Programming Techniques Editors

A Fast String Searching Algorithm

Robert S. Boyer
Stanford Research Institute
J Strother Moore
Xerox Palo Alto Research Center

An algorithm is presented that searches for the location, "i," of the first occurrence of a character string, "pat," in another string, "string." During the search operation, the characters of pat are matched starting with the last character of pat. The information gained by starting the match at the end of the pattern often allows the algorithm to proceed in large jumps through the text being searched. Thus the algorithm has the unusual property that, in most cases, not all of the first characters of string are inspected. The number of characters actually inspected (on the average) decreases as a function of the length of pat. For a random English pattern of length 5, the algorithm will typically inspect characters of string before finding a match at i. Furthermore, the algorithm has been implemented so that (on the average) fewer than i + patlen machine instructions are executed. These conclusions are supported with empirical evidence and a theoretical analysis of the average behavior of the algorithm. The worst case behavior of the algorithm is linear in i + patlen, assuming the availability of array space for tables linear in patlen plus the size of the alphabet.

Key Words and Phrases: bibliographic search, computational complexity, information retrieval, linear time bound, pattern matching, text editing

CR Categories: 3.74, 4.40, 5.25

1. Introduction

Suppose that pat is a string of length patlen and we wish to find the position i of the leftmost character in the first occurrence of pat in some string string:

pat: AT-THAT
string: ... WHICH-FINALLY-HALTS... AT-THAT-POINT ...
i: +

The obvious search algorithm considers each character position of string and determines whether the successive patlen characters of string starting at that position match the successive patlen characters of pat. Knuth, Morris, and Pratt [4] have observed that this algorithm is quadratic. That is, in the worst case, the number of comparisons is on the order of i * patlen.

Knuth, Morris, and Pratt have described a linear search algorithm which preprocesses pat in time linear in patlen and then searches string in time linear in i + patlen. In particular, their algorithm inspects each of the first i + patlen - 1 characters of string precisely once.

We now present a search algorithm which is usually "sublinear": It may not inspect each of the first i + patlen - 1 characters of string. By "usually sublinear" we mean that the expected value of the number of inspected characters in string is c * (i + patlen), where c < 1 and gets smaller as patlen increases. There are patterns and strings for which worse behavior is exhibited. However, Knuth, in [5], has shown that the algorithm is linear even in the worst case.

The actual number of characters inspected depends on statistical properties of the characters in pat and string. However, since the number of characters inspected on the average decreases as patlen increases, our algorithm actually speeds up on longer patterns.

Furthermore, the algorithm is sublinear in another sense: It has been implemented so that on the average it requires the execution of fewer than i + patlen machine instructions per search.

The organization of this paper is as follows: In the next two sections we give an informal description of the algorithm and show an example of how it works. We then define the algorithm precisely and discuss its efficient implementation. After this discussion we present the results of a thorough test of a particular machine code implementation of our algorithm. We compare these results to similar results for the Knuth, Morris, and Pratt algorithm and the simple search algorithm. Following this empirical evidence is a theoretical analysis which accurately predicts the performance measured. Next we describe some situations in which it may not be advantageous to use our algorithm. We conclude with a discussion of the history of our algorithm.

1 The quadratic nature of this algorithm appears when initial substrings of pat occur often in string. Because this is a relatively rare phenomenon in string searches over English text, this simple algorithm is practically linear in i + patlen and therefore acceptable for most applications.
2. Informal Description

The basic idea behind the algorithm is that more information is gained by matching the pattern from the right than from the left. Imagine that \textit{pat} is placed on top of the left-hand end of \textit{string} so that the first characters of the two strings are aligned. Consider what we learn if we fetch the \textit{pat} \textit{last} character, \textit{char}, of \textit{string}. This is the character which is aligned with the \textit{last} character of \textit{pat}.

\textbf{Observation 1.} If \textit{char} is known not to occur in \textit{pat}, then we know we need not consider the possibility of an occurrence of \textit{pat} starting at \textit{string} positions 1, 2, \ldots or \textit{patlen}: Such an occurrence would require that \textit{char} be a character of \textit{pat}.

\textbf{Observation 2.} More generally, if the last (rightmost) occurrence of \textit{char} in \textit{pat} is \textit{delta} \textit{char} characters from the right end of \textit{pat}, then we know we can slide \textit{pat} down \textit{delta} \textit{char} positions without checking for matches. The reason is that if we were to move \textit{pat} by less than \textit{delta} \textit{char}, the occurrence of \textit{char} in \textit{string} would be aligned with some character it could not possibly match: Such a match would require an occurrence of \textit{char} in \textit{pat} to the right of the rightmost.

Therefore unless \textit{char} matches the last character of \textit{pat} we can move past \textit{delta} \textit{char} characters of \textit{string} without looking at the characters skipped; \textit{delta} \textit{char} is a function of the character \textit{char} obtained from \textit{string}. If \textit{char} does not occur in \textit{pat}, \textit{delta} \textit{char} is \textit{pat} \textit{last}. If \textit{char} does occur in \textit{pat}, \textit{delta} \textit{char} is the difference between \textit{pat} \textit{last} and the position of the rightmost occurrence of \textit{char} in \textit{pat}.

Now suppose that \textit{char} matches the last character of \textit{pat}. Then we must determine whether the previous character in \textit{string} matches the second from the last character in \textit{pat}. If so, we continue back up until we have matched all of \textit{pat} (and thus have succeeded in finding a match), or else we come to a mismatch at some new \textit{char} after matching the last \textit{m} characters of \textit{pat}.

In this latter case, we wish to shift \textit{pat} down to consider the next plausible juxtaposition. Of course, we would like to shift it as far down as possible.

\textbf{Observation 3(a).} We can use the same reasoning described above—based on the mismatched character \textit{char} and \textit{delta} \textit{char}—to slide \textit{pat} down \textit{k} so as to align the two known occurrences of \textit{char}. Then we will want to inspect the character of \textit{string} aligned with the last character of \textit{pat}. Thus we will actually shift our attention down \textit{string} by \textit{k} + \textit{m}. The distance \textit{k} we should slide \textit{pat} depends on where \textit{char} occurs in \textit{pat}. If the rightmost occurrence of \textit{char} in \textit{pat} is to the right of the mismatched character (i.e. within that part of \textit{pat} we have already passed) we would have to move \textit{pat} backwards to align the two known occurrences of \textit{char}. We would not want to do this. In this case we say that \textit{delta} \textit{char} is "worthless" and slide \textit{pat} forward by \textit{k} = 1 (which is always sound). This shifts our attention down \textit{string} by \textit{1} + \textit{m}. If the rightmost occurrence of \textit{char} in \textit{pat} is to the left of the mismatch, we can slide forward by \textit{k} = \textit{delta} \textit{char} \textit{m} to align the two occurrences of \textit{char}. This shifts our attention down \textit{string} by \textit{delta} \textit{char} \textit{m} + \textit{m} = \textit{delta} \textit{char} \textit{m}.

However, it is possible that we can do better than this.

\textbf{Observation 3(b).} We know that the next \textit{m} characters of \textit{string} match the final \textit{m} characters of \textit{pat}. Let this substring of \textit{pat} be \textit{subpat}. We also know that this occurrence of \textit{subpat} in \textit{string} is preceded by a character (\textit{char}) which is different from the character preceding the terminal occurrence of \textit{subpat} in \textit{pat}. Roughly speaking, we can generalize the kind of reasoning used above and slide \textit{pat} down by some amount so that the discovered occurrence of \textit{subpat} in \textit{string} is aligned with the rightmost occurrence of \textit{subpat} in \textit{pat} which is not preceded by the character preceding its terminal occurrence in \textit{pat}. We call such a reoccurrence of \textit{subpat} in \textit{pat} a "plausible reoccurrence." The reason we said "roughly speaking" above is that we must allow for the rightmost plausible reoccurrence of \textit{subpat} to "fall off" the left end of \textit{pat}. This is made precise later.

Therefore, according to Observation 3(b), if we have matched the last \textit{m} characters of \textit{pat} before finding a mismatch, we can move \textit{pat} down by \textit{k} characters, where \textit{k} is based on the position in \textit{pat} of the rightmost plausible reoccurrence of the terminal substring of \textit{pat} having \textit{m} characters. After sliding down by \textit{k}, we want to inspect the character of \textit{string} aligned with the last character of \textit{pat}. Thus we actually shift our attention down \textit{string} by \textit{k} + \textit{m} characters. We call this distance \textit{delta} \textit{m}, and we define \textit{delta} \textit{m} as a function of the position \textit{j} in \textit{pat} at which the mismatch occurred. \textit{k} is just the distance between the terminal occurrence of \textit{subpat} and its rightmost plausible reoccurrence and is always greater than or equal to 1. \textit{m} is just \textit{patlen} − \textit{j}.

In the case where we have matched the final \textit{m} characters of \textit{pat} before failing, we clearly wish to shift our attention down \textit{string} by \textit{1} + \textit{m} or \textit{delta} \textit{char}(\textit{char}) or \textit{delta} \textit{m}(\textit{j}), according to whichever allows the largest shift. From the definition of \textit{delta} \textit{m} as \textit{k} + \textit{m} where \textit{k} is always greater than or equal to 1, it is clear that \textit{delta} \textit{m} is at least as large as \textit{1} + \textit{m}. Therefore we can shift our attention down \textit{string} by the maximum of just the two \textit{delta}s. This rule also applies when \textit{m} = 0 (i.e. when we have not yet matched any characters of \textit{pat}), because in that case \textit{j} = \textit{patlen} and \textit{delta} \textit{m}(\textit{j}) ≥ 1.

3. Example

In the following example we use an "↑" under \textit{string} to indicate the current \textit{char}. When this "pointer" is pushed to the right, imagine that it drags the right end of \textit{pat} with it (i.e. imagine \textit{pat} has a hook on its right end). When the pointer is moved to the left, keep \textit{pat} fixed with respect to \textit{string}.
Since "F" is known not to occur in pat, we can appeal to Observation 1 and move the pointer (and thus pat) down by 7:

pat: AT-THAT ..
string: WHICH-FINALLY-HALTS..--AT-THAT-POINT ..

Appealing to Observation 2, we can move the pointer down 4 to align the two hyphens:

pat: AT-THAT ..
string: WHICH-FINALLY-HALTS..--AT-THAT-POINT ..

Now char matches its opposite in pat. Therefore we step left by one:

pat: AT-THAT ..
string: WHICH-FINALLY-HALTS..--AT-THAT-POINT ..

Appealing to Observation 3(a), we can move the pointer to the right by 7 positions because "L" does not occur in pat.² Note that this only moves pat to the right by 6.

pat: AT-THAT ..
string: WHICH-FINALLY-HALTS..--AT-THAT-POINT ..

Again char matches the last character of pat. Stepping to the left we see that the previous character in string also matches its opposite in pat. Stepping to the left a second time produces:

pat: AT-THAT ..
string: WHICH-FINALLY-HALTS..--AT-THAT-POINT ..

Noting that we have a mismatch, we appeal to Observation 3(b). The delta₂ move is best since it allows us to push the pointer to the right by 7 so as to align the discovered substring "AT" with the beginning of pat.³

pat: AT-THAT ..
string: WHICH-FINALLY-HALTS..--AT-THAT-POINT ..

This time we discover that each character of pat matches the corresponding character in string so we have found the pattern. Note that we made only 14 references to string. Seven of these were required to confirm the final match. The other seven allowed us to move past the first 22 characters of string.

² Note that delta₁ would allow us to move the pointer to the right only 4 positions in order to align the discovered substring “T” in string with its second from last occurrence at the beginning of the word “THAT” in pat.
³ The delta₂ move only allows the pointer to be pushed to the right by 4 to align the hyphens.

4. The Algorithm

We now specify the algorithm. The notation pat(j) refers to the jth character in pat (counting from 1 on the left).

We assume the existence of two tables, delta₁ and delta₂. The first has as many entries as there are characters in the alphabet. The entry for some character char will be denoted by delta₁(char). The second table has as many entries as there are character positions in the pattern. The jth entry will be denoted by delta₂(j). Both tables contain non-negative integers.

The tables are initialized by preprocessing pat, and their entries correspond to the values delta₁ and delta₂ referred to earlier. We will specify their precise contents after it is clear how they are to be used.

Our search algorithm may be specified as follows:

\[
\begin{align*}
\text{stringlen} & \leftarrow \text{length of string}. \\
i & \leftarrow \text{patlen}. \\
top & : \text{if } i > \text{stringlen} \text{ then return false.} \\
& i \leftarrow \text{patlen}. \\
\text{loop: if } j = 0 \text{ then return } j + 1. \\
& \text{if } \text{string}(i) = \text{pat}(j) \text{ then } \\
& j \leftarrow j - 1. \\
& i \leftarrow i - 1. \\
\text{goto loop.} \\
\text{close; } \\
& i \leftarrow i + \max(\text{delta₁ (string}(i)), \text{delta₂ (}j)). \\
\text{goto top.}
\end{align*}
\]

If the above algorithm returns false, then pat does not occur in string. If the algorithm returns a number, then it is the position of the left end of the first occurrence of pat in string.

The delta₁ table has an entry for each character char in the alphabet. The definition of delta₁ is:

\[\text{delta₁(char)} = \text{If char does not occur in pat, then patlen; else patlen – j, where j is the maximum integer such that pat}(j) = \text{char}.\]

The delta₂ table has one entry for each of the integers from 1 to patlen. Roughly speaking, delta₂(j) is (a) the distance we can slide pat down so as to align the discovered occurrence (in string) of the last patlen–j characters of pat with its rightmost plausible reoccurrence, plus (b) the additional distance we must slide the “pointer” down so as to restart the process at the right end of pat. To define delta₂ precisely we must define the rightmost plausible reoccurrence of a terminal substring of pat. To this end let us make the following conventions: Let $ be a character that does not occur in pat and let us say that if i is less than 1 then pat(i) is $. Let us also say that two sequences of characters [c₁, . . . , cₙ] and [d₁, . . . , dₙ] “unify” if for all i from 1 to n either cᵢ = dᵢ, or cᵢ = $ or dᵢ = $.

Finally, we define the position of the rightmost plausible reoccurrence of the terminal substring which starts at position j + 1, pr(rj), for j from 1 to patlen, to be the greatest k less than or equal to patlen such that...
Note that when \(j = \text{patlen} \), the two sequences \([\text{pat}(\text{patlen} + 1) \ldots \text{pat}([\text{pat}(\text{patlen} + 1) \ldots \text{pat}([\text{pat}(\text{patlen} - 1)]) \) unify and either \(k \leq 1 \) or \(\text{pat}(k - 1) \neq \text{pat}(j) \).\footnote{Note that when \(j = \text{patlen} \), the two sequences \([\text{pat}(\text{patlen} + 1) \ldots \text{pat}([\text{pat}(\text{patlen} + 1) \ldots \text{pat}([\text{pat}(\text{patlen} - 1)]) \) unify and either \(k \leq 1 \) or \(\text{pat}(k - 1) \neq \text{pat}(j) \).} (That is, the position of the rightmost plausible reoccurrence of the substring \(\text{subpat} \), which starts at \(j + 1 \), is the rightmost place where \(\text{subpat} \) occurs in \(\text{pat} \) and is not preceded by the character \(\text{pat}(j) \) which precedes its terminal occurrence—with suitable allowances for either the reoccurrence or the preceding character to fall beyond the left end of \(\text{pat} \). Note that \(\text{rpr}(j) \) may be negative because of these allowances.)

Thus the distance we must slide \(\text{pat} \) to align the discovered substring which starts at \(j + 1 \) with its rightmost plausible reoccurrence is \(j + 1 - \text{rpr}(j) \). The distance we must move to get back to the end of \(\text{pat} \) is \(\text{patlen} - j \). \(\delta_2(j) \) is just the sum of these two. Thus we define \(\delta_2 \) as follows:

\[
\delta_2(j) = \text{patlen} + 1 - \text{rpr}(j).
\]

To make this definition clear, consider the following two examples:

<table>
<thead>
<tr>
<th>(j)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{pat})</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>(\delta_2(j))</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>11</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

To make this definition clear, consider the following two examples:

<table>
<thead>
<tr>
<th>(j)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{pat})</td>
<td>A</td>
<td>B</td>
<td>Y</td>
<td>X</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>Y</td>
<td>X</td>
</tr>
<tr>
<td>(\delta_2(j))</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>7</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

5. Implementation Considerations

The most frequently executed part of the algorithm is the code that embodies Observations 1 and 2. The following version of our algorithm is equivalent to the original version provided that \(\delta_2 \) is a table containing the same entries as \(\delta_1 \) except that \(\delta_2(\text{pat}(\text{patlen})) \) is set to an integer \(\text{large} \), which is greater than \(\text{stringlen} + \text{patlen} \) (while \(\delta_1(\text{pat}(\text{patlen})) \) is always 0).

\[
\text{stringlen} \leftarrow \text{length of string}.
\]

\[
i \leftarrow \text{patlen}.
\]

\[
\text{if } i > \text{stringlen} \text{ then return false}.
\]

fast:

\[
i \leftarrow i + \delta_2(\text{string}(i)).
\]

\[
i \leftarrow i + \text{large} \text{ if } i > \text{stringlen} \text{ then goto fast}.
\]

undo:

\[
i \leftarrow (i - \text{large}) - 1.
\]

\[
j \leftarrow \text{patlen} - 1.
\]

slow:

\[
i \leftarrow \text{string}(i) = \text{pat}(j)
\]

\[
\text{then}
\]

\[
j \leftarrow j - 1.
\]

\[
i \leftarrow i - 1.
\]

\[
\text{goto slow}.
\]

\[
i \leftarrow i + \max(\delta_1(\text{string}(i)), \delta_2(j)).
\]

\[
\text{goto fast}.
\]

Of course we do not actually have two versions of \(\delta_2 \). Instead we use only \(\delta_0 \) and in place of \(\delta_1 \) in the max expression we merely use the \(\delta_0 \) entry unless it is large (in which case we use 0).

Note that the fast loop just scans down \(\text{string} \), effectively looking for the last character \(\text{pat}(\text{patlen}) \) in \(\text{pat} \), skipping according to \(\delta_1 \). \(\delta_2 \) can be ignored in this case since no terminal substring has yet been matched, i.e. \(\delta_2(\text{patlen}) \) is always less than or equal to the corresponding \(\delta_1 \). Control leaves this loop only when \(i \) exceeds \(\text{stringlen} \). The test at undo decides whether this situation arose because all of \(\text{string} \) has been scanned or because \(\text{pat}(\text{patlen}) \) was hit (which caused \(i \) to be incremented by large). If the first case obtains, \(\text{pat} \) does not occur in \(\text{string} \) and the algorithm returns false. If the second case obtains, then \(i \) is restored (by subtracting \(\text{large} \)) and we enter the slow loop which backs up checking for matches. When a mismatch is found we skip ahead by the maximum of the original \(\delta_1 \) and \(\delta_2 \) and reenter the fast loop. We estimate that 80 percent of the time spent in searching is spent in the fast loop.

The fast loop can be coded in four machine instructions:

fast:

\[
\text{char} \leftarrow \text{string}(i).
\]

\[
i \leftarrow i + \delta_0(\text{char}).
\]

\[
\text{skip the next instruction if } i > \text{stringlen}.
\]

\[
\text{goto fast}.
\]

undo:

\[
\ldots
\]

We have implemented this algorithm in PDP-10 assembly language. In our implementation we have reduced the number of instructions in the fast loop to three by translating \(i \) down by \(\text{stringlen} \); we can then test \(i \) against 0 and conditionally jump to fast in one instruction. On a byte addressable machine it is easy to implement \(\text{char} \leftarrow \text{string}(i) \) and \(\text{i} \leftarrow 0 + \delta_0(\text{char}) \) in one instruction each. Since our implementation was in PDP-10 assembly language we had to employ byte pointers to access characters in \(\text{string} \). The PDP-10 instruction set provides an instruction for incrementing a byte pointer by one but not by other amounts. Our code therefore employs an array of 200 indexing byte pointers which we use to access characters in \(\text{string} \) in one indexed instruction (after computing the index) at the cost of a small (five-instruction) overhead every 200 characters. It should be noted that this trick only makes up for the lack of direct byte addressing; one can expect our algorithm to run somewhat faster on a byte-addressable machine.

6. Empirical Evidence

We have exhaustively tested the above PDP-10 implementation on random test data. To gather the test patterns we wrote a program which randomly selects a substring of a given length from a source string. We used this program to select 300 patterns of...
length \textit{patlen}, for each \textit{patlen} from 1 to 14. We then used our algorithm to search for each of the test patterns in its source string, starting each search in a random position somewhere in the first half of the source string. All of the characters for both the patterns and the strings were in primary memory (rather than a secondary storage medium such as a disk).

We measured the cost of each search in two ways: the number of references made to \textit{string} and the total number of machine instructions that actually got executed (ignoring the preprocessing to set up the two tables).

By dividing the number of references to \textit{string} by the number of characters \(i - 1\) passed before the pattern was found (or \textit{string} was exhausted), we obtained the number of references to \textit{string} per character passed. This measure is independent of the particular implementation of the algorithm. By dividing the number of instructions executed by \(i - 1\), we obtained the average number of instructions spent on each character passed. This measure depends upon the implementation, but we feel that it is meaningful since the implementation is a straightforward encoding of the algorithm as described in the last section.

We then averaged these measures across all 300 samples for each pattern length.

Because the performance of the algorithm depends upon the statistical properties of \textit{pat} and \textit{string} (and hence upon the properties of the source string from which the test patterns were obtained), we performed this experiment for three different kinds of source strings, each of length 10,000. The first source string consisted of a random sequence of 0's and 1's. The second source string was a piece of English text obtained from an online manual. The third source string was a random sequence of characters from a 100-character alphabet.

In Figure 1 the average number of references to \textit{string} per character in \textit{string} passed is plotted against the pattern length for each of three source strings. Note that the number of references to \textit{string} per character passed is less than 1. For example, for an English pattern of length 5, the algorithm typically inspects 0.24 characters for every character passed. That is, for every reference to \textit{string} the algorithm passes about 4 characters, or, equivalently, the algorithm inspects only about a quarter of the characters it passes when searching for a pattern of length 5 in an English text string. Furthermore, the number of references per character drops as the patterns get longer. This evidence supports the conclusion that the algorithm is "sublinear" in the number of references to \textit{string}.

For comparison, it should be noted that the Knuth, Morris, and Pratt algorithm references \textit{string} precisely 1 time per character passed. The simple search algorithm references \textit{string} about 1.1 times per character passed (determined empirically with the English sample above).

In Figure 2 the average number of instructions executed per character passed is plotted against the pattern length. The most obvious feature to note is that the search speeds up as the patterns get longer. That is, the total number of instructions executed in order to pass over a character decreases as the length of the pattern increases.

Figure 2 also exhibits a second interesting feature of our implementation of the algorithm: For sufficiently
large alphabets and sufficiently long patterns the algorithm executes fewer than 1 instruction per character passed. For example, in the English sample, less than 1 instruction per character is executed for patterns of length 5 or more. Thus this implementation is “sublinear” in the sense that it executes fewer than \(i + \text{patlen} \) instructions before finding the pattern at \(i \). This means that no algorithm which references each character it passes could possibly be faster than ours in these cases (assuming it takes at least one instruction to reference each character).

The best alternative algorithm for finding a single substring is that of Knuth, Morris, and Pratt. If that algorithm is implemented in the extraordinarily efficient way described in [4, pp. 11-12] and [2, Item 179], then the cost of looking at a character can be expected to be at least \(3 - p \) instructions, where \(p \) is the probability that a character just fetched from \text{string} \ is equal to a given character of \text{pat}. Hence a horizontal line at \(3 - p \) instructions/character represents the best (and, practically, the worst) the Knuth, Morris, and Pratt algorithm can achieve.

The simple string searching algorithm (when coded with a 3-instruction fast loop\(^6\)) executes about 3.3 instructions per character (determined empirically on the English sample above).

As noted, the preprocessing time for our algorithm (and for Knuth, Morris, and Pratt) has been ignored. The cost of this preprocessing can be made linear in \text{patlen} \ (this is discussed further in the next section) and is trivial compared to a reasonably long search. We made no attempt to code this preprocessing efficiently. However, the average cost (in our implementation) ranges from 160 instructions (for strings of length 1) to about 500 instructions (for strings of length 14). It should be explained that our code uses a block transfer instruction to clear the 128-word \text{delta} \ table at the beginning of the preprocessing, and we have counted this single instruction as though it were 128 instructions. This accounts for the unexpectedly large instruction count for preprocessing a one-character pattern.

7. Theoretical Analysis

The preprocessing for \text{delta} \ requires an array the size of the alphabet. Our implementation first initializes all entries of this array to \text{patlen} \ and then sets up \text{delta} \ in a linear scan through the pattern. Thus our preprocessing for \text{delta} \ is linear in \text{patlen} plus the size of the alphabet.

At a slight loss of efficiency in the search speed one could eliminate the initialization of the \text{delta} \ array by storing with each entry a key indicating the number of times the algorithm has previously been called. This approach still requires initializing the array the first time the algorithm is used.

To implement our algorithm for extremely large alphabets, one might implement the \text{delta} \ table as a hash array. In the worst case, accessing \text{delta} \ during the search itself could require order \text{patlen} instructions, significantly impairing the speed of the algorithm. Hence the algorithm as it stands almost certainly does not run in time linear in \(i + \text{patlen} \) for infinite alphabets.

Knuth, in analyzing the algorithm, has shown that it still runs in linear time when \text{delta} \ is omitted, and this result holds for infinite alphabets. Doing this, however, will drastically degrade the performance of the algorithm on the average. In [5] Knuth exhibits an algorithm for setting up \text{delta} \ in time linear in \text{patlen}.

From the preceding empirical evidence, the reader can conclude that the algorithm is quite good in the average case. However, the question of its behavior in the worst case is nontrivial. Knuth has recently shed some light on this question. In [5] he proves that the execution of the algorithm (after preprocessing) is linear in \(i + \text{patlen} \), assuming the availability of array space linear in \text{patlen} \ plus the size of the alphabet. In particular, he shows that in order to discover that \text{pat} \ does not occur in the first \(i \) characters of \text{string}, at most \(6 \times i \) characters from \text{string} \ are matched with characters in \text{pat}. He goes on to say that the constant 6 is probably much too large, and invites the reader to improve the theorem. His proof reveals that the linearity of the algorithm is entirely due to \text{delta}.

We now analyze the average behavior of the algorithm by presenting a probabilistic model of its performance. As will become clear, the results of this analysis will support the empirical conclusions that the algorithm is usually “sublinear” both in the number of references to \text{string} \ and the number of instructions executed (for our implementation).

The analysis below is based on the following simplifying assumption: Each character of \text{pat} \ and \text{string} \ is an independent random variable. The probability that a character from \text{pat} \ or \text{string} \ is equal to a given character of the alphabet is \(p \).

Imagine that we have just moved \text{pat} \ down \text{string} \ to a new position and that this position does not yield a match. We want to know the expected value of the ratio between the cost of discovering the mismatch and the distance we get to slide \text{pat} \ down upon finding the mismatch. If we define the cost to be the total number of references made to \text{string} \ before discovering the mismatch, we can obtain the expected value of the average number of references to \text{string} \ per character

\[^{6}\text{This implementation automatically compiles} \text{pat} \text{ into a machine code program which implicitly has the skip table built in and which is executed to perform the search itself. In [2] they compile code which uses the PDP-10 capability of fetching a character and incrementing a byte address in one instruction. This compiled code executes at least two or three instructions per character fetched from \text{string}, depending on the outcome of a comparison of the character to one from \text{pat}.}\]

\[^{6}\text{This loop avoids checking whether} \text{string} \text{ is exhausted by assuming that the first character of} \text{pat} \text{ occurs at the end of} \text{string}. \text{This can be arranged ahead of time. The loop actually uses the same three instruction codes used by the above-referenced implementation of the Knuth, Morris, and Pratt algorithm.}\]
passed. If we define the cost to be the total number of machine instructions executed in discovering the mismatch, we can obtain the expected value of the number of instructions executed per character passed.

In the following we say "only the last m characters of pat match" to mean "the last m characters of pat match the corresponding m characters in string but the $(m + 1)$-th character from the right end of pat falls to match the corresponding character in string.""

The expected value of the ratio of cost to characters passed is given by:

$$\left(\sum_{m=0}^{patlen-1} cost(m) \cdot prob(m) \right) / \left(\sum_{m=0}^{patlen-1} prob(m) \cdot \left(\sum_{k=1}^{patlen} skip(m,k) \cdot k \right) \right)$$

where $cost(m)$ is the cost associated with discovering that only the last m characters of pat match; $prob(m)$ is the probability that only the last m characters of pat match; and $skip(m,k)$ is the probability that, supposing only the last m characters of pat match, we will get to slide pat down by k.

Under our assumptions, the probability that only the last m characters of pat match is:

$$prob(m) = p^m(1-p)/(1-p^{patlen}).$$

The denominator is due to the assumption that a mismatch exists.

The probability that we will get to slide pat down by k is determined by analyzing how i is incremented. However, note that even though we increment i by the maximum max of the two $deltas$, this will actually only slide pat down by $max - m$, since the increment of i also includes the m necessary to shift our attention back to the end of pat. Thus when we analyze the contributions of the two $deltas$ we speak of the amount by which they allow us to slide pat down, rather than the amount by which we increment i. Finally, recall that if the mismatched character $char$ occurs in the already matched final m characters of pat, then $delta_i$ is worthless and we always slide by $delta_i$. The probability that $delta_i$ is worthless is just $(1 - (1-p)^m)$. Let us call this $prob(delta_i, worthless(m))$.

The conditions under which $delta_i$ will naturally let us slide forward by k can be broken down into four cases as follows: (a) $delta_i$ will let us slide down by 1 if $char$ is the $(m + 2)$-th character from the righthand end of pat (or else there are no more characters in pat) and $char$ does not occur to the right of that position (which has probability $(1-p)^m$ if $m + 1 = patlen \text{ then } 1 \text{ else } p$). (b) $delta_i$ allows us to slide down k, where $1 < k < patlen - m$, provided the rightmost occurrence of $char$ in pat is $m + k$ characters from the right end of pat (which has probability $p \cdot (1-p)^{k+m-1}$). (c) When $patlen - m > 1$, $delta_i$ allows us to slide past $patlen - m$ characters if $char$ does not occur in pat at all (which has probability $(1-p)^{patlen-1}$ given that we know $char$ is not the $(m + 1)$-th character from the right end of pat). Finally, (d) $delta_i$ never allows a slide longer than $patlen - m$ (since the maximum value of $delta_i$ is $patlen$).

Thus we can define the probability $prob(delta_i(m, k)$ that when only the last m characters of pat match, $delta_i$ will allow us to move down by k as follows:

$$prob(delta_i(m, k) = \begin{cases} \text{if } m + 1 = patlen \text{ then } 1 \text{ else } p \text{;} \\
\text{if } 1 < k < patlen - m \text{ then } p \cdot (1-p)^{k+m-1}; \\
\text{if } k = patlen - m \text{ then } (1-p)^{patlen-1}; \\
\text{else } (i.e. k > patlen - m) 0.
\end{cases}$$

(It should be noted that we will not put these formulas into closed form, but will simply evaluate them to verify the validity of our empirical evidence.)

We now perform a similar analysis for $delta_2$; $delta_2$ lets us slide down by k if (a) doing so sets up an alignment of the discovered occurrence of the last m characters of pat in string with a plausible reoccurrence of those m characters elsewhere in pat, and (b) no smaller move will set up such an alignment. The probability $probpr(m, k)$ that the terminal substring of pat of length m has a plausible reoccurrence k characters to the left of its first character is:

$$probpr(m, k) = \begin{cases} \text{if } m + 1 < patlen \text{ then } 1 - p^m; \\
\text{else } p^{patlen-k} \text{.}
\end{cases}$$

Of course, k is just the distance $delta_i$ lets us slide down by k if (a) doing so sets up an alignment of the discovered occurrence of the last m characters of pat in string with a plausible reoccurrence of those m characters elsewhere in pat, and (b) no smaller move will set up such an alignment. The probability $probpr(m, k)$ that the terminal substring of pat of length m has a plausible reoccurrence k characters to the left of its first character is:

$$probpr(m, k) = \begin{cases} \text{if } m + 1 < patlen \text{ then } 1 - p^m; \\
\text{else } p^{patlen-k} \text{.}
\end{cases}$$

We slide down by the maximum allowed by the two $deltas$ (taking adequate account of the possibility that $delta_i$ is worthless). If the values of the $deltas$ were independent, the probability that we would actually slide down by k would just be the sum of the products of the probabilities that one of the $deltas$ allows a move of k while the other allows a move of less than or equal to k.

However, the two moves are not entirely independent. In particular, consider the possibility that $delta_i$ is worthless. Then the $char$ just fetched occurs in the last m characters of pat and does not match the $(m + 1)$-th. But if $delta_2$ gives a slide of 1 it means that sliding these m characters to the left by 1 produces a match. This implies that all of the last m characters of pat are equal to the character $m + 1$ from the right. But this character is known not to be $char$. Thus $char$ cannot occur in the last m characters of pat, violating the hypothesis that $delta_i$ was worthless. Therefore if $delta_i$ is worthless, the probability that $delta_2$ specifies a skip of 1 is 0 and the probability that it specifies one of the larger skips is correspondingly increased.
This interaction between the two deltas is also felt (to a lesser extent) for the next m possible delta$_2$'s, but we ignore these (and in so doing accept that our analysis may predict slightly worse results than might be expected since we allow some short delta$_2$ moves when longer ones would actually occur).

The probability that delta$_2$ will allow us to slide down by k when only the last m characters of pat match, assuming that delta$_1$ is worthless, is:

$$\text{probdelta}_2(m, k) = \begin{cases} 0 & \text{if } k = 1 \\ \text{probr}(m, k) \left(1 - \sum_{n=1}^{k-1} \text{probdelta}_2(m, n)\right) & \text{else} \end{cases}$$

Finally, we can define skip(m, k), the probability that we will slide down by k if only the last m characters of pat match:

$$\text{skip}(m, k) = \begin{cases} \text{probdelta}_1(m, 1) \times \text{probdelta}_2(m, 1) & \text{if } k = 1 \\ \text{probdelta}_1(\text{worthless}(m)) \times \text{probdelta}_2(m, k) + \sum_{n=1}^{k-1} \text{probdelta}_1(m, k) \times \text{probdelta}_2(m, n) + \sum_{n=1}^{k-1} \text{probdelta}_1(m, n) \times \text{probdelta}_2(m, k) + \text{probdelta}_1(m, k) \times \text{probdelta}_2(m, k) & \text{else} \end{cases}$$

Now let us consider the two alternative cost functions. In order to analyze the number of references to string per character passed over, cost(m) should just be $m + 1$, the number of references necessary to confirm that only the last m characters of pat match.

In order to analyze the number of instructions executed per character passed over, cost(m) should be the total number of instructions executed in discovering that only the last m characters of pat match. By inspection of our PDP-10 code:

$$\text{cost}(m) = \begin{cases} 3 & \text{if } m = 0 \\ 12 + 6m & \text{else} \end{cases}$$

We have computed the expected value of the ratio of cost per character skipped by using the above formulas (and both definitions of cost). We did so for pattern lengths running from 1 to 14 (as in our empirical evidence) and for the values of p appropriate for the three source strings used: For a random binary string p is 0.5, for an arbitrary English string it is (approximately) 0.09, and for a random string over a 100-character alphabet it is 0.01. The value of p for English was determined using a standard frequency count for the alphabetic characters [3] and empirically determining the frequency of space, carriage return, and line feed to be 0.23, 0.03, and 0.03, respectively.

In Figure 3 we have plotted the theoretical ratio of references to string per character passed over against the pattern length. The most important fact to observe in Figure 3 is that the algorithm can be expected to make fewer than $i + \text{patlen}$ references to string before finding the pattern at location i. For example, for English text strings of length 5 or greater, the algorithm may be expected to make less than $(i + 5)/4$ references to string. The comparable figure for the Knuth,
Morris, and Pratt algorithm is of course precisely \(i \). The figure for the intuitive search algorithm is always greater than or equal to \(i \).

The reason the number of references per character passed decreases more slowly as \(patlen \) increases is that for longer patterns the probability is higher that the character just fetched occurs somewhere in the pattern, and therefore the distance the pattern can be moved forward is shortened.

In Figure 4 we have plotted the theoretical ratio of the number of instructions executed per character passed versus the pattern length. Again we find that our implementation of the algorithm can be expected (for sufficiently large alphabets) to execute fewer than \(i + patlen \) instructions before finding the pattern at location \(i \). That is, our implementation is usually "sublinear" even in the number of instructions executed. The comparable figure for the Knuth, Morris, and Pratt algorithm is at best \((3 - p) \times (i + patlen - 1) \). For the simple search algorithm the expected value of the number of instructions executed per character passed is (approximately) 3.28 (for \(p = 0.09 \)).

It is difficult to fully appreciate the role played by \(\delta_2 \). For example, if the alphabet is large and patterns are short, then computing and trying to use \(\delta_2 \) probably does not pay off much (because the chances are high that a given character in \(string \) does not occur anywhere in \(pat \) and one will almost always stay in the fast loop ignoring \(\delta_2 \)). Conversely, \(\delta_2 \) becomes very important when the alphabet is small and the patterns are long (for now execution will frequently leave the fast loop; \(\delta_1 \) will in general be small because many of the characters in the alphabet will occur in \(pat \) and only the terminal substring observations could cause large shifts). Despite the fact that it is difficult to appreciate the role of \(\delta_2 \), it should be noted that the linearity result for the worst case behavior of the algorithm is due entirely to the presence of \(\delta_2 \).

Comparing the empirical evidence (Figures 1 and 2) with the theoretical evidence (Figures 3 and 4, respectively), we note that the model is completely accurate for English and the 100-character alphabet. The model predicts much better behavior than we can obtain the \(i \)th character in it in one instruction after computing its byte address. However, if \(string \) is actually on secondary storage, then the characters in it must be read in. This transfer will entail some time delay equivalent to the execution of, say, \(w \) instructions per character brought in, and (because of the nature of computer I/O) all of the first \(i + patlen - 1 \) characters will eventually be brought in whether we actually reference all of them or not. (A representative figure for \(w \) for paged transfers from a fast disk is 5 instructions/character.) Thus there may be a hidden cost of \(w \) instructions per character passed over.

According to the statistics presented above one might expect our algorithm to be approximately three times faster than the Knuth, Morris, and Pratt algorithm (for, say, English strings of length 6) since that algorithm executes about three instructions to our one. However, if the CPU is idle for the \(w \) instructions necessary to read each character, the actual ratios are closer to \(w + 3 \) instructions than to \(w + 1 \) instructions. Thus for paged disk transfers our algorithm can only be expected to be roughly \(3/5 \) faster (i.e. \(5 + 3 \) instructions to \(5 + 1 \) instructions) if we assume that we are idle during I/O. Thus for large values of \(w \) the difference between the various algorithms diminishes if the CPU is idle during I/O.

Of course, in general, programmers (or operating systems) try to avoid the situation in which the CPU is idle while awaiting an I/O transfer by overlapping I/O with some other computation. In this situation, the chances are that our algorithm will be I/O bound (we will search a page faster than it can be brought in), and indeed so will that of Knuth, Morris, and Pratt if \(w > 3 \). Our algorithm will require that fewer CPU cycles be devoted to the search itself so that if there are other jobs to perform, there will still be an overall advantage in using the algorithm.

However, in summary, the theoretical analysis supports the conclusion that on the average the algorithm is sublinear in the number of references to \(string \) and, for sufficiently large alphabets and patterns, sublinear in the number of instructions executed (in our implementation).

8 Caveat Programmer

It should be observed that the preceding analysis has assumed that \(string \) is entirely in primary memory and that we can obtain the \(i \)th character in it in one instruction after computing its byte address. However, if \(string \) is actually on secondary storage, then the characters in it must be read in. This transfer will entail some time delay equivalent to the execution of, say, \(w \) instructions per character brought in, and (because of the nature of computer I/O) all of the first \(i + patlen - 1 \) characters will eventually be brought in whether we actually reference all of them or not. (A representative figure for \(w \) for paged transfers from a fast disk is 5 instructions/character.) Thus there may be a hidden cost of \(w \) instructions per character passed over.

According to the statistics presented above one might expect our algorithm to be approximately three times faster than the Knuth, Morris, and Pratt algorithm (for, say, English strings of length 6) since that algorithm executes about three instructions to our one. However, if the CPU is idle for the \(w \) instructions necessary to read each character, the actual ratios are closer to \(w + 3 \) instructions than to \(w + 1 \) instructions. Thus for paged disk transfers our algorithm can only be expected to be roughly \(3/5 \) faster (i.e. \(5 + 3 \) instructions to \(5 + 1 \) instructions) if we assume that we are idle during I/O. Thus for large values of \(w \) the difference between the various algorithms diminishes if the CPU is idle during I/O.

Of course, in general, programmers (or operating systems) try to avoid the situation in which the CPU is idle while awaiting an I/O transfer by overlapping I/O with some other computation. In this situation, the chances are that our algorithm will be I/O bound (we will search a page faster than it can be brought in), and indeed so will that of Knuth, Morris, and Pratt if \(w > 3 \). Our algorithm will require that fewer CPU cycles be devoted to the search itself so that if there are other jobs to perform, there will still be an overall advantage in using the algorithm.

8 We have implemented a version of our algorithm for searching through disk files. It is available as the subroutine FILEPOS in the latest release of INTERLISP-10. This function uses the TENEX page mapping capability to identify one file page at a time with a buffer area in virtual memory. In addition to being faster than reading the page by conventional methods, this means the operating system's memory management takes care of references to pages which happen to still be in memory, etc. The algorithm is as much as 50 times faster than the standard INTERLISP-10 FILEPOS function (depending on the length of the pattern).
There are several situations in which it may not be advisable to use our algorithm. If the expected penetration \(i \) at which the pattern is found is small, the preprocessing time is significant and one might therefore consider using the obvious intuitive algorithm.

As previously noted, our algorithm can be most efficiently implemented on a byte-addressable machine. On a machine that does not allow byte addresses to be incremented and decremented directly, two possible sources of inefficiency must be addressed: The algorithm typically skips through \(\text{string} \) in steps larger than 1, and the algorithm may back up through \(\text{string} \). Unless these processes are coded efficiently, it is probably not worthwhile to use our algorithm.

Furthermore, it should be noted that because the algorithm can back up through \(\text{string} \), it is possible to cross a page boundary more than once. We have not found this to be a serious source of inefficiency. However, it does require a certain amount of code to handle the necessary buffering (if page I/O is being handled directly as in our FFILEPOS). One beauty of the Knuth, Morris, and Pratt algorithm is that it avoids this problem altogether.

A final situation in which it is unadvisable to use our algorithm is if the string matching problem to be solved is actually more complicated than merely finding the first occurrence of a single substring. For example, if the problem is to find the first of several possible substrings or to identify a location in \(\text{string} \) that searches for multiple patterns or instances of a regular expression, it is much more advantageous to use an algorithm such as that of Aho and Corasick [1].

It may of course be possible to design an algorithm that searches for multiple patterns or instances of regular expressions by using the idea of starting the match at the right end of the pattern. However, we have not designed such an algorithm.

9. Historical Remarks

Our earliest formulation of the algorithm involved only \(\text{delta}_1 \) and implemented Observations 1, 2, and 3(a). We were aware that we could do something along the lines of \(\text{delta}_2 \) and Observation 3(b), but did not precisely formulate it. Instead, in April 1974, we coded the \(\text{delta}_1 \) version of the algorithm in Interlisp, merely to test its speed. We considered coding the algorithm in PDP-10 assembly language but abandoned the idea as impractical because of the cost of incrementing byte pointers by arbitrary amounts.

We have since learned that R.W. Gosper, of Stanford University, simultaneously and independently discovered the \(\text{delta}_1 \) version of the algorithm (private communication).

In April 1975, we started thinking about the implementation again and discovered a way to increment byte pointers by indexing through a table. We then formulated a version of \(\text{delta}_2 \) and coded the algorithm more or less as it is presented here. This original definition of \(\text{delta}_2 \) differed from the current one in the following respect: If only the last \(m \) characters of \(\text{pat} \) (call this substring \(\text{subpat} \)) were matched, \(\text{delta}_2 \) specified a slide to the second from the rightmost occurrence of \(\text{subpat} \) in \(\text{pat} \) (allowing this occurrence to “fall off” the left end of \(\text{pat} \)) but without any special consideration of the character preceding this occurrence.

The average behavior of that version of the algorithm was virtually indistinguishable from that presented in this paper for large alphabets, but was somewhat worse for small alphabets. However, its worst case behavior was quadratic (i.e. required on the order of \(i \times \text{patlen} \) comparisons). For example, consider searching for a pattern of the form \(\text{CA(BA)}^r \) in a string of the form \((\text{XX})^r(\text{AA})(\text{BA})^r\) (e.g. \(r = 2 \), \(\text{pat} = \text{"CABABA,"} \) and \(\text{string} = \text{"XXXXAABA-BAXXXXXAABABA ...".} \)). The original definition of \(\text{delta}_2 \) allowed only a slide of 2 if the last “BA” of \(\text{pat} \) was matched before the next “A” failed to match. Of course in this situation this only sets up another mismatch at the same character in \(\text{string} \), but the algorithm had to reinspect the previously inspected characters to discover it. The total number of references to \(\text{string} \) in passing \(i \) characters in this situation was \((r + 1) * (r + 2) * i / (4r + 2) \), where \(r = (\text{patlen} - 2) / 2 \). Thus the number of references was on the order of \(i \times \text{patlen} \).

However, on the average the algorithm was blindingly fast. To our surprise, it was several times faster than the string searching algorithm in the Tenex TECO text editor. This algorithm is reputed to be quite an efficient implementation of the simple search algorithm because it searches for the first character of \(\text{pat} \) one full word at a time (rather than one byte at a time).

In the summer of 1975, we wrote a brief paper on the algorithm and distributed it on request.

In December 1975, Ben Kuipers of the M.I.T. Artificial Intelligence Laboratory read the paper and brought to our attention the improvement to \(\text{delta}_2 \) concerning the character preceding the terminal substring and its reoccurrence (private communication). Almost simultaneously, Donald Knuth of Stanford University suggested the same improvement and observed that the improved algorithm could certainly make no more than order \((i + \text{patlen}) \times \log(\text{patlen})\) references to \(\text{string} \) (private communication).

We mentioned this improvement in the next revision of the paper and suggested an additional improvement, namely the replacement of both \(\text{delta}_1 \) and \(\text{delta}_2 \) by a single two-dimensional table. Given the mismatched char from \(\text{string} \) and the position \(j \) in \(\text{pat} \) at which the mismatch occurred, this table indicated the distance to the last occurrence (if any) of the substring \([\text{char}, \text{pat}(j + 1), \ldots, \text{pat}(\text{patlen})]\) in \(\text{pat} \). The revised paper concluded with the question of whether this improvement or a similar one produced an algorithm...
Irvine, has suggested (private communication) that the implementation of the algorithm can be improved by fetching larger bytes in the fast loop (i.e., bytes containing several characters) and using a hash array to encode the extended table. Provided the difficulties at the boundaries of the pattern are handled efficiently, this could improve the behavior of the algorithm enormously since it exponentially increases the effective size of the alphabet and reduces the frequency of common characters.

Acknowledgments. We would like to thank B. Kuipers, of the M.I.T. Artificial Intelligence Laboratory, for his suggestion concerning \(\delta \) and D. Knuth, of Stanford University, for his analysis of the improved algorithm. We are grateful to the anonymous reviewer for suggesting the inclusion of evidence comparing our algorithm with that of Knuth, Morris, and Pratt, and for the warnings contained in Section 8. B. Mont-Reynaud, of the Stanford Research Institute, and L. Guibas, of Xerox Palo Alto Research Center, proofread drafts of this paper and suggested several clarifications. We would also like to thank E. Taft and E. Fiala of Xerox Palo Alto Research Center for their advice regarding machine coding the algorithm.

Received June 1975; revised April 1976

References

Professional Activities

Calendar of Events

ACM's calendar policy is to list open computer science meetings that are held on a not-for-profit basis and in the calendar are educational seminars, institutes, and courses. Submittals shall be substantiated with name of the sponsoring organization, fee schedule, and chairman's name and full address.

One telephone number for those interested in attending a meeting will be given when a number is specified for this purpose in the news release text or in a direct communication to this periodical.

Requests for ACM sponsorship or cooperation should be addressed to Chairman, Conference Committee, Dr. W.S. Dorsey, Dept. 303/594 Rockwell International Corp., 12000 New York Blvd., Long Beach, Calif.

For European events, a copy of the request should also be sent to the European Regional Representative. Technical Meetings. Forms for this purpose can be obtained from ACM Headquarters or from the European Regional Representative. Lead time should include 2 months (3 months if for Europe) from the request for any publicity to appear in Communications.

Events for which ACM or a subunit of ACM is a sponsor or collaborator are indicated by •. Dates precede titles.

In this issue the calendar is given to April 1978 and all events are shown first: they will appear next month as Previous Listings.

NEW LISTINGS

16-17 November 1977
First ACM Workshop on Future Directions in Computer Architecture, Austin, Tex. Sponsors: ACM SIGARCH, IEEE-CS TCCA, and University of Texas at Austin. Conf. chmn: G. Jack Ligiyoski. Dept. of EECS, University of Texas, Austin, TX 78712.
2-3 December 1977
3 March 1978
12-17 March 1978
24-30 March 1978
3rd Symposium on Programming, Paris, France. Sponsor: Centre de la Recherche Scientifique (CNRS) and Université Pierre et Marie Curie. Contact Sécrétariat du Colloque, Institut de Programmation, 4, Place Jussieu, 75250 Paris Cedex 05, France.
29-31 March 1978
Conference on Information Sciences and Systems, Johns Hopkins University, Baltimore, Md. Contact: 1978 CISS, Department of Electrical Engineering, Johns Hopkins University, Baltimore, MD 21218.
2-7 April 1978
4-8 April 1978
15-19 May 1978
22-25 May 1978
Sixth International CODATA Conference, Taormina, Italy. Sponsors: International Council of Scientific Unions, on Data for Science and Technology, Sponsors: Secretary, 51, Boulevard de Montmorency, 75016 Paris, France.
24-26 May 1978
26 May 1978
Computer Algebra Symposium, University of Wisconsin, Madison, Wis. Sponsor: SIAM in cooperation with ACM SIGSAM. Contact: Sym. chmn: George E. Collins, Computers Sciences Dept., University of Wisconsin, 1221 W. Dayton Street, Madison WI 53706.
12-16 June 1978
7th Triennial IFAC World Congress. Sponsor: IFAC. Contact: IFAC 78 Secretariat, P.OB 192, 00081 Helsinki 10, Finland.
19-22 June 1978
Annual Conference of the American Society for Engineering Education (Computer Education Division Program), University of British Columbia, Vancouver, B.C., Canada, Sponsor: ASEE Computers in Education Division. Contact: ASEE, Suite 400, One DuPont Circle, Washington, DC 20006.
22-23 June 1978
International Conference on the Performance of Computer Installations, Gardone, Lake Garda, Italy. Sponsors: Sperry Univac, Italy, University of Bologna, Italy, Institute for Nuclear Sciences, ECOSM, AIASC, and ACM. Contact: Conference Secretariat, CILEA, Via Raffaello Sanzio, 4, 00094 Frascati, Rome, Italy.
2-4 August 1978
International Conference on Databases: Improving Usability and Responsiveness, Technion, Haifa, Israel. Sponsors: Conference in cooperation with ACM. Prog. chmn: Ben Sheinay, Dept. of Information Systems Management, University of Maryland, College Park, MD 20742.
13-18 August 1978
Symposium on Modeling and Simulation Methodology, Weizmann Institute of Science, Rehovot, Israel. Contact: H.J. Highland, State University College Farmingdale, N.Y., or B.F. Shampa, H.J. Highland, Weizmann Institute of Science, Rehovot, Israel.
30 October-4 November 1978

PREVIOUS LISTINGS

17-19 October 1977
ACM 77 Annual Conference, Olympic Hotel, Seattle, Wash. Sponsors: ACM SIGACT, School of Computing, University of Washington, Box 16156, Seattle, WA 98116; 206 935-6776.

Communications of the ACM

Volume 20
Number 10

772