from models to instances of the metamodel,
since the expressions formalizing the properties will not be evaluated over the
graphical models, but over the corresponding instances of the metamodel. To
a large extent, this mapping is straightforward: UML model elements with ap-
propriate stereotypes are mapped to instances of the corresponding metamodel
elements, and associations between UML model elements are mapped to appro-
priate links between the instances of the corresponding metamodel elements.

In some cases, however, this mapping is less straightforward, in particular,
where the notation provides the modeler with convenient “syntactic sugar”. We
list below some examples of such subtleties. Let M be a model, then M contains
(among others) the following elements:

– “Default” objects of type Role, AuthorizationConstraint, and Permission, which,
however, do not correspond to roles, authorization constraints, or permis-
sions depicted in M .

– Objects of subtypes of Action, which correspond to the actions offered by
the resources, although they may not be mentioned in the attributes of the
permissions depicted in M .

– Links between the “default” objects of type Role, AuthorizationConstraint, and
Permission, and between the “default” object of type Permission and the ob-
jects of subtypes of Action, which correspond to the default access control
policy defined in the metamodel.

– Links between the objects of subtypes of Action, which correspond to the
hierarchy of actions defined in the metamodel.

The reader can find the complete definition of this mapping in the references
given at http://maude.sip.ucm.es/securemova.

4 Analyzing SecureUML+ComponentUML Models

In this section, we define OCL query operations over the metamodel of Se-
cureUML+ComponentUML that capture different aspects of the access control

information contained in the models. These operations will be part of an OCL-
based language for analyzing access control decisions that depend on static infor-
mation, namely the assignment of users and permissions to roles.3 The approach
we take not only allows us to formalize desired properties of models, but also to
automatically analyze models by evaluating the corresponding OCL expressions
over the instances of the metamodel that corresponds to the models.

4.1 Semantics

We recall here the semantics of SecureUML+ComponentUML models [2], with
respect to which we claim that our OCL-operations correctly capture access con-
trol information. Let ΣRBAC = (SRBAC ,≥RBAC ,FRBAC ,PRBAC) be an order-
sorted signature that defines the type of structures specifying role-based access
control configurations. Here SRBAC is a set of sorts, ≥RBAC is a partial order
on SRBAC , FRBAC is a sorted set of function symbols, and PRBAC is a sorted
set of predicate symbols. In detail, let

SRBAC = {Users,Roles,Permissions,AtomicActions,Actions},

where Actions ≥RBAC AtomicActions. Also, let FRBAC = ∅ and

PRBAC =

≥Roles : Roles × Roles , ≥Actions : Actions ×Actions,
UA : Users × Roles , PA : Roles × Permissions
AA : Permissions ×Actions

 .

Given a SecureUML+ComponentUML model M , one defines a ΣRBAC -
structure =RBAC in the obvious way: the sets Users, Roles, Permissions, Atom-
icActions, and Actions each contain entries for every model element in M of the
corresponding metamodel types User, Role, Permission, AtomicAction, and Action.
The relation ≥Roles is given by the reflexive and transitive closure of the as-
sociation RoleHierarchy on Role, and the relation ≥Actions by the reflexive and
transitive closure of the association ActionHierarchy. Finally, the relations UA,
PA, and AA contain tuples for each instance of the associations UserAsssignment,
PermissionAssignment, and ActionAssignment.

Note that the SecureUML metamodel and its semantics mention “users” and
user assignments to roles. These are not usually modeled in the security-design
model (e.g., they are not depicted in Figure 3) because this is configuration
data that is typically not known at modeling time. For analysis or illustrative
purposes, such configuration data can be given as additional input.

Remark 1. Let =RBAC be the ΣRBAC structure defined by a model M . Then,
for any u in Users, p in Permissions, and a in Actions, the following table shows
the basic correspondence between satisfaction in =RBAC and evaluation of OCL
expressions in M :
3 Programmatic access control decisions that depend on dynamic information, namely

the satisfaction of OCL authorization constraints in concrete system states, can be
then analyzed using OCL evaluators.

is satisfied in =RBAC evaluates to true over M
UA(u, r) u.hasrole−>includes(r)

PA(r, p) r.haspermission−>includes(p)

AA(p, a) p.accesses−>includes(a)

4.2 Analysis Operations

In this section, we define a number of OCL query operations that are useful
for analyzing security properties of security-design models formalized using Se-
cureUML+ComponentUML. We also mention other OCL analysis operations,
whose definitions we omit here.

To analyze the relation ≥Roles , we define Role::superrolePlus():Set(Role), which
is an operation that returns the collection of roles (directly or indirectly) above
a given role in the role hierarchy.

context Role::superrolePlus():Set(Role) body:
self.superrolePlusOnSet(self.superrole)

context Role::superrolePlusOnSet(rs:Set(Role)):Set(Role) body:
if rs−>collect(r1|r1.superrole)−>exists(r|rs−>excludes(r))
then self.superrolePlusOnSet(rs−>union(rs.superrole))
else rs−>including(self)
endif

Similarly, we define the operation Role::subrolePlus():Set(Role) returning the roles
(directly or indirectly) below a given role in the role hierarchy. Also, we use
these operations to define the operation Role::allPermissions():Set(Permission) that
returns the collection of permissions (directly or indirectly) assigned to a role.

context Role::allPermissions():Set(Permission) body:
self.superrolePlus().haspermission−>asSet()

Conversely, we define the operation Permission::allRoles():Set(Role), returning the
collection of roles (directly or indirectly) assigned to the given permission.

To analyze the relation ≥Actions , we define Action::subactionPlus():Set(Action)

that returns the collection of actions (directly or indirectly) subordinated to an
action.

context Action::subactionPlus():Set(Action) body:
if self.oclIsKindOf(AtomicAction)
then Set{self}
else self.oclAsType(CompositeAction).subordinatedactions.subactionPlus()
endif

Similarly, we define the operation Action::compactionPlus():Set(Action) returning
the collection of actions to which an action is (directly or indirectly) subordi-
nated. In addition, we define the operation Permission::allActions():Set(Action) that

returns the collection of actions whose access is (directly or indirectly) granted
by a permission.

context Permission::allActions():Set(Action) body:
self.accesses.subactionPlus()−>asSet()

Conversely, we define the operation Action::allAssignedPermissions():Set(Permission),
returning the collection of permissions that (directly or indirectly) grant access to
an action. Finally, we define the operation User::allAllowedActions():Set(Action) that
returns the collection of actions that are permitted for the given user, subject
to the satisfaction of the associated constraints in each concrete scenario.

context User::allAllowedActions():Set(Action) body:
self.hasrole.allPermissions().allActions()−>asSet()

Remark 2. Let =RBAC be the ΣRBAC structure defined by a model M . Then,
for any u in Users, r, r1, r2 in Roles, p in Permissions, and a, a1, a2 in Actions,
the following table shows the additional correspondence between satisfaction in
=RBAC and evaluation of OCL expressions in M .

is satisfied in =RBAC evaluates to true in M
r1 ≥Roles r2 r2.superrolePlus()−>includes(r1)

r1.subrolePlus()−>includes(r2)

∃r2 ∈ Roles. r2 ≥Roles r1 ∧ PA(r2, p) r1.allPermissions()−>includes(p)

p.allRoles()−>includes(r1)

a1 ≥Actions a2 a1.subactionPlus()−>includes(a2)

a2.compactionPlus()−>includes(a1)

∃a2 ∈ Actions. a2 ≥Actions a1 ∧AA(p, a2) p.allActions−>includes(a1)

a1.allAssignedPermisssions()−>includes(p)

φRBAC (u, a) u.allAllowedActions()−>includes(a)

Here, φRBAC(u, a) is the formula that states whether a user u has a permission
to perform action a:

φRBAC (u, a) = ∃r1, r2 ∈ Roles.
∃p ∈ Permissions.∃a′ ∈ Actions.
UA(u, r1) ∧ r1 ≥Roles r2 ∧ PA(r2, p)
∧AA(p, a′) ∧ a′ ≥Actions a .

5 Analysis Examples

In this section, we give a collection of examples that illustrates how one can
analyze SecureUML+ComponentUML models M using the OCL operations de-
fined in Section 4. The questions are formalized as queries over objects in M ,
possibly with additional arguments. Note that, with the exception of Example

3, the queries refer to static information about the access control configuration,
which is independent of the system state. In contrast, in Example 3 we explicitly
query about the circumstances under which a user can perform an action.

The first three examples address the basic question of who can do what,
under which circumstances. These functions can provide an elementary sanity
check of the access control policy.

Example 1. Given a role, which atomic actions can a user in this role perform?

context Role::allAtomics():Set(Action) body:
self.allPermissions().allAction()−>asSet()

−>select(a|a.oclIsKindOf(AtomicAction))

Example 2. Given an atomic action, which roles can perform this action?

context AtomicAction::allAssignedRoles():Set(Roles) body:
self.compactionPlus().isassigned.allRoles()−>asSet()

Example 3. Given a role and an atomic action, under which circumstances can
a user in this role perform this action?

context Role::allAuthConst(a:Action):Set(String) body:
self.permissionPlus(a).isconstraintby.body−>asSet()

context Role::permissionPlus(a:Action):Set(Permission) body:
self.allPermissions()−>select(p|p.allActions()−>includes(a))

The next two examples address the question of whether there are possibilities
for refactoring or simplifying the role hierarchy. If we have two roles with the
same set of allowed actions, one of them may be redundant and could therefore
be removed. Similarly, consider two roles where one role is allowed everything
the other role is allowed. In this case, the policy could be simplified by letting
the second role inherit from the first.

Example 4. Are there two roles with the same set of atomic actions?

context Role::duplicateRoles():Boolean body:
Role.allInstances()−>exists(r1, r2| r1.allAtomics = r2.allAtomics)

Example 5. Are there two roles such that one includes the set of actions of the
other, but the roles are not related in the role hierarchy?

context Role::virtualSubroles():Boolean body:
Role.allInstances()−>exists(r1,r2| r1.allActions()−>includesAll(r2.allActions())

and not(r1.superrolePlus()−>includes(r2)))

The next example addresses the question of which role a user should be
assigned, given that he is supposed to perform a particular action. According
to the least-privilege-principle, the user should have no more privileges than
absolutely required.

Example 6. Given an atomic action, which roles allow the least set of actions
including the atomic action? This requires a suitable definition of “least” and
we use here the smallest number of atomic actions.

context AtomicAction::minimumRole():Set(Role) body:
self.allAssignedRoles()−>select(r1|self.allAssignedRoles()
−>forAll(r2| r1.allAtomics()−>size() <= r2.allAtomics()−>size()))

The next two examples address the question of whether there are possibilities
for refactoring permissions. Given two permissions that share allowed actions, it
may be useful to refactor the common actions into a new, separate permission.

Example 7. Do two permissions overlap?

context Permission::overlapsWith(p:Permission):Boolean
body: self.allActions()−>intersection(p.allActions())−>notEmpty()

Example 8. Are there overlapping permissions for different roles?

context Permission::existOverlapping():Boolean body:
Permission.allInstances()−>exists(p1,p2| p1 <> p2 and p1.overlapsWith(p2)

and not(p1.allRoles−>includesAll(p2.allRoles)))

The next example provides another way of detecting opportunities for refac-
toring permissions. Suppose the policy default is to allow access and, moreover,
there is an action that is allowed by every role. The policy can then be simplified
by removing this action from all permissions, effectively assigning it the default
permission.

Example 9. Are there atomic actions that every role, except the default role,
may perform?

context AtomicAction::accessAll():Boolean body:
AtomicAction.allInstances()−>exists(a| Role.allInstances−>forAll(r|

not(r.default) implies r.allAtomics()−>includes(a)))

The above examples provide evidence that OCL expressions can be used to
formalize and check non-trivial security properties. This expressiveness is due
to the fact that, in our applications, the OCL language is enriched with the
types provided by the metamodel of SecureUML+ComponentUML, (e.g, Role,
Permission, Set(Action)) and vocabulary (e.g., hasrole, givesaccess, isassigned).

6 The SecureMOVA Tool

As [12] observed, although there have been various proposals for specifying role-
based authorization constraints, there is a lack of appropriate tool support for
analyzing role-based access control policies. In response to this need, [12] shows
how to employ the USE system to validate and test access control policies for-
mulated in UML and OCL. We comment on this work in Section 7.

As part of our work, we have implemented a prototype tool called Secure-
MOVA for analyzing SecureUML+ComponentUML models. SecureMOVA is an
extension of the ITP/OCL tool, a text-input mode validation and analysis tool
for UML diagrams with OCL constraints. SecureMOVA extends the ITP/OCL
tool with commands for building SecureUML+ComponentUML diagrams and
for evaluating OCL queries using, among others, the analysis operations intro-
duced in Sections 4.2 and 5 (the users may, of course, add their own analysis
operations to the system). Importantly, SecureMOVA implements the mapping
from models to instances of the metamodel introduced in Section 3.3. Thus,
the users can work directly with the models (as they are used to), but their
queries are evaluated over the corresponding instances of the metamodel, which
are automatically generated by SecureMOVA. For reason of space, we omit here
the complete definition of the SecureMOVA commands. The interested reader
can find it at http://maude.sip.ucm.es/securemova along with a collection
of examples, including the example in Figure 3.

7 Conclusion

Related Work As mentioned in the introduction, our work is inspired by [1],
who first explored the use of OCL for querying RBAC policies (see also [13,12]).
A distinct characteristic of our work is that we spell out and follow a precise
methodology, which guarantees that query evaluation is formally meaningful.
This methodology requires, in particular, precise definitions of both the meta-
model of the modeling language and the mapping from models to the correspond-
ing instances of this metamodel. These definitions make it possible to rigorously
reason about the meaning of the OCL expressions used in specifying and ana-
lyzing security policies.

To underscore the importance of such a methodology, consider a simple exam-
ple: specifying two mutually exclusive roles such as “accounts payable manager”
and “purchasing manager”. Mutual exclusion means that one individual cannot
have both roles. In [1,13,12] this constraint is specified using OCL as follows:

context User inv:
let M : Set = {{accounts payable manager, purchasing manager}, ...} in
M−>select(m | self.role−>intersection(m)−>size > 1)−>isEmpty()

This constraint correctly specifies mutual exclusion only if the association-end
role returns all the roles assigned to a user. This should include role assignments
explicitly depicted as well as those implicitly assigned to users under the role

hierarchy. The actual meaning of the association-end role depends, of course, on
the mapping between models and the corresponding instances of the metamodel.
Since the precise definition of this mapping is not given in [1,13,12], readers
(and tool users) must speculate on the meaning of such expressions and thereby
the correctness of their OCL specifications. (Notice that, if the mapping used
in [1,13,12] is the “ straightforward” one, the association-end role will only return
the roles explicitly assigned to a user.)

In our setting, mutual exclusion can be specified using OCL as follows:

context User inv:
let M : Set = {{accounts payable manager, purchasing manager}, ...}
in M−>select(m | self.hasrole.superrolePlus()−>intersection(m)−>size > 1)

−>isEmpty()

From our definition of superrolePlus in Section 4.2, it is clear that this expression
denotes all the roles assigned to a user, including those implicitly assigned to
the user under the specified role hierarchy.

OCL has also been used to analyze models of other modeling languages,
not only security modeling languages. For example, consider the use of OCL to
define metrics, originally proposed by [4]. These approaches share the problems
we elaborated in Section 2: without a precise relation between the graphical
models and the corresponding metamodel, and a precise relation to the semantic
domain, the meaning and validity of OCL formulas is unclear.

Future Work One direction for future work is tool support for handling queries
involving system state. SecureUML includes the possibility of constraining per-
missions with authorization constraints (OCL formulas), which restrict the per-
missions to those system states satisfying the constraints. An example of a state-
ful query for a design metamodel that includes access to the system date is
“which operations are possible on week days that are impossible on weekends?”
Alternatively, in a banking model, we might ask “which actions are possible on
overdrawn bank accounts?” Such queries cannot currently be evaluated as they
require reasoning about consequences of OCL formulas and this involves theo-
rem proving as opposed to model checking, i.e., determining the satisfiability of
formulas in a concrete model.

Another interesting direction would be to use our approach to analyze the
consistency of different system views. In [2] we showed how one can combine
SecureUML with different modeling languages (i.e., ComponentUML and Con-
trollerUML) to formalize different views of multi-tier architectures. In this set-
ting, access control might be implemented at both the middle tier (implementing
a controller for, say, a web-based application) and a back-end persistence tier.
If the policies for both of these tiers are formally modeled, we can potentially
answer question like “will the controller ever enter a state in which the persis-
tence tier throws a security exception?” Again, carrying out such analysis would
require support for theorem proving.

References

1. G. J. Ahn and M. E. Shin. Role-based authorization constraints specification
using Object Constraint Language. In WETICE ’01: Proceedings of the 10th IEEE
International Workshops on Enabling Technologies, pages 157–162, Washington,
DC, USA, 2001. IEEE Computer Society.

2. D. A. Basin, J. Doser, and T. Lodderstedt. Model driven security: From UML mod-
els to access control infrastructures. ACM Trans. Softw. Eng. Methodol., 15(1):39–
91, January 2006.

3. R. J. Boulton, A. Gordon, M. J. C. Gordon, J. Harrison, J. Herbert, and J. Van
Tassel. Experience with Embedding Hardware Description Languages in HOL.
In Proceedings of the IFIP TC10/WG 10.2 International Conference on Theorem
Provers in Circuit Design, pages 129–156. North-Holland, 1992.

4. F. Brito e Abreu. Using OCL to formalize object oriented metrics definitions. Tech-
nical Report ES007/2001, FCT/UNL and INESC, Portugal, June 2001. available at
http://ctp.di.fct.unl.pt/QUASAR/Resources/Papers/others/MOOD OCL.pdf.

5. D. F. Ferraiolo, R. S. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli.
Proposed NIST standard for Role-Based Access Control. ACM Trans. Inf. Syst.
Secur., 4(3):224–274, August 2001.

6. G. Georg, I. Ray, and R. France. Using aspects to design a secure system. In
ICECCS ’02: Proceedings of the Eighth International Conference on Engineering
of Complex Computer Systems, pages 117–126, Washington, DC, USA, 2002. IEEE
Computer Society.

7. J. Jürjens. Towards development of secure systems using UMLsec. In Fundamental
Approaches to Software Engineering (FASE/ETAPS 2001), volume 2029 of LNCS,
pages 187–200. Springer, 2001.

8. J. Jürjens. UMLsec: Extending UML for secure systems development. In UML
2002 — The Unified Modeling Language, volume 2460 of LNCS, pages 412–425.
Springer, 2002.

9. A. Kleppe, W. Bast, J. B. Warmer, and A. Watson. MDA Explained: The Model
Driven Architecture–Practice and Promise. Addison-Wesley, 2003.

10. Torsten Lodderstedt, David A. Basin, and Jürgen Doser. SecureUML: A UML-
based modeling language for model-driven security. In UML 2002 — The Unified
Modeling Language, volume 2460 of LNCS, pages 426–441. Springer, 2002.

11. Object Management Group. Object Constraint Language specification, version
2.0, May 2006.

12. K. Sohr, G. J. Ahn, M. Gogolla, and L. Migge. Specification and validation of
authorisation constraints using UML and OCL. In Computer Security – ESORICS
2005, volume 3679 of LNCS, pages 64–79. Springer, 2005.

13. H. Wang, Y. Zhang, J. Cao, and J. Yang. Specifying Role-Based Access Con-
straints with Object Constraint Language. In Advanced Web Technologies and
Applications, volume 3007 of LNCS, pages 687–696. Springer, 2004.

14. J. Warmer and A. Kleppe. The Object Constraint Language: Getting Your Models
Ready for MDA. Addison-Wesley, 2nd edition, 2003.

