Modelling and Analysis of Non-Functional Properties in Critical Systems with Petri Nets

Elena Gómez-Martínez
Ricardo J. Rodríguez
{elena.gomez, rjrodriguez}@fi.upm.es

Babel Group
Universidad Politécnica de Madrid
Outline

• Basic concepts
• Extensions
• Properties
• Analysis
 – Performance analysis
• Conclusions
• References
Outline

• Basic concepts
• Extensions
• Properties
• Analysis
 – Performance analysis
• Conclusions
• References
Basic concepts (I)

• A graphical tool for the formal description of the flow activities in complex systems.

• Useful for modelling concurrent, distributed, asynchronous behaviour in a discrete system.
Basic concepts (II)

- A Petri net (PN) is a four-tuple:
 \[N = (P, T, Pre, Post) \]
 - \(P = \{p_1, p_2, \ldots, p_n\} \) is a finite set of places.
 - \(T = \{t_1, t_2, \ldots, t_m\} \) is a finite set of transitions.
 - \(Pre = |P|x |T| \) represents the arcs from places to transitions.
 - \(Post = |T|x |P| \) represents the arcs from transitions to places.
Basic concepts (III)

• $P \cap T = \emptyset$ and $P \cup T \neq \emptyset$

• Weight = multiplicity of the arc
 \[\text{Post}[p, t] = w \rightarrow \text{an arc from } t \text{ to } p \text{ with multiplicity } w. \]

• Ordinary nets
 \[\text{Arcs have weight } 1 \]

• Incidence matrix:
 \[C = Pre - Post \]
Basic concepts (IV)

\[N = (P, T, Pre, Post) \]
Basic concepts (V)

• A Petri net model consists of:
 – A net structure
 \[N = (P, T, Pre, Post) \]
 – A initial marking
 \[M = \{m_1, m_2, ..., m_p\} \]
Basic concepts (VI)

• Firing rules
 – A transition is *enabled* in a given marking if all its input places carry at least one token.
 – An enabled transition fires by removing one token per arc from each input place and adding one token per arc to each output place.
Basic concepts (VII)

• Firing rules
 – A transition is *enabled* in a given marking if all its input places carry at least one token.
 – An enabled transition fires by removing one token per arc from each input place and adding one token per arc to each output place.
Basic concepts (VIII)

- A p-semiflow implies a token conservation law independent from any firing of transitions.
 - nonnegative-integer vector $\mathbf{y} \geq \mathbf{0}$,
 - $\mathbf{y} \cdot C = 0$

- A t-semiflow
 - nonnegative-integer vector $\mathbf{x} \geq \mathbf{0}$,
 - $C \cdot \mathbf{x} = 0$
Basic concepts (IX)

• Modelling expressivity
 – Sequences
Basic concepts (X)

• Modelling expressivity
 – Sequences
 – Conflicts:
 • Decisions
Basic concepts (XI)

• Modelling expressivity
 – Sequences
 – Conflicts:
 • Decisions
 • Iterations
Basic concepts (XII)

- Modelling expressivity
 - Sequences
 - Conflicts:
 - Decisions
 - Iterations
 - Concurrency and synchronizations
Outline

• Basic concepts
• Extensions
• Properties
• Analysis
 – Performance analysis
• Conclusions
• References
Extensions (I)

• Application context:
 – Timed
 – Coloured
 – Well formed
 – Continuous
 – Hybrid
 – …
Extensions (II): adding time

• PN models include no notion of time.
• Duration of the events:
 – Deterministic
 – Random
• Time associated to:
 – Places
 – Transitions
 – Tokens
Extensions (III): adding time

• Stochastic Petri nets (SPN):
 – Temporal interpretation.
 – Firing delay/time is associated with each transition.
 • Amount of time that must elapse before transition can fire.
 • A random variable with negative exponential probability density function.
 – Conflict resolution policy.
Extensions (IV): adding time

- Generalized Stochastic Petri nets (GSPN)
 - SPN extension.
 - Two kinds of transitions
 - Immediate:
 - Priority greater than zero.
 - It fires in zero time.
 - Temporized:
 - Zero priority.
 - Random variable: negative exponential probability distribution
Outline

• Basic concepts
• Extensions
• **Properties**
• Analysis
 – Performance analysis
• Conclusions
• References
Properties (I)

• Behavioural properties
 – Related to the dynamic (marking)

• Structural properties
 – Related to the static net
Properties (II)

• Behavioural properties:
 – **Boundedness**: finiteness of the state space, i.e. the marking of all places is bounded.
 – **Safeness** = 1-boundedness (binary marking)
 – **Mutual Exclusion**: two or more places cannot be marked simultaneously (problem of shared resources).
 – **Deadlock**: situation where there is no transition enabled.
 – **Liveness**: infinite potential activity of all transitions.
 – **Home state**: a marking that can be recovered from every reachable marking.
 – **Reversibility**: recovering of the initial marking.
Properties (II)

• Structural properties:
 – **Structurally bounded**: all marking is bounded.
 – **Structurally live**: there exists a marking for which the net is live.
Outline

• Basic concepts
• Extensions
• Properties
• Analysis
 – Performance analysis
• Conclusions
• References
Analysis (I)

- Techniques for the analysis of net systems:
 - **Enumeration** (Reachability/Coverability graphs)
 - **Transformation**: Reduction
 - **Structural**: bridge between behaviour and structure.
Analysis (II)

• Complementary classification
 – **Exact techniques**: construction of the isomorphic Continuous Time Markov Chain.
 • State explosion problem.
 – **Approximation techniques**: solution of smaller components.
 – **Bounds.**
Analysis (III)

• Performance Analysis
 – Response time/throughput
 – Scalability

• Fault Tolerance Analysis

• Dependability

• Safety Analysis
Outline

• Basic concepts
• Extensions
• Properties
• Analysis
 – Performance analysis
• Conclusions
• References
Performance Analysis of PNs (I)

• Throughput: jobs completed per unit of time

• Exact computation
 – We need to explore the reachability graph!
 – State explosion problem: computation of performance becomes unachievable

• Approximate computation: upper throughput bounds
 – Using Linear Programming (LP) techniques
 – Good accuracy – computational complexity trade-off
Performance Analysis of PNs (II)

• Petri net subclasses
 – State Machine: \(\forall t \in T, |t\bullet| = |\bullet t| = 1 \)
 – Marked Graph: \(\forall p \in P, |\bullet p| = |p\bullet| = 1 \)

• Process Petri nets (PPNs)
 – Any process which involves resource usage to complete
 – Different jobs with dissimilar handling
 – Examples: Assembly lines, Service-Oriented-Architecture systems, etc.

Performance Analysis of PNs (III)
Performance Analysis of PNs (IV)

- Places divided in 3 subsets: $P = P_0 \cup P_S \cup P_R$
 - **Process-idle place**, $P_0 = \{p_0\}$
 - **Process-activity places**, $P_S \neq \emptyset$, $P_S \cap P_0 = \emptyset$, $P_S \cap P_R = \emptyset$
 - **Resources places**, $P_R = \{r_1, \ldots, r_n\}$, $n > 0$, $P_R \cap P_0 = \emptyset$
Performance Analysis of PNs (V)

- When removing P_R places, we get a strongly connected state machine, s.t. every cycle contains p_0.
Performance Analysis of PNs (VI)

For each $r \in P_R$, there exists a unique minimal p-semiflow associated to r, $y_r \in N^{|P|}$ s.t. it contains on its support just the resource r and does not contains p_0.

$y_{r_2} = \{p_2, p_3, p_4, p_5, p_7\}$
• Activity places set \(P_s \) does not contain neither resource places, nor process-idle place
Performance Analysis of PNs (VIII)

• **Little’s law**: \(L = \lambda \cdot W \) (queue length, arrival rate, waiting time)

• Applying it to PNs: \(m \geq \text{Pre} \cdot D \cdot \Theta \)

\[
\begin{align*}
\text{Maximize } \Theta : \\
\overline{m} \geq \text{Pre} \cdot D \cdot \Theta \\
\overline{m} = m_0 + C \cdot \sigma \\
\sigma \geq 0
\end{align*}
\]

• \(y \) is the slowest \(p \)-semiflow of the system (bottleneck)

• **Our aim**: Find next constraining \(p \)-semiflow
Performance Analysis of PNs (IX)

Given a y^* slowest p-semiflow, we can compute the next in a PPN as:

\[
\text{maximum } y \cdot \text{Pre} \cdot D
\]

subject to $y \cdot C = 0$

$y \cdot m_0 = 1$

$y(p) > 0, \forall p \in Q$

\[
\sum_{p \in V} y(p) > 0
\]

where $V = \{v|v \in \cdot(\|y^*\|) \setminus \|y^*\|\}$, and $Q = \{q \in P, q \in \|y^*\|\}$

- Can lead us to numerical problems:
 - the lower the sum, the higher the value of optimisation function
 - We need to find a value h strictly positive s.t. $\sum_{p \in V} y(p) \geq h$
Performance Analysis of PNs (X)

\[
\begin{align*}
\text{maximum } h & \\
\text{subject to } y \cdot C &= 0 \\
y \cdot m_0 &= 1 \\
y &\geq h \cdot 1 \\
h &> 0
\end{align*}
\]

where \(V = \{ v | v \in \text{•}(\|y^*\|) \setminus \|y^*\| \} \), and \(Q = \{ q \in P, q \in \|y^*\| \} \).

\[
\begin{align*}
\text{maximum } y \cdot \text{Pre} \cdot D & \\
\text{subject to } y \cdot C &= 0 \\
y \cdot m_0 &= 1 \\
y(p) &\geq h, \forall p \in Q \\
\sum_{p \in V} y(p) &\geq h
\end{align*}
\]
Performance Analysis of PNs (XI)

• **Input data:**
 - A PPN
 - An accuracy degree

• **Algorithm steps**
 1. Calculate initial upper throughput bound and initial bottleneck cycle
 2. Calculate value \(h \)
 3. Iterate until no significant improvement is achieved or all places are considered
 1. Compute the next constraining \(p \)-semiflow
 2. Calculate new thr. bound
A Running Example (I)
A Running Example (II)
A Running Example (III)
A Running Example (IV)

<table>
<thead>
<tr>
<th>Number of requests</th>
<th>Regrowing step</th>
<th>Size</th>
<th>Throughput</th>
<th>Partial improvement</th>
<th>Bound error</th>
<th>Execution time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(full system)</td>
<td>61 (100%)</td>
<td>56 (100%)</td>
<td>0.525685</td>
<td>-</td>
<td>> +1 day</td>
</tr>
<tr>
<td>15</td>
<td>(initial bound)</td>
<td>56 (91.80%)</td>
<td>56 (100%)</td>
<td>0.551637</td>
<td>-</td>
<td>4.7045%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.87s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57 (93.44%)</td>
<td>56 (100%)</td>
<td>0.533037</td>
<td>3.3718%</td>
<td>1.3792%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>122.94s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58 (95.08%)</td>
<td>56 (100%)</td>
<td>0.522379</td>
<td>1.9995%</td>
<td>-0.6330%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>751.20s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>59 (96.72%)</td>
<td>56 (100%)</td>
<td>0.522346</td>
<td>0.0063%</td>
<td>-0.6393%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34256.97s</td>
</tr>
<tr>
<td>20</td>
<td>(full system)</td>
<td>61 (100%)</td>
<td>56 (100%)</td>
<td>0.652313</td>
<td>-</td>
<td>> +1 day</td>
</tr>
<tr>
<td></td>
<td>(initial bound)</td>
<td>56 (91.80%)</td>
<td>56 (100%)</td>
<td>0.735930</td>
<td>-</td>
<td>11.3621%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.80s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57 (93.44%)</td>
<td>56 (100%)</td>
<td>0.675957</td>
<td>8.1493%</td>
<td>3.4979%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>302.60s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58 (95.08%)</td>
<td>56 (100%)</td>
<td>0.637812</td>
<td>5.6431%</td>
<td>-2.2735%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300.17s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>59 (96.72%)</td>
<td>56 (100%)</td>
<td>0.637860</td>
<td>-0.0075%</td>
<td>-2.2658%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3166.09s</td>
</tr>
<tr>
<td>21</td>
<td>(full system)</td>
<td>61 (100%)</td>
<td>56 (100%)</td>
<td>0.671806</td>
<td>-</td>
<td>> +1 day</td>
</tr>
<tr>
<td></td>
<td>(initial bound)</td>
<td>9 (14.75%)</td>
<td>9 (16.07%)</td>
<td>0.740741</td>
<td>-</td>
<td>9.3063%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57 (93.44%)</td>
<td>56 (100%)</td>
<td>0.697133</td>
<td>5.8871%</td>
<td>3.6331%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>826.82s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58 (95.08%)</td>
<td>56 (100%)</td>
<td>0.653556</td>
<td>6.2509%</td>
<td>-2.7924%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>280.46s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>59 (96.72%)</td>
<td>56 (100%)</td>
<td>0.653116</td>
<td>0.0673%</td>
<td>-2.8616%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2216.06s</td>
</tr>
<tr>
<td>22</td>
<td>(full system)</td>
<td>61 (100%)</td>
<td>56 (100%)</td>
<td>0.687808</td>
<td>-</td>
<td>> +1 day</td>
</tr>
<tr>
<td></td>
<td>(initial bound)</td>
<td>9 (14.75%)</td>
<td>9 (16.07%)</td>
<td>0.740741</td>
<td>-</td>
<td>7.1459%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57 (93.44%)</td>
<td>56 (100%)</td>
<td>0.713762</td>
<td>3.6422%</td>
<td>3.6362%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2763.5s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58 (95.08%)</td>
<td>56 (100%)</td>
<td>0.666148</td>
<td>6.6709%</td>
<td>-3.2515%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>502.95s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>59 (96.72%)</td>
<td>56 (100%)</td>
<td>0.667222</td>
<td>-0.1612%</td>
<td>-3.0853%</td>
</tr>
<tr>
<td>23...30</td>
<td>(full system)</td>
<td>61 (100%)</td>
<td>56 (100%)</td>
<td>0.700056</td>
<td>-</td>
<td>> +1 day</td>
</tr>
<tr>
<td></td>
<td>(initial bound)</td>
<td>9 (14.75%)</td>
<td>9 (16.07%)</td>
<td>0.740741</td>
<td>-</td>
<td>5.4925%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 (22.95%)</td>
<td>13 (23.21%)</td>
<td>0.740733</td>
<td>0.0011%</td>
<td>5.4915%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.262s</td>
</tr>
</tbody>
</table>
A Running Example (V)
Outline

• Basic concepts
• Extensions
• Properties
• Analysis
 – Performance analysis
• Conclusions
• References
Conclusions (I)

• Modelling with Petri nets:
 – Well-known formalism
 – Useful for modelling:
 • concurrent;
 • distributed; and
 • asynchronous behaviour in a discrete system
 – Extensions depending on the application domain
Conclusions (II)

• Performance Analysis in PNs
 – Exact analysis: exploration of state space
 • Becomes unachievable for long/complex systems
 – **Approximate analysis: upper/lower thr. bounds**
 • Linear Programming problems: *good accuracy-computational complexity trade-off*
 • Proposed approach based on an iterative algorithm
 – Takes initial thr. bound and refines it in each iteration
 – Accurate upper bound in few iterations
 – Outputs:
 » Accurate estimate for the steady state thr
 » Subnet representing bottleneck of the system
Outline

• Basic concepts
• Extensions
• Properties
• Analysis
 – Performance analysis
• Conclusions
• References
References

Modelling and Analysis of Non-Functional Properties in Critical Systems with Petri Nets

Elena Gómez-Martínez
Ricardo J. Rodríguez
{elena.gomez, rjrodriguez}@fi.upm.es

Babel Group
Universidad Politécnica de Madrid