
Finite Type Extensions in Constraint Programming

Rafael Caballero
University Complutense of

Madrid

Peter J. Stuckey
NICTA and the University of

Melbourne

Antonio Tenorio-Fornés
University Complutense of

Madrid

ABSTRACT
Many problems are naturally modelled by extending an ex-
isting type with additional values. For example for mod-
elling database problems with nulls natural models use boo-
leans and integers with an additional null value. Similarly
models involving integers may naturally be extended to han-
dle −∞ and +∞. We extend the constraint modelling lan-
guage MiniZinc to MiniZinc+ to allow modelling with ex-
tended types. The user can specify both the extension of
a predefined type with new values, and the behavior of
the operations with relation to the new types. The result-
ing MiniZinc+ model is transformed to a MiniZinc model
which is equivalent to the original model. We illustrate the
usage of MiniZinc+ to model SQL like problems with in-
teger variables extended with NULL values.

1. INTRODUCTION
Constraint programming languages aim at providing mech-
anisms that allow the user to represent complex problems
in a natural way. With that purpose, this paper presents a
technique for expressing constraints over extended types in
the constraint modelling language MiniZinc [11].

For example, within our framework, it is possible to extend
the int predefined MiniZinc domain to support the repre-
sentation of the value positive infinity. The new type intE
is introduced by the reserved word extended:

extended intE = int ++ [posInf];

where posInf is a new extended constant. Once a new ex-
tended type has been declared, the user can also define new
operations as extensions of the predefined operations allowed
by the language. For instance, in this example one could de-
fine result of the addition of two intE variables x, y as x+y
if both x and y are in the subtype int, or posInf if at least
one of the two values is posInf (as in IEEE standard 754
[7]).

Apart from extended arithmetic, the extension of standard
domains is an approach used in a multitude of disciplines,
such as the design and test of digital circuits [1], the rep-
resentation of null values to represent the unknown data
in database query languages such as SQL [5], or the many-
valued logics [10]. All these problems can be successfully
modeled in the language proposed in this paper, which we
call MiniZinc+.

In order to solve the constraints over the extended types we
present a transformation from MiniZinc+ into MiniZinc.
The transformation represents each extended decision vari-
able as a pair of variables in MiniZinc. The first variable
contains a possible value in the source, standard type. The
second variable contains a value in the extended type and
also works as a switch that selects one of the two variables
during the search. The transformation applies not only for
constraint satisfaction problems, but also for optimization
problems.

The next section introduces both the syntax of MiniZinc
with functions [12] and the syntax of MiniZinc+. Section 3
explains that the transformation is the composition of two
phases. The first phase, the elimination of local declarations
and functions is described in other papers and is not dis-
cussed here. The second part is itself split into two sections:
first, Section 4 introduces the transformation over expres-
sions, and then Section 5 generalizes the transformation to
top-level constructions such as constraints and declarations.
A working prototype following these ideas is presented in
Section 6. The soundness of the approach is discussed in
Section 7. Finally, Section 8 presents the conclusions and
discusses possible future work.

2. EXTENDING MINIZINC

2.1 Syntax
MiniZinc is a medium-level constraint modelling language
that allows the modeller to express constraint problems eas-
ily. In particular we take as starting point the version of
MiniZinc with functions described in [12]. The grammar
of MiniZinc+, the extension proposed in this paper, is basi-
cally the grammar of MiniZinc adding only the possibility
of declaring new, extended types:

typeE −→ extended tId =
[c−n, . . . , c−1] ++type++ [c1, . . . , cm]

exp −→ vId | constant | vId[exp]
| arrexp[exp] | setexp | arrexp
| if exp then exp else exp endif
| pId(exp∗[,]) | fId(exp∗[,])
| let {decl∗[,] const∗[,]} in exp
| forall (arrexp)
| exists (arrexp)



arrexp −→ [exp∗[,]]

| [exp | genvar+[,] where exp]

setexp −→ { exp∗[,] } | range
| {exp | genvar+[,] where exp}

genvar −→ vId+[,] in setexp | vId+[,] in arrexp
range −→ exp .. exp
decl −→ vtype : vId

| array[range] of vtype : vId
| set of type: vId
| var set of setexp: vId

assig −→ vId = exp

const −→ constraint exp

funct −→ function decl (decl∗[,]) = exp

pred −→ predicate pId(decl∗[,]) = exp

solv −→ solve satisfy | solve minimize vId
| solve maximize vId

out −→ output ([ sh∗[,] ])
sh −→ show(exp) | "string"

type −→ int | bool | float | tId | range
vtype −→ type | var type

model −→ typeE∗[;];decl,∗[;]; assig∗[;]; pred∗[;]

; funct∗[;];const∗[;]; solv; out;

where model is the start symbol of the grammar, vId, fId,
pId and tId are identifiers for: parameters and variables,
functions, predicates and new types, respectively. string
represents an arbitrary string constant. The values ci repre-
sent new constant identifiers. The notation n∗[s] / n+[s] in-
dicates zero or more / one or more repetitions of the nonter-
minal “n” such that these repetitions are separated by string
s. Boldface words are reserved words of the language. The
only difference of this grammar with respect to the standard
MiniZinc with functions presented in [12] is the new non-
terminal typeE and the inclusion of type identifiers (tId)
as possible types.

2.2 Example: Extending the Boolean type for
a full adder combinational circuit

Suppose that we wish to model combinational circuits with
undefined (i.e. neither true nor false) signals [1]. Then, in
our setting we can extend the standard MiniZinc Boolean
type a new constant undef. The definition in MiniZinc+ of
the new type can be found in the first line of the model in
Figure 1. Note that replacing bEx with bool in lines (3-6)
and omitting lines (8-28) would give a standard MiniZinc
model for this problem.

The model redefines the behavior of the Boolean connec-
tives ∧, ∨ and xor taking into account the new constant as
indicated in the truth tables of Figure 2 (where 0 stands for
false, 1 for true and ⊥ stands for undef). For instance,
the standard MiniZinc operator xor is redefined in MiniZ-
inc+ as shown in lines (8-12) of Figure 1. The function first
defines a local decision variable c1, which uses the predefined
function sv in order to check if both parameters a and b con-
tain standard values, that is, values different from undef.
If this is the case, then the function returns the result of
using the standard MiniZinc operator xor. Otherwise, if
either a or b is undef, then the result is undef according to

1 extended bEx = bool ++ [undef];
2 int n;
3 array[1..n] of var bEx: x;
4 array[1..n] of var bEx: y;
5 array[1..n+1] of var bEx: s;
6 array[1..n+1] of var bEx: c;
7

8 function var bEx:xor(var bEx:a, var bEx:b) =
9 let{var bEx:r, var bool:c1=sv([a,b]),

10 constraint (c1 /\ (r= a xor b)) \/
11 (not c1 /\ r=undef)
12 } in r;
13

14 function var bEx:/\(var bEx:a, var bEx:b) =
15 let{var bEx:r, var bool:c1=sv([a,b]),
16 var bool:c2= (a=false \/ b=false),
17 constraint (c1 /\ r=a /\ b) \/
18 (not c1 /\ c2 /\ r=false) \/
19 (not c1 /\ not c2 /\ r= undef)}
20 in r;
21

22 function var bEx:\/(var bEx:a, var bEx:b) =
23 let{var bEx:r, var bool:c1=sv([a,b]),
24 var bool:c2= (a=true \/ b=true),
25 constraint (c1 /\ r= a \/ b) \/
26 (not c1 /\ c2 /\ r=true) \/
27 (not c1 /\ not c2 /\ r=undef)}
28 in r;
29

30 constraint c[1]=false /\ s[n+1]=c[n+1]
31 constraint forall([s[i]=x[i] xor y[i] xor
32 c[i]|i in 1..n])
33 constraint forall([c[i+1]=(x[i] /\ y[i]) \/
34 ((x[i] xor y[i]) /\
35 c[i])|i in 1..n]);
36 solve satisfy;

Figure 1: An n bit full adder in MiniZinc+: x+ y = s

the table for extended xor of Figure 2. The schema of this
function will be usual in all the conservative redefinition
of standard operators. The code for functions redefining ∧
and ∨ is analogous.

Note that although the functions xor, ∧ and ∨ have been
redefined, they are used as the original functions inside func-
tion declarations (since they apply to the original type bool).

Using these definitions we model the behavior of an n-bit
adder digital circuit in lines (30-35). The basic piece of the
circuit is the full adder :

which adds binary numbers and accounts for values carried



1 0 ⊥
1 1 1 1
0 1 0 ⊥
⊥ 1 ⊥ ⊥

(a) ∨

1 0 ⊥
1 1 0 ⊥
0 0 0 0
⊥ ⊥ 0 ⊥

(b) ∧

1 0 ⊥
1 0 1 ⊥
0 1 0 ⊥
⊥ ⊥ ⊥ ⊥

(c) xor

Figure 2: Truth tables including the undefined value

in as well as out. The code of lines (30-35) employs n full
adders to obtain an n-bit adder. In particular, line (32)
defines the output s using two xor gates, while lines (33-35)
model the carries employing two and and one or gates.

After transforming this model into a standard MiniZinc
model, we can use MiniZinc to obtain solutions such as
the following:1

x = 1 ⊥ 0 1
y = 1 ⊥ 0 0
c = 0 1 ⊥ 0 0
s = 0 ⊥ ⊥ 1 0

The least significant digit (and thus the first position of each
array) is displayed on the left. Observe that in the second
position from the left the addition ⊥ + ⊥ +1 (1 is the
carry from the previous position) yields ⊥ in the result. In
particular this means that the carry is undefined as well,
and thus in the third position 0+0+ ⊥ produces the output
⊥. However, in this case we can ensure that the carry is 0,
and thus in the fourth position we have 1 + 0 + 0 = 0 as
output with 0 carry and as last bit.

3. FROM MINIZINC+ TO MINIZINC
The main goal of this paper is to present an automatic trans-
lation from MiniZinc+ to MiniZinc. Thanks to this trans-
lation, the models written in the extended setting can be
solved using all the features (optimizations, different types
of solvers, etc.) included in MiniZinc. The translation can
be presented as a process in two phases:

1. First, functions, predicates and local declarations of
variables are removed from the model.

2. Finally, the resulting MiniZinc+ model, now contain-
ing neither functions nor local declarations, is trans-
lated into MiniZinc.

Observe that the first phase can be applied to both MiniZ-
inc and MiniZinc+ indistinctly. In particular, the func-
tion elimination is done unrolling the function calls follow-
ing ideas similar to those described in [12] (we assume in
1The output sentence is omitted in Figure 1 for simplicity.

our setting the use of total functions), which simplifies the
task. The elimination of constraints included in local dec-
larations is managed using the relational semantics [6] of
MiniZinc where these constraints “float” to the nearest en-
closing Boolean context where they are added as a conjunct.
Analogously, the local variable declarations are converted to
global variable declarations, see [8] for a more detailed dis-
cussion.

In the rest of the paper we describe the second phase, which
converts a MiniZinc+ model without functions and local
declarations into a semantically equivalent MiniZinc model.

4. TRANSFORMING MINIZINC+ EXPRES-
SIONS

In the case of MiniZinc+ expressions, the transformation is
defined in terms of two auxiliary transformations, the first
one representing the standard MiniZinc part of the expres-
sion (transformation τs(c)), and the second one keeping a
representation of the extended part (transformation τe(c)).

4.1 Notation
First we introduce some auxiliary notation:

We use t for type identifiers (either standard as bool, int
and float or extended such as boolEx). The functions
st(t) and et(t) return whether t is either a standard (st) or
an extended (et) type.

The notation ordt(k) maps constants k of type t to an
integer that represents the distance to k from the base type
following the textual order in its definition (the sub-index
t in ord is omitted when it is clear from the context). For
instance, given the definition

extended int3 = [negInf] ++int++[undef,posInf];

then:

• ord(negInf) = -1

• ord(undef)= 1

• ord(posInf) = 2

For every constant k, ordt(k) 6= 0 iff k is extended. We
define ordt(k) = 0 if k is a standard constant. The function
eRan(t) (extended Range) is defined for an extended type
t as follows: define a set S as S = {ordt(k)|k ∈ t} ∪ {0},
then eRan(t) = min(S) . . max(S). In the example of int3
above: −1 . . 2. We choose for each type t a default value
ko(t) which will be used in the representation of extended
constants. The notation o(t) refers to the base type of t if it
is extended, or to t itself otherwise. Additionally, for each
type t we define a value zt, which is 0 if t is an atomic type,
the array of n zeros ([0, . . . , 0]) if t is an array of size n, the
empty set ({}) if t is a set, and the minimum value in the
base type in the case of an integer subrange. In the rest of
the paper we assume that MiniZinc+ models are well-typed
following the type inference rules for MiniZinc which can



be found in [3], and use the notation type(e) to refer to the
type of e.

Next we explain the transformation of MiniZinc+ expres-
sions, distinguishing between the different possibilities enun-
ciated in the grammar (Section 2.1).

4.2 Identifiers, constants, array and set expres-
sions

Identifiers and constants. The transformations τs and τe
for identifiers and constants are defined as follows:

τs τe

Identifiers : x, t = type(x)
st(t) x zt
et(t) s(x) e(x)
Constants : k, t = type(k)
st(t) k zt
et(t) ko(t) ordt(k)

Observe that here identifiers represent both decision vari-
ables and parameters. Identifiers of standard type are mapped
to the original form, with the second component fixed to
zero, representing a standard value. Extended type identi-
fiers are mapped to the associated new identifiers. Constants
are mapped to themselves paired with zt if standard, or to
the default constant from the underlying type and their or-
der number if they are extended, new values.

Array expressions. Array expressions of the form: e =
[e1, . . . , en] are transformed simply mapping the transfor-
mations τs, τe:

τs(e) = [τs(e1), . . . , τs(en)] τe(e) = [τe(e1), . . . , τe(en)]

For instance, if we consider the array expression e defined
as [true,false,undef ], then τs(e) = [true,false,false], and τe(e)
= [0,0,1 ]. Observe that the underlined false corresponds to
the arbitrary constant kBoolean chosen to replace undef and
it is only used to keep the array with the same length and
with the standard constants in the same positions.

Array access. An array access of the form a[exp] with
type(a) = <array of t> is transformed as:

τs τe

τs(a)[τs(exp)] τe(a)[τs(exp)]

We make use of the fact that MiniZinc arrays are always
indexed by integers. Consider the subexpression c[1] in line
30 of Figure 1. We have c = <array of boolEx>, and
thus st(boolEx) is false and et(boolEx) holds. Therefore,
τs(c[1 ]) = cs[1 ] , τe(c[1 ]) = ce[1 ], assuming s(c) is defined
as the new identifier cs and e(c) as ce.2

2For simplicity we use the suffixes s and e to generate new
identifiers for the standard and extension parts of a con-
struction in the rest of the paper.

Set expressions. Set expressions of the form e = { e1, . . . ,
en } with

type(e1) = · · · = type(en) = t are transformed depending on
the type t:

• if st(t), then τs(e)= { τs(e1), . . . , τs(en) }, and τe(e)={}

• if et(t), then
τs(e) = {[τs(e1), . . . , τs(en)][i] | i in 1..n

where [τe(e1), . . . , τe(en)][i] = 0 }
τe(e) = {[τe(e1), . . . , τe(en)][i] | i in 1..n

where [τe(e1), . . . , τe(en)][i] != 0 }

The overall idea is that the elements in the set are split into
standard and extended parts.

4.3 Array and set comprehensions
Let 〈 exp | genvars where cond 〉 be an array or set com-
prehension (with 〈,〉 representing [,] or {,}). The translation
of this expression consists of two phases. The first phase
processes each generator g in genvars. We use the nota-
tion e[x 7→ e′] to indicate that all the occurrences of x in e
must be replaced by e′.

• If g ≡ gId in genExp with genExp a set or array of
standard type, then apply the replacement genvars[g
7→ gId in τs(genExp)].

• If g is of the form gId in arrayexp and arrayexp
is an array of extended type then:

– Apply the replacement
genvars[g 7→ f in index-set(τs(arrayexp))],
where f is a fresh variable.

– Apply the replacements
exp[gId 7→ arrayexp[f] ] and cond[gId 7→
arrayexp[f] ]

• If g ≡ gId in setexp and setexp is a set of extended
type then: Let a be
[ord−1

t (x) | x in τe(setexp) where x<0]++

[x | x inτs(setexp)]++

[ord−1
t (x) | x in τe(setexp) where x>0].

Then:

– Apply the replacement
genvars[g7→ f in index-set(τs(a))], where
f is a fresh variable.

– Apply the replacements exp[gId 7→ a[f] ] and
cond[gId 7→ a[f] ]

Let 〈(exp’) |genvars’ where cond’ 〉 be the result of
applying this transformation to all the generators in the
array/set comprehension. Then, the second phase of the
translation is defined as:

- Array comprehensions:



τs = [ τs(exp’) | genvars’ where τs(cond’) ]

τe = [ τe(exp’) | genvars’ where τs(cond’) ]

- Set comprehensions:
τs = { τs(exp’) | genvars’

where τs(cond’) ∧ τe(exp)=0 }

τe = { τe(exp’) | genvars’
where τs(cond’) ∧ τe(exp)!=0 }

For example, let intE be the integer type extended with
constant posInf , and consider the following expression:
e = [ y | x in [posInf, 4, 9, -1],

y in {8, -1, 8, posInf}
where x=y]

In order to simplify the presentation we use L to represent
the list [posInf, 4, 9, -1], and S to represent the set
{8, -1, 8, posInf}. Therefore, the array comprehen-
sion is represented as [y | x in L, y in S where x=y].

First we select the first generator x in L, choosing i as new
variable and taking into account that τs(L) = [0, 4, 9, -1].
Applying the replacements we obtain

[y | i in index-set([0,4,9,-1]), y in S
where L[i]=y]

The second generator is y in S. Attending to the transla-
tion of set expressions we have

τs(S) = [ [8,-1,8,0][i] | i in 1..4
where [0,0,0,1]=0]

τe(S) = [ [0,0,0,1][i] | i in 1..4
where [0,0,0,1]!=0]

Then the array a is defined as:

a = [ord−1
t (x) | x in τe(S) where x < 0] ++

[x | x inτs(S)] ++
[ord−1

t (x) | x inτe(S) where x >0]

Observe that during the evaluation of the model a will be
evaluated to []++[-1,8]++[posInf] = [-1,8,posInf].
The idea behind a is to obtain the list of elements in S with-
out repetitions and respecting the order among elements.
This mimics in MiniZinc+ the behaviour of MiniZinc where
[x | x in {3,4,5,3,4}] is evaluated to [3,4,5].

The translation proceeds by replacing the second generator
by a new variable j, obtaining

[a[j] | i in index-set([0,4,9,-1]),
j in index-set(τs(a))
where L[i]=a[j]]

Finally:

τs(e) = [τs(a[j])| i in index-set([0,4,9,-1]),
j in index-set(τs(a))
where τs(L[i]=a[j]) ]

and

τe(e) = [τe(a[j])| i in index-set([0,4,9,-1]),
j in index-set(τs(a))
where τs(L[i]=a[j]) ]

During the evaluation the system will obtain:

τs(e) = [0,-1], and τe(e) = [1,0],

which corresponds to the MiniZinc representation of the
MiniZinc+ list [posInf,-1].

4.4 Conditional and logical expressions
Expressions e ≡ if c then e1 else e2 endif are trans-
formed as:

τs(e) = if τs(c) then τs(e1) else τs(e2) endif

τe(e) = if τs(c) then τe(e1) else τe(e2) endif

Note: the exists and forall constructions are simply ex-
panded to disjunctions and conjunctions respectively and
then transformed.

4.5 Predefined function and predicate calls
We consider the following predefined function and predicate
calls:

- c ≡ sv([exp1,. . .,expn]). The purpose of this Boolean
function is to ensure that all the expressions correspond to
standard values. Therefore: τs(c) = (τe(exp1)=z) ∧ · · · ∧
(τe(expn)=z), with z the value zero value associated to the
type of the expressions.

- c ≡ predef(f)(exp1, . . ., expn), or alternatively c ≡
exp1 predef(f) exp2, with f a predefined function or an
infix operator. predef indicates that this call corresponds
to the predefined MiniZinc function/operator f even if it has
been redefined by the user. Thus, τs(c)= f(τs(exp1), . . . ,
τs(expn)), or τs(c)=τs(exp1) f τs(exp2) if f is an infix
operator, and τe(c) = z. Thus, the user should ensure,
usually by adding some constraints using sv that exp1, . . . ,
expn can only correspond to standard values, otherwise the
result of evaluating this function can be unsound.

- c ≡ (exp1= exp2), assuming that = has not been rede-
fined. Then: τs(c) is defined as

(τs(exp1) = τs(exp2) ∧τe(exp1) =τe(exp2))

and τe(c) is defined as z. The result of the comparison de-
pends both on the standard and on the extended value. It is
not enough to check only the standard part, because in case
of two different extended constants a, b with base type t we
have (τs(b) = τs(a) = kt), but the result should be false.
Analogously, the extended part is not enough because for
instance considering the standard constants 3, 4, we have
(τe(3) = τe(4)= z). The translation of exp1 != exp2 is
simply not(exp1= exp2), applying then the translation of
=.



- c ≡ (e in S), assuming that in has not been redefined.
Then: τs(c) = (τe(e) = 0 ∧ τs(e) in τs(S)) ∨ (τe(e) 6= 0 ∧
τe(e) in τe(S)) and τe(c) = 0. Other set operations such as
card, union or intersect can be defined analogously.

This ends the transformation part for expressions. It only
remains to define the transformation applied to top-level
constructions.

5. TRANSFORMING MINIZINC+ MODELS
The transformation of a MiniZinc+ model M, denoted by
τ(M) is obtained transforming each of these top-level con-
structions as described in this section.

5.1 Declarations of extended types
The declarations of extended types are useful for obtaining
the names of the new types, their base standard types, the
names of the extended constants, and for generating the ord
function described above. However, these declarations do
not generate directly any code in the transformed MiniZinc
model.

5.2 Declarations of variables and parameters
If c ≡ decl is a declaration of a variable or a parameter, then
it is translated to MiniZinc as cT ≡ τ(decl) as defined by
the following table:

τ

Var. or param. declarations: [var] t : x,
with o(t) ∈ {int, float, bool }
st(t) [var] t : x
et(t) [var] o(t): s(x); [var] eRan(t): e(x); C1

array [S] of [var] t: a
st(t) array [S] of [var] t: a;
et(t) array [S] of [var] o(t): s(a);

array [S] of [var] eRan(t): e(a); C2

set of t: x
st(t) set of t: x;
et(t) set of o(t): s(x); set of eRan(t) : e(x)
var set of setexp : x, type(setexp) = <set of t >
t=int var set of setexp : x
et(t) var set of τs(setexp): s(x);

var set of τe(setexp) : e(x)

with the constraints C1 and C2 defined as

C1 ≡ constraint xe!=zo(t) -> xs=ko(t);

and

C2 ≡ constraint forall([ae[i]!=zo(t)->
as[i]=ko(t) | i in S]);

The first column of the table distinguishes the different pos-
sible cases. The constraints C1 and C2 are introduced to
avoid the repetition of equivalent solutions that is produced
if the standard variables are not constrained. This is done,

by ensuring that if the variable takes an extended value (ex-
tended part 6= z), then the standard part of the variable
takes some arbitrary value kt.

In our running example, the array ia is transformed into:

array[1..n] of var bool: ias;
array[1..n] of var 0..1: iae;
constraint forall([iae[i]!=0 -> ias[i]=false |

i in 1..n]);

assuming that false is the arbitrary constant kbool .

5.3 Assignments and Constraints
Assignments of the form c ≡ vId = exp, with type(vId) = t
are transformed as follows:

τ
st(t) vId = τs(exp)
et(t) τs(vId) = τs(exp); τe(vId) = τe(exp)

Thus, the idea is to constrain the standard (respectively
extended) part of the identifier to the standard (respectively
extended) part of the expression.

Constraints have the form c ≡ constraint exp;, where
exp is a Boolean expression. In this case the transformation
simply takes into account that the type of exp is standard:
cT = constraint τs(exp).

5.4 Output Item
The translation of an output item adds a new requirement,
being able to print extended types. An expression show(exp)
must return a string representing the possibly extended ex-
pression exp. An extended type definition of the form
extended tId [c−n, . . . , c−1]++type++ [c1, . . . , cm];

creates an array of string tnames

array[eRan(tId)] of string: tnames =
[c−n, . . . , c−1, "dummy", c1, . . ., cm];

and replaces each show(e) by

if(fix(τe(e))==0)
then show(τs(e))
else show(tnames[τe(e)])
endif

For example output [show(x)]; where x is of type int3
creates

array[-1..2] of string: int3names =
["neginf","dummy","undef","posInf"];

output [ if (fix(xe) == 0) then show(xs)
else show(int3names[xe]) endif ];



1 extended time = (0..23) ++ [oneDayOrMore];
2

3 function var time:+(var time:x, var time:y) =
4 let {var time:r, var bool:c=sv([x,y]),
5 constraint
6 (c /\ x + y>23 /\ r=oneDayOrMore) \/
7 (c /\ x + y<=23 /\ r=x+y ) \/
8 (not c /\ r=oneDayOrMore) }
9 in r;

10

11 time: t1 = 5;
12 var time:t2;
13 var time:total = t1 + t2 + 21;
14 solve minimize total;
15 output(["Total=",show(total),
16 " t2=",show(t2),"\n"]);

Figure 3: Modelling time with an extended value..

5.5 Satisfaction and Optimization
A satisfaction problem is encoded in MiniZinc+ using the
solve item solve satisfy. In the translation to MiniZinc
this is unchanged.

MiniZinc also allows defining optimization problems, using
solve minimize e or solve maximize e. In MiniZinc+

we also allow the optimization of expressions with extended
range, extending implicitly the order < to the new elements
accordingly to their position with respect to the standard
type in the definition of the type extension (see Section 4).

In standard MiniZinc, the optimization of an arithmetic
expression is treated as the optimization of a variable con-
strained to be equal to the expression. Thus we consider
goals either of the form solve minimize y; or solve maximize
y; with y a variable of some extended type t.

In order to compare values k of extended types in the trans-
formation we consider the lexicographical ordering over pairs
of the form (τe(k), τs(k)). Let a be the minimum base type
value in t if this exists, and b be the maximum base type
value in t if this exists. If a and/or b dont exist then we may
be able to determine a = min(τs(y)) and b = max(τs(y)). As
a last resort, if we are to use a solver which artificially rep-
resents unbounded objects of the base type in a finite range
a..b we can use these values. Note that most finite domain
solvers have this restriction. If we cannot determine either
a or b then the optimization cannot be translated.3 Given
a and b can be determined we transform minimize/maximize
y to minimize/maximize τe(y) ∗ (b− a+ 1) + τs(y).

For instance, the example in Figure 3 models the time re-
quired to perform some task. The time is measured in hours,
from 0 to 23, plus an especial value oneDayOrMore. The ad-
dition operator + is redefined accordingly, ensuring that if
the sum of the two values exceeds 23 then the value one-
DayOrMore is returned. For this type a = 0 and b = 23.

3We are aiming to extend MiniZinc to directly handle lexi-
cographic objectives, in which case this problem would dis-
appear.

In the example, the sum of the values of the parameters ex-
ceed 23 hours, and therefore even assuming the minimum
possible value for c (which is 0), the expression takes the
value oneDayOrMore. After transforming the model MiniZ-
inc yields the expected values for variables total and c:

Total=oneDayOrMore t2=0

6. EXPERIMENTAL RESULTS
This section presents a practical example of usage MiniZ-
inc+ that has been used to check the feasibility of the pro-
posal from the point of view of the implementation.

The tool STCG [2] generates MiniZinc models whose solu-
tions constitute test cases for testing SQL views. However,
the constraints generated do not consider NULL values, an
important feature in the relational database model[4].

In order to allow NULL values a part of the possible test
cases we extend the models including two new types: 4

extended intE = [] ++ int ++ [NULL];
extended boolEx = [] ++ bool ++ [NULLb];

And redefine the operators (=,!=,∨, ∧) for integer and Boolean
types extended with NULL value:

function var boolEx: ’=’(var intE:x, var intE:
y) =

let {
var boolEx: r,
var bool: c1,
constraint c1 = (sv(x) predef(/\) sv(y)),
constraint
(not(c1) predef( /\ ) eq(r,NULLb))
predef( \/ )
( c1 predef( /\ ) eq(r, (x = y)))

} in r;

function var boolEx: ’!=’(var intE:x, var intE
:y) =

let {
var boolEx: r,
var bool: c1,
constraint eq(c1,(sv(x) predef(/\) sv(y))),
constraint

(not(c1) predef( /\ ) eq(r, NULLb))
predef( \/ )
( c1 predef( /\ ) (r predef(=) not (x

predef(=) y)))
} in r;

function var boolEx:’/\’(var boolEx:a1, var
boolEx:b1) =

let{var boolEx:r1,
var bool:c11,
var bool:c21,
constraint (c11 predef(=) (sv(a1) predef(

/\ ) sv(b1))),
constraint (c21 predef(=) (eq(a1,false)

predef( \/ ) eq(b1,false))),
4this is also applicable to other domains allowed in SQL,
but here we show these two types as an example.



Model Sql Or Sql Or+ Board Board+

var. decl. 5 99 54 2032
funct. calls 4 254 419 374678
size (KB) 0.5 5.0 13.2 15946.2
transf. time 17 2923
solve time 0.50 0.29 0.32 2.21

Table 1: Experimental data for two models generated by
STCG

constraint (c11 predef( /\ ) eq(r1,(a1
predef( /\ ) b1)))

predef( \/ )
(not (c11) predef( /\ ) c21 predef( /\

) eq(r1,false))
predef( \/ )
(not (c11) predef( /\ ) not (c21) predef

( /\ ) eq(r1, NULLb))
} in r1;

function var boolEx:’\/’(var boolEx:aa, var
boolEx:bb) =

let{var boolEx:rr,
var bool:cc1,
var bool:cc2,
constraint (cc1 predef(=) (sv(aa) predef(

/\ ) sv(bb))),
constraint (cc2 predef(=) ((eq(aa,true)

predef( \/ ) eq(bb , true)))),
constraint
(cc1 predef( /\ ) eq(rr, (eq(aa,true)

predef( \/ ) eq(bb, true))))
predef( \/ )
(not (cc1) predef( /\ ) cc2 predef( /\ )

eq(rr, true)) predef( \/ )
(not (cc1) predef( /\ ) not (cc2) predef

( /\ ) eq(rr,NULLb))
} in rr;

Adding this code to the models produced by STCG and
changing the type of its variables to the new extended types,
we have automatically test-cases including NULL values. In
order to check the efficiency of the proposal we have tried
two different examples of models produced by STCG (see
[3] for a detailed description of the two examples).

Table 1 shows the data obtained with our current implemen-
tation. The two models in MiniZinc produced by STCG
are called Sql Or and Board. The MiniZinc models ob-
tained after introducing the new type, redefining the opera-
tors and applying the transformation described in this paper
are called in the table Sql Or+ and Board+.

The rows of the table contain:

• var. decl.: number of declared variables in the model.
For instance in the case Board in the MiniZinc model
produced by STCG for the second example are trans-
formed into 2032 variables in the model when consid-
ering NULL values.

• funct. calls: The number of function calls included in
the code, including calls to the predefined operators
{=,!=,∨, ∧ }. For instance in the first example STCG
generates a model including only 4 calls. After extend-
ing the model to MiniZinc+ to support NULLs and
applying the transformation to obtain the equivalent
MiniZinc model we obtain a model with 254 function
calls.

• size: The size in Kbytes of the models. It can be seen
that the size increases dramatically after the transfor-
mation.

• transf. time: Time required by the transformation in
milliseconds. In the more complex example of Board
about 3 seconds are required by our prototype to con-
vert the MiniZinc+ model into a MiniZinc model.

• solve time: The time required by the MiniZinc solver
to obtain the first answer.

Observe that although the transformation increases the size,
number of variables or function calls of the transformed
model, this overload in size does no imply a very significa-
tive increment in time. This indicates that the theoretical
proposal can be used in practice.

The prototype can be downloaded from http://gpd.sip.
ucm.es/rafa/minizinc/extendedMiniZinc.tar.gz

7. THEORETICAL RESULTS
In this section we present the theoretical result that supports
our proposal. The idea is to prove that both the MiniZinc+

and its transformation represent the same set of solutions.
The solutions are represented by well-typed substitutions:

Definition 1. Let M be a MiniZinc+model, Γ its asso-
ciated type context, and θ a substitution. We say that θ is a
well-typed substitution forM iff

• The domain of θ is the set containing the decision vari-
ables declared inM.5

• For all x ∈ dom(θ), type(x) =< t > iff type(xθ) =<
t >

The key idea for defining the concept of solution is the eval-
uation of an expression in a model with respect to a given
well-typed substitution.

Definition 2. Let M be a MiniZinc+model, e an ex-
pression occurring in M, and θ be a well-typed substitution
for M. The evaluation of e with respect to θ, denoted by
‖ e ‖θ, is defined distinguishing cases according to the defini-
tion of MiniZinc+expressions (refer to non-terminal exp in
the grammar)
5The decision variables are the variables declared either at
top level, or in local let statements. The parameter names
in the declarations of user functions and predicates are not
considered decision variables in our setting.

http://gpd.sip.ucm.es/rafa/minizinc/extendedMiniZinc.tar.gz
http://gpd.sip.ucm.es/rafa/minizinc/extendedMiniZinc.tar.gz


1. ‖ id ‖θ = idθ, id any identifier.

2. ‖ k ‖θ = k, k any constant.

3. Set Expressions:

(a) ‖ {e1, . . . , en} ‖θ = ord({‖ e1 ‖θ, . . . , ‖ en ‖θ}).
ord is defined as the function that given a set of
values, eliminate the repetitions and sort the val-
ues according to order � that extends ordt defined
in Section 4.1 where:

a � b =


a ≤ b a, b standard
ordt(a) < 0 a ext., b std.
ordt(b) > 0 a std., b ext.
ordt(a) ≤ ordt(b) otherwise

(b) ‖ ei..ef ‖θ = {‖ ei ‖θ, ‖ ei ‖θ + 1, . . . , ‖ ef ‖θ}

4. Array Expressions: ‖ [e1, . . . , en] ‖θ = [‖ e1 ‖θ, . . . , ‖ en ‖θ]

5. Array Access:

(a) ‖ a[e] ‖θ = ti, with a an array identifier with index
range m. . . n, i = ‖ e ‖θ−m+1, 1 ≤ i ≤ n−m+1,
and ‖ a ‖θ = [t1, . . . , tn−m+1].

(b) ‖ e1[e2] ‖θ = ti, with e1 not an array identifier,
‖ e1 ‖θ = [t1, . . . , tn], and i = ‖ e2 ‖θ, 1 ≤ i ≤ n.

6. Set/list comprehensions of the form lc = 〈e | g1, . . . , gm
where c〉, where:

(a) 〈, 〉 represents either {,} or [,].
(b) gj is of the form idj in arrayexp or idj in setexp.
(c) In particular suppose that g1 ≡ id in e′. Let
‖ e′ ‖σ be 〈 e1, . . . , en 〉 and define

σ1 = σ ] {id 7→ e1}, . . . , σn = σ ] {id 7→ en}

Moreover, in the definition we use the following nota-
tion:

• � represents the array concatenation or set union
depending on what 〈, 〉 is representing.
• C(e, c) being 〈e〉 if c holds and 〈〉 in other case.

Then, ‖ lc ‖θ is defined recursively as:

(a) If m = 1, then lc contains only one generator g,
which must be of the form id in e′. Then:

‖ 〈e |g where c〉 ‖σ =
C(‖ e ‖σ1 , ‖ c ‖σ1 ) � . . . � C(‖ e ‖σn , ‖ c ‖σn )

(b) If m > 1 then lc contains more than one gener-
ator. Analogously to the previous item, suppose
that the first generator is g1. Then:
‖ 〈e |g1, . . . , gm where c〉 ‖σ =
‖ 〈e |g2 . . . , gm where c〉 ‖σ1 � . . . �
‖ 〈e |g2 . . . , gm where c〉 ‖σn

7. ‖ sv([e1, . . . , en]) ‖θ = st(t1) ∧ · · · ∧ st(tn) with Γ `
‖ e1 ‖θ :: t1,Γ ` ‖ en ‖θ :: tn

8. ‖ e1 = e2 ‖θ = true if ‖ e1 ‖θ and ‖ e2 ‖θ are the same
constant, false otherwise.

9. ‖ p(e1, . . . , en) ‖θ = p(‖ e1 ‖θ, . . . , ‖ en ‖θ) , with p MiniZ-
inc predefined (that p is a relational operator or pre-
defined arithmetic function such as >,<,+ . . . ) .

10. Forall, exists constructions:
Let ‖ a ‖θ be [v1, . . . , vn], then:

• ‖ forall(a) ‖θ = v1 ∧ · · · ∧ vn
• ‖ exists(a) ‖θ = v1 ∨ · · · ∨ vn

Thus, the overall idea is simply to evaluate the expressions
after replacing the variables by their values. Now we can
define the concept of solution.

Definition 3. Let M be a MiniZinc+model defined by
M = T ;D;A;P ;F ;C;S, with T the sequence of type ex-
tensions declarations, D the sequence of declarations, A the
sequence of assignments, C the sequence of constraints, and
S the solve statement. Let θ be a well-typed substitution for
M. Then, we say that θ is a solution ofM if:

1. For every assignment a in A, ‖ a ‖θ = true.

2. For every constraint c in C, ‖ c ‖θ = true.

3. If S is of the form maximize f (respectively minimize
f) then there is no well-typed substitution σ forM ver-
ifying 1) and 2) and such that fσ > fθ (respectively
fσ < fθ)

Definition 4. Let M be a MiniZinc+model and σ be a
well-typed substitution ofM, then,

σT = {τs(x) 7→ τs(v) | (x 7→ v) ∈ σ} ∪
{τe(x) 7→ τe(v) | (x 7→ v) ∈ σ, Γ ` x :: t, τe(x) 6= zt}

Finally, we can establish the theoretical result.

Theorem 1. A well-typed substitution θ is solution of a
MiniZinc+modelM iff θT is well-typed solution ofMT .

Proof Idea

We must check that both θ verifies the three items of Defini-
tion 4 with respect toM iff θT verifies the same Definition
with respect toMT .

For items 1 and 2, the result is a consequence of a similar
auxiliary lemma applied to expressions:

For every expression e and well-typed substitution θ:

• ‖ τs(‖ e ‖θ) ‖id = ‖ τs(e) ‖θT

• ‖ τe(‖ e ‖θ) ‖id = ‖ τe(e) ‖θT

where id represents the identity substitution. These results
can be proven using structural induction on the form of e.



Analogously, item 3 requires a generalization of the following
result: For every pair of constants k, k′ of some type t in
M k ≤ k′ (with the order < extended to the new types) iff

τe(k) ∗ (b− a+ 1) + τs(k) ≤ τe(k′) ∗ (b− a+ 1) + τs(k′)

where a and b are respectively the minimum and the maxi-
mum constants in the base type for t. A detailed proof can
be found in [3].

8. CONCLUSIONS AND FUTURE WORK
The possibility of extending predefined types with new con-
stants allows the representation of many constraint satis-
faction problems in a more natural way. Some examples
are models representing circuits including undefined entries
(representing for instance failing connections), database prob-
lems including null values, problems that can be modelled
using many-valued logics, or scheduling problems with op-
tional tasks.6 Clearly the modeller could directly use MiniZ-
inc rather than MiniZinc+ to model their problem (since
MiniZinc+ is implemented by translation) but the direct
model is much less concise and much harder to get right
since extended types can interact in complex ways. Our ex-
perience in creating large models using extended types by
hand was that it was very difficult, motivating our need for
this work.

The system MiniZinc+ presented in this paper extends the
constraint system MiniZinc to include this feature. The
modeller can define new types by adding new constants to al-
ready existing types, and redefine accordingly the behaviour
of the predefined operations. We present a model transfor-
mation that converts the models in the new system into a
standard MiniZinc model. Thus, all the facilities included
in MiniZinc such as intensional lists, local definitions, sets,
or predicates are available in the new setting. The proposal
has been implemented in a working prototype.

We establish the correctness of the proposed transformation
at the semantic level. This implies formalizing a suitable
semantics for MiniZinc and MiniZinc+, which is interesting
by itself.

As future work we plan to allow the possibility of extending
already extended types. The framework will give rise to
lattices of extensions and will allow modelling more complex
problems.

6Although for these scheduling problems there are ap-
proaches [9] which support stronger propagation.

9. REFERENCES
[1] F. Azevedo. Thesis: Constraint solving over

multi-valued logics - application to digital circuits. AI
Commun., 16(2):125–127, 2003.

[2] R. Caballero, J. Luzón-Martín, and A. Tenorio-Fornés.
Test-Case Generation for SQL Nested Queries with
Existential Conditions. Electronic Communications of
the EASST, 55, 2012.

[3] R. Caballero, P. J. Stuckey, and A. Tenorio-Fornés.
Finite Type Extensions in Constraint Programming
(extended version). Technical Report SIC-05/13,
Facultad de Informática, Universidad Complutense de
Madrid, 2013. http:
//gpd.sip.ucm.es/rafa/minizinc/cptr.pdf.

[4] E. F. Codd. Extending the database relational model
to capture more meaning. ACM Trans. Database
Syst., 4(4):397–434, Dec. 1979.

[5] E. F. Codd. Missing information (applicable and
inapplicable) in relational databases. SIGMOD
Record, 15(4):53–78, 1986.

[6] A. Frisch and P. Stuckey. The proper treatment of
undefinedness in constraint languages. In I. Gent,
editor, Proceedings of the 15th International
Conference on Principles and Practice of Constraint
Programming, volume 5732 of LNCS, pages 367–382.
Springer-Verlag, 2009.

[7] IEEE Task P754. ANSI/IEEE 754-1985, Standard for
Binary Floating-Point Arithmetic. IEEE, Aug. 1985.

[8] L. D. Koninck, S. Brand, and P. J. Stuckey.
Constraints in non-boolean contexts. In ICLP
(Technical Communications), pages 117–127, 2011.

[9] P. Laborie and J. Rogerie. Reasoning with conditional
time-intervals. In D. C. Wilson and H. C. Lane,
editors, Proceedings of the Twenty-First International
Florida Artificial Intelligence Research Society
Conference, pages 555–560. AAAI Press, 2008.

[10] G. Malinowski. Many-Valued Logics. Oxford
University Press, 1993.

[11] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand,
G. J. Duck, and G. Tack. Minizinc: Towards a
standard CP modelling language. In In: Proc. of 13th
International Conference on Principles and Practice
of Constraint Programming, pages 529–543. Springer,
2007.

[12] P. J. Stuckey and G. Tack. Minizinc with functions. In
Proceedings of the 10th International Conference on
Integration of Artificial Intelligence (AI) and
Operations Research (OR) techniques in Constraint
Programming, LNCS, page to appear. Springer, 2013.

http://gpd.sip.ucm.es/rafa/minizinc/cptr.pdf
http://gpd.sip.ucm.es/rafa/minizinc/cptr.pdf

	Introduction
	Extending MiniZinc
	Syntax
	Example: Extending the Boolean type for a full adder combinational circuit

	From MiniZinc+ to MiniZinc
	Transforming MiniZinc+ expressions
	Notation
	Identifiers, constants, array and set expressions
	Array and set comprehensions
	Conditional and logical expressions
	Predefined function and predicate calls

	Transforming MiniZinc+ models
	Declarations of extended types
	Declarations of variables and parameters
	Assignments and Constraints
	Output Item
	Satisfaction and Optimization

	Experimental Results
	Theoretical results
	Conclusions and Future Work
	References

