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Abstract

Parsing has been a traditional workbench for showing the virtues of declar-
ative programming. Both logic and functional programming claim the
ability of writing parsers in a natural and concise way. We address here
the task from a functional-logic perspective. By modelling parsers as
non-deterministic functions we achieve a very natural manner of building
parsers, which combines the nicest properties of the functional and logic
approaches. In particular, we are able to easily define within our frame-
work parsers in a style very close to the ‘monadic parsers’ of functional
programming, but without any syntactic overhead. In a different direction
we show that, if the functional-logic setting permits higher-order patterns
while defining functions, parsers can be freely manipulated as data. This
allows programming useful metalevel analysis or transformations, like dis-
covering if the grammar corresponding to a given parser is LL(1). Finally,
we sketch the potential application to parsing of functional-logic program-
ming extended with numerical constraints.

*The authors have been partially supported by the Spanish CICYT (project TIC 95-0433-
C03-01 ”CPD”) and the ESPRIT Working Group 22457 (CCL-II).
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1 Introduction.

1.1 The parsing problem.

The problem of the syntax analysis or parsing has been one of the most thor-
oughly studied issues in computer science (see e.g. [ASU86]). Its wide range
of applications, from compiler development to natural languages recognition, is
enough to attract the attention of any programming approach. Declarative pro-
gramming has also tackled this problem, mainly looking for a straightforward
way of representing parsers as proper components of the language. This has
been reached considering recursive descendent parsers usually represented by
means of language mechanisms adapted to simulate grammar rules (e.g. BNF
rules). Actually we could say that declarative languages have yield new per-
spectives to the parsing theory, but it seems also clear that parsing has supplied
new features to declarative languages. Indeed, Prolog DCGs [SS86, PW80] are
part of the language only for parsing purposes, while one of the first applica-
tions of the functional programming monads[Wad85, Wad90] were the parser
combinators [Wad95].

However the two most important declarative programming paradigms, namely
functional and logic programming (in short FP and LP), have considered dif-
ferent approaches to the parsing problem. We will first survey the main char-
acteristics of parsing in each paradigm.

1.2 The Logic Programming approach.

Language processing has been very related to LP since its origins. There is
a more or less standard approach [War80, CH87, SS86] to the construction of
parsers in LP, which is based on a specific representation for grammars, the so-
called Definite Clause Grammars (DCG’s) [PW80, SS86]. DCG’s are not logic
programs, although they are readily translated to them. With DCG’s, one can
hide the details of handling the input string to be parsed, which is passed from
parser to parser using the Prolog technique of difference lists [SS86].

LP Parsers benefit from the expressive power due to non-determinism and
logical variables. Briefly, the main characteristics of these parsers are:

1. The ability to cope easily with non-deterministic grammar specifications,
as the multiple choice BNF construction |. The built-in backtracking
mechanism will take charge of the search for a successful result.

2. Multiple solutions are automatically provided where possible (e.g. am-
biguous grammars).

3. The possibility of representing context-sensitive languages.

4. Simple output representation construction, using pattern-matching and
logical variables. The representation or translated code is carried out
explicitly by using an input/output extra argument.

5. Parsers may be not only recognizers for formal languages but also gener-
ators of sentences.



1.3 The Functional Programming approach.

The most popular approach to writing parsers in FP is that of parser com-
binators [Wad85, Hut92, Fok95]. That is, parsers - starting from a set of
basic ones - may be combined through carefully defined HO functions (the
combinators) yielding new useful parsers. In the Haskell [HAS97] commu-
nity, combinator parsing has derived recently into so-called monadic parsing
[Wad90, Wad95, HM97].

Parsing with FP benefits of the power of types, functional notation and
HO functions for writing clear, well-structured programs. As more concrete
advantages we can mention:

1. Parser combinators provide an incremental point of view of the compiler
construction.

2. HO combinators provide the ability of expressing BNF extensions, such
as the repetitive application of the same parser zero or more times, which
can not be expressed so cleanly in the LP setting.

3. The use of monads, specially in combination with the do notation [Lau93,
HM97] gives a very appealing structure to the parsers built up.

1.4 The Functional-Logic Programming approach.

Many efforts have been done in the last decade in order to integrate LP and FP
into a single paradigm, functional-logic programming (FLP in short, see [Han94]
for a survey). As any other paradigm, FLP should develop its own programming
techniques and methodologies, but little has been done from this point of view.
We address here the problem of developing FLP parsers in a systematic way,
trying to answer affirmatively to the question: can FLP contribute significantly
by itself (not just mimicking LP or FP) to the task of writing parsers?

We stick in our work to a particular view of FLP whose core notion is that
of non-deterministic function. A framework for such approach was given in
[GH+96], and later on extended to cope with higher-order features [GHR97],
and polymorphic algebraic types in [AR97]. In the rest of the report we show
the characteristics of functional-logic parsers, (FLP parsers), which amalgamate
most of the benefits of the two paradigms showed above. In addition, the use of
constraints and higher-order patterns will provide new possiblities to the parsing
process. The main characteristics of the FLP parsers we present are:

1. Non-deterministic grammar definitions are easily handled by means of
non-deterministic functions.

2. Some context sensitive languages can be represented.

3. Representations can be constructed either by pattern matching or through
defined functions.

4. The parsers can be used either as recognizers or as generators of sentences.

5. Higher order combinators may be defined, in a way close to the functional
approach.



6. Numerical constraints allow parsing some special languages (e.g. visual
languages).

7. Higher order patterns allow to program the verification of some properties
of the defined grammars: set of first or follow symbols, LL(1) condition,
etc. Thus funcional-logic parsers may be also been considered as manage-
able data.

The next section is devoted to describe briefly an specific functional-logic
language: 7O)Y. A first attempt of building functional-logic parsers is then
presented, the generate and test parsers. Although naive and not powerful
enough yet, these parsers will include some of the main characteristics of the final
input-output parsers, which are introduced in section 4. Section 5 is devoted to
the presentation of an example, showing the application of numerical constraints
to some special kind of languages. Finally, in section 6 we will meet the use of
higher-order patterns to check interesting characteristics of our grammars, such
as the first and follow sets of symbols. Several examples written in 7O)Y are
included to illustrate the points discussed throughout the report.

2 The base language.

All the examples we show in the rest of the report are written in the functional-
logic language 7OY'. We present here the subset of the language relevant
to this work. A more complete description and a number of representative
examples can be found in [CLS97].

TOY is a non-deterministic functional-logic language developed at the Uni-
versidad Complutense de Madrid. Functions in 7O) are defined by conditional
equations and are executed by lazy narrowing and backtracking. A TOY program
consists of datatype, type alias and infix operator definitions, and rules for defin-
ing functions. Syntax is mostly borrowed from Haskell [HAS97] (with the re-
markable exception that variables begin with upper-case letters whereas con-
structor symbols use lower-case, as function symbols do). In particular, func-
tions are curried and the usual conventions about associativity of application
hold.

Datatype definitions like
data nat = zero | suc nat

define new (possibly polymorphic) constructed types and determine a set of data
constructors for each type. The set of all data constructor symbols will be noted
as CS (CS™ for all constructors of arity n).

Types 1,7',... can be constructed types, tuples (71,...,7), or functional
types of the form 7 — 7/. As usual, — associates to the right. 7OY provides
predefined types such as [A] (the type of polymorphic lists, for which Prolog
notation is used), bool (with constants true and false), int for integer numbers,
or char (with constants ’a’,’b’, ...). Type alias definitions like type parser_rec

!The system is available at http://mozart.sip.ucm.es/incoming/toy.html



A = [A] — [A] are also allowed. Type alias are simply abbreviations, but they
are useful for writing more abstract, self-documenting programs. Strings, for
which we have the definition

type string = [char]

can also be written with double quotes. For instance, ”sugar” is the same as
/’S /" /'u/" /'gi’ Ja /" /'7,.7]‘

The purpose of a T(O)Y program is to define a set FS of functions. Each f €
F'S comes with a given program arity which expresses the number of arguments
that must be given to f in order to make it reducible. We use FS™ for the set
of function symbols with program arity n. Each f € FS™ has an associated
principal type of the form 7 — ... = 7, = 7 (where 7 does not contain —).
Number m is called the type arity of f and well-typedness implies that m > n.
As usual in functional programming, types are inferred and, optionally, can be
declared in the program.

With the symbols in C'S, F'S, together with a set of variables X,Y, ..., we
form more complex expressions. We distinguish two important syntactic do-
mains: patterns and expressions. Patterns can be understood as denoting data
values, i.e. values not subject to further evaluation, in contrast with expres-
sions, which can be possibly reduced by means of the rules of the program.
Patterns t,s,... are defined by ¢t == X | (t1,...,tn) | ¢ t1...tn| [ t1...tn,
where ¢ € CS™, n < m, f € FS™, n < m. Notice that partial applications
(i.e., application to less arguments than indicated by the arity) of ¢ and f are
allowed as patterns, which are then called HO patterns, due to their functional
type. Therefore function symbols, when partially applied, behave as data con-
structors. HO patterns can be manipulated as any other patterns; in particular,
they can be used for matching or checked for equality. Ezpressions are of the
forme:x=X |c| f]| (e1,-.-,€en) | €€1...en, where c € CS, f € FS. Of course
expressions are assumed to be well-typed.

Each function f € FS™ is defined by a set of conditional rules of the form
fti.tp =e < e1==¢),..., e, ==¢},

where (t; ...t,) form a tuple of linear (i.e., with no repeated variable) patterns,
and e, e;, e} are expressions. No other conditions (except well-typedness) are
imposed to function definitions. Rules have a conditional reading: f t1...t,
can be reduced to e if all the conditions e; == e,..., ey == e}, are satisfied.
The condition part is omitted if ¥ = 0. For intance, the infix operator ++ takes
two lists and appends the elements of the second list at the end of the first list:

infixr 50 ++
++)[1Y =Y
(++ ) X|Xs] Y = [X[Xs ++ Y]

The symbol == stands for strict equality, which is the suitable notion (see
e.g. [Han94]) for equality when non-strict partial functions are considered. With
this notion a condition e == ¢’ can be read as: e and e’ can be reduced to the
same pattern. When used in the condition of a rule, == is better understood

as a constraint (if it is not satisfiable, the computation fails), but the language



contemplates also the use of == as a function, returning the value true in the
case described above, but false when a clash of constructors is detected while
reducing both sides 2. Both uses of == are distinguishable by the context.

As a syntactic facility, 7O)Y allows repeating variables in the head of rules,
but in this case repetitions are removed by introducing new variables and new
strict equations in the condition of the rule. As an example, the rule

fXX=0
would be transformed into

In addition to ==, 7 O)Y incorporates other predefined functions like the
arithmetic functions +,%, ..., or the functions if_then and if_then_else, for which
the more usual syntax if _then _ and if _then _ else _ is allowed.

Symbols ==,+,* are all examples of infiz operators. New operators can
be defined in 7O)Y by means of infirx declarations, like infixr 50 ++ which
introduces ++ (used for list concatenation, with standard definition) as a right
associative operator with priority 50. Operators for data constructors must
begin with ’:’, like in the declaration infiz 40 :=.

A distinguished feature of 7Y, heavily used along this paper, is that no
confluence properties are required for the programs, and therefore functions
can be non-deterministic, i.e. return several values for given (even ground)
arguments. For example, the rules

coin =0
coin =1

constitute a valid definition for the 0-ary non-deterministic function coin. A
possible reduction of coin would lead to the value 0, but there is another one
giving the value 1. The system would perform first the first one, but if back-
tracking is required by a later failure or by request of the user, the second one
would be tried. Another way of introducing non-determinism in the definition
of a function is by putting eztra variables in the right side of the rules, like in

z list = [O[L]

Any list of integers starting by 0 is a possible value of z_list. But note that in this
case only one reduction is possible. An interesting example of non-deterministic
function is the choice operator. This function takes two parameters and choices
one of them as output result. It may be defined as follows:

infixr 10 //
(//) E1 E2 = El
(//) E1 E2 = E2

The infixr declaration fix the priority of the function as infix operator (10)
and its associativity (right).

2A full implementation of the function == requires to incorporate disequality constraints,
like in [AGL94], and 7O indeed features them, but we will not use this aspect of the
language.



Our language adopts the so called call-time choice semantics for non-deterministic

functions, following [Hus93, GH+96]. Call-time choice has the following intu-
itive meaning: given a function call (fe;. .. e, ), one chooses some fixed value for
each of the e; before applying the rules for f. As an example, if we consider the
function double X = X+X, then the expression (double coin) can be reduced to
0 and 2, but not to 1. As it is shown in [GH+96], call-time choice is perfectly
compatible with non-strict semantics and lazy evaluation, provided sharing is
performed for all the occurrences of a variable in the right-hand side of a rule.

Computing in 70O) means solving goals, which take the form
e1==¢€l,...,ex == ¢,

giving as result a substitution for the variables in the goal making it true. Eval-
uation of expressions (required for solving the conditions) is done by a variant of
lazy narrowing based on a sophisticated strategy, called demand driven strategy
in [LLR93], which uses the so-called definitional trees [Ant92] to guide unifica-
tion with patterns in left-hand sides of rules (see [LLR93]). With respect to
higher-order functions, a first order translation following [Gon93] is performed.

3 Generate & Test parsers.

3.1 Generate & Test recognisers

BNF-descriptions of grammars have most of the times some degree of non-
determinism, because of the presence of different alternatives for the same non-
terminal symbol. In logic programming this situation is easily handled by using
non-deterministic computations. In a similar way we use non-deterministic
functions, which will provide multiple alternatives by means of backtracking.
Our formulation of BNF rules is even more natural than in the case of logic
programs: no extra arguments nor preprocessing is needed.

Our first example, a simple parser written in 7)Y representing the BNF-
rules for the language of the arithmetic expressions over 0 and 1, may be seen
at figure 1, while the corresponding BNF rules are showed in the figure 2.

expression = term //  term ++ plus_minus ++ expression
term = factor //  factor ++ prod_divi ++ term
factor = const /] "(" ++ expression ++ )"

const = "0 // T

plus_minus = "+" /T

prod_divi = "¥ // "

Figure 1: g&t parser for simple arithmetic expressions

Some points of this example deserve a detailed explanation:

e Parsers are defined by non-deterministic functions whose output values
are all the sentences of the formal language.



<term> <term><plus_minus><expression>

<expression>

|
<term> = <factor> | <factor><prod_div><term>
<factor> n=  <const> | ( <expression> )
<const> = 0 | 1
<plus_minus> 1= + | -
<prod_div> = * |/

Figure 2: BNF rules for simple arithmetic expressions

e The alternatives are represented through the non-deterministic function
// . By means of // we can represent the BNF construction | which
denotates alternatives. Observe that we could have defined the non-
deterministic functions directly as well, writting for instance:

const = "0"
const = "1

instead of:
const="0" // "1"

However, we prefer to concentrate all the sources of non-determinism in
the same function, namely the operator //. At this point of the discussion,
this decision may be thought just as a question of programming style, but
after defining the parser combinators other important reasons will become
apparent.

¢ To combine two parsers in sequence it is only neccessary to append the two
strings with the infix operator ++, defined elsewhere as the concatenation
of two lists. Both parser combinators, ++ and //, can be combined in the
same function as desiderable .

e In this example the terminals of the grammar are represented as concrete
strings (eg. ”*”) and can be combined with the nonterminals using ++
and //.

For instance the parser factor may be read as: ”a factor is either a constant
(const) or an open bracket followed by an expression and ended by a closed
bracket”. Hence we can say that the non-deterministic function expression is a
functional-logic parser for the language.

To recognize that a concrete list of tokens L is a valid sentence of the lan-
guage corresponding to the non-terminal symbol s, we simply try to generate L
using the function s. This is accomplished by solving the goal

s==1L

Backtracking allows the attempt of the different possibilities, until the desired
sentence is generated and therefore the proccess of recognizing success, or all



the alternatives are exhausted and the parser fails, meaning that the sentence is
refused as part of the language. For obvious reasons we call this kind of parsers
generate & test or in short, g&t parsers: instead of taking the string we would
like to parse as an input parameter like usual, these parsers generate a sentence
of the language, which is compared with the desired string.

An example of sentence successfully recognised using the g&t parser expres-
ston may be:

expression == "1*0+1+41"

The system yields the answer yes , meaning that the sentence "1x0+ 141"
is in the language recognised by the parser expression, while in the goal

expression == "1*¥*Q"

the system retrieves no, because ”1**0” is not a valid sentence of the language.

3.2 Context sensitive languages.

We have already shown how FLP parsers can recognize context-free grammars
following a notation close to BNF-rules. Now we are going to define a parser
for the formal language a™b"c™, showing that these parsers, by profiting from
the virtues of logical variables, share with LP parsers the skill in recognizing
context sensitive grammars. The abc parser may be seen in Figure 3.

data nat = zero | suc nat

abc = asN++bsN++cs N
as zero = "

as(sucN) = "a" ++asN

bs zero = "

bs (sucN) = "b" ++ bsN

s zero = "

cs(sucN) = "¢" ++csN

Figure 3: Parser for the context sensitive language a™b™c".

The parsers as, bs and cs represent sequences of zero or more terminals ’a’,
b’ and ‘¢’ respectively. These three parsers have an argument N of type nat
expressing how many times the letter is repeated. The main parser abc employs
a fresh variable N to enforce matching in the number of letters consumed by
each parser. The role of each parser is clear here: N becomes instantiated when
the parser as acts, and then is used guiding the parsers bs and cs.

3.3 Generating sentences.

Another interesting feature shared between LP and FLP parsers is the skill in
generating sentences of the formal language represented, instead of just rec-
ognizing them. In the next goal we ask for the valid sentences of the form
[X,) *', X], with X any valid terminal symbol.

10



expression == [X,"*"X]
yes
X =="0

more solutions [y]?
yes
== ’ ]_ ’

more solutions [y]?
no.

The answers provide the values of the logical variable X which satisfy the
goal, namely 0 and 1. Thus the g&t parsers might be regarded as generators,
recognizers or a mix of both possibilities, depending on the goal. Owing to this
reason, from now on we indistinctly refer to the sentence generated or recognised
by a given g&t parser.

As an aside we note that both the skill in generating sentences and the
possibility of representing easily context sensitive languages, are not specific
of the g&t parsers. Indeed, these features are shared by all the FLP parsers
presented in this report, and the examples can be easily adapted to each notation
we will use.

3.4 About performance.

In a first sight the g&t process seems rather awkward. As interesting languages
are usually infinite, it doesn’t appear possible determining whether the desired
string will be produced in a finite lapse of time or not. Fortunately the situa-
tion is very different. The operational semantics of the strict equality assures
that the output sentence will be compared with the desired string while it is
produced, enforcing backtracking when coincidence is not possible. Actually,
we could say that the string we would like to parse leads the output values of
the parser, via strict equality. If these naive parsers are not powerful enough is
due to the lack of expressiveness of the generated representation (see subsection
[3.8]), not because of the inefficiency of the generate and test process.

Consider again the successful goal
expression == "1*¥0+1+1"
We are going to examine the first steps of the recognizing process:

1. Initially, the parser expression has two alternatives, represented by the
choice function //. This function first choices its first argument, so the
parser term is tried first. The parser term has also two possibilities, and
for the same reason the first one, the parser factor is choiced. Similarly
factor leads to const, and const leads to 0.

2. Now we have a first output value, 0 which is compared with the first
character of the given string, 1. The comparation fails, and the last choice,
0 for const, is rejected. The function // returns now, by backtracking
its second choice, 1, and the comparation succeeds.

11



3. The next step is to compare the rest of the generated string with ”*04+1+417.
But 1 is a valid sentence and it has no more characters. Therefore, the
rest of the generated sentence is the empty list which does not match
?*0+1+1”, enforcing backtracking.

4. The parser const has not more choices through //, and fails. The second
possibility for factor is then tried.

5. Observe that although the current choice, ”(” + + expression + + 7)”
could generate infinite sentences, all of them are rejected at once. Effec-
tively, as soon as the sequence operator ++ returns the first character of
the generated sentence, the open bracket, it is compared with the first
character of the input string, 1, and the comparation fails.

6. The parser factor has not more choices and fails itself. Now the second
choice of term is tried. The sequence operator ++ tries to get the first
character from factor. It returns 0 in a first attempt as we saw previously,
but after the failed comparation returns 1 which matches with the first
input character.

7. Now there are two alternatives: the character * or the character /. The
function // choices the first one, * which is successfully compared with
the second character of the string we want to parse.

After a few steps more, the remaining input string, 0+ 1 + 1, has been com-
pletely checked and the answer yes is displayed by the system.

As we have seen, the output sentences of the expression parser are compared
with the string we would like to parse at the same time the values are generated.
Consequently, unsuccessful (and some times infinite) branches of the search tree
are pruned as soon as the first difference with the input string is realised.

Notice, however, that ocassionally during the parsing process a complete sen-
tence that does not match with the desired string might be generated, as in the
step 2. This situation, which affects the efficiency of the parser, occurs usually
in grammars with productions of the form:

A— 0461 | 0452

with a, (1, B2 sequences of terminals and non-terminals, and can be eluded by
introducing a new non-terminal A’ and left factoring the grammar:

A = ad
A = B B

Hence, we might introduce new nonterminals in order to left factorize our parser,
but our notation allows us to go even further, avoiding the necessity of new
nonterminals, as showed in figure 4.

3.5 Representations.

Usually the parsing process is required to perform two different tasks:

12



expression = term ++ (" // plus_minus ++ expression)
term = factor ++ (" // proddiv ++ term)

factor = const // (" 4+ expression ++ )"

const = "0 /] T

plus_minus = "4" /"

prod_div = " /]

Figure 4: left-factoring a g&t parser

1. Checking whether the input string is a valid sentence of the formal lan-
guage or not. This is what we have accomplished so far.

2. Retrieving a certain representation of the parsed string (e.g. the parsing
tree).

The first step is related to the syntax analysis phase of a compiler, while the
second is close to the code generation phase. As the generated code or repre-
sentation of a parser often depends upon the representations of its component
parsers, it seems logical to carry out syntax analysis and code generation si-
multaneously 3. Thus we need to associate some representations to the parser
functions. In functional-logic programming there are two alternative ways of
returning values:

1. As an output value. This seems the natural approach, and is the used
in functional parsers. Notice, however, that our parsers are returning an
output value currently, the generated string. Hence we need to combine
the two output values, the parsed string and its representation, into a
single output value. The natural solution is returning a pair of values.
Therefore, given the type of the representation Repr and the type of the
elements of the parsed list Token the parametrized parser type might be:

type parser Repr Token = (Repr, [Token])

meaning that a general parser will return a pair of values, whose first com-
ponent is the representation of the parser sentence while the second is the
sentence itself. It is worth noting that we allow any type as representa-
tion, but we enforce the generated/recognised sentence to be always a list
of tokens (e.g. a list of chars as in the figure 1).

2. As an output parameter. This is the choice of logic programming. In this
case the type of a general parser will be:

type parser Repr Token = Repr — [Token]

that is, a parser generates/recognises the sentence of the formal language
whose representation is given as a parameter. Actually, when recognising
sentences the parameter is just a unbounded variable which returns the
representation of the parsed string.

3The basic idea we use is near to syntaz-directed translation, as described in [ASUS86]

13



Although the first type seems the natural choice, it leads to multiple prob-
lems when combining parsers. In fact, building explicit representations us-
ing the representations of the intermediate components requires the definition
of some programming mechanism, in order to extract the representation from
each intermediate output value. This problem has been overcome in functional
programming using monads [Wad95], and adding some syntactic support in
order to make the resulting expressions easier to read (e.g. the do-notation
[Lau93, HM97)).

In this report we pretend to show how the second choice, carrying the rep-
resentation as a function parameter, provides functional-logic parsers with the
same benefits as monads do with functional parsers. Moreover, no syntactic
support is needed in our approach, nor even lambda abstractions are required.
Thus, the selected type for general parsers is the second one:

type parser Repr Token = Repr — [Token]

That is, the generate and test parsers will have a single parameter, the repre-
sentation of the parsed string. The output value will be the generated sentence
of the language corresponding to the given representation. If several sentences
of the language have the same representation, or the representation itself is not
a ground term and allows several instances, then the parser will provide all the
possible answers using non-determinism.

Suppose we would like to supply some output representation to the parser for
simple arithmetic expressions. For instance we could return the precedence tree
of the expression by means of an appropiate data definition, like:

data operators = plus | minus | mult | divi
data prec_tree = valint | op operators prec_tree prec_tree

The data type prec_tree has two data constructors, val for representing the
numeric value of a constant (i.e. 0 or 1), and op for representing expressions
with infix operators. The first argument of op is a value of type operators which
represents the main operator OP of the expression, while the second and the
third arguments represent the subexpressions that are being operated through
OP. The parser with representation may be seen in figure 5.

Note that it has been necessary to unfold some of the rules to distinguish the
different representations that were encoded in the same function. Sometimes
(e.g- in the parser expression) we do not need to write explicitly the output
representation, as it is provided directly from the component parsers. In other
cases (e.g. add_expr) the generated representation is built using the intermediate
representations, which may be thought as synthetized attributes. For example
the parser factor now may be read as: ‘a factor with representation R is either a
const with representation R or an expression with representation R and enclosed
by parentheses’.

Using this parsers we may for instance recognize again the string 7 1*0+1+1”,
but now getting also the output representation of the parsed string.

expression R == "1*0+1+1"

R == op plus (op mult (val 1) (val 0)) (op plus (val 1) (val 1)))
yes
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expression,add_expr:: parser prec_tree char

expression = term // add_expr

add_expr (op Op T1 T2) = (term T1) ++ (plus_minus Op) ++ (expression T2)
term,mult_expr:: parser prec_tree char

term = factor // mult_expr

mult_expr (op Op T1 T2) = (factor T1) ++ (prod_divi Op) ++ (term T2)
factor, const,zero,one:: parser prec_tree char

factor R = (constR) // "(" ++ (expression R) ++ ")"
const = zero [/ one

zero (val 0) = "0

one (val 1) = "1

plus_minus, proc_divi :: parser operators char

plus_minus = addop // minus.op

prod_divi = multoop // divop

add_op, minus_op, mult_op, div_op:: parser operators char

add_op plus = "4
minus_op minus = "7

mult_op mult = "
div_op divi = "/

Figure 5: g&t parser with representation for simple arithmetic expressions

The answer yes denotes as usual that the string have been recognized as a
valid sentence of the formal language, while the value of R retrieves the parsing
structure of the sentence.

In the next subsections we present some basic parsers and parser combina-
tors. Later we will use these basic pieces to build more complicated and useful
parsers. These parsers will be the g&t versions of the functional parsers defined
in [Fok95, Hut92].

3.6 Basic parsers.

We start by defining the empty parser, which just generates the empty sentence,
being also the empty list its representation. The usefulness of this parser be-
comes apparent when combined with the choice combinator to define optional
possibilities.

empty::parser [A] B
empty [] =[]

The next function takes an input value T and retrieves the parser that
generates the list whose only element is 7.
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terminal::A — parser A A
terminal T T = [T]

The representation of the only sentence generated by the parser terminal T
is the element T itself. For instance we may try the simple goal:

terminal 0 R == "0"

which parses successfully the string ”0”, retrieving the representation 0 in the
variable R.

It may be also desiderable to define a non-deterministic function for gener-
ating all the sentences of length 1 satisfying a given property. We call this the
satisfy parser and may be defined as follows:

satisfy::(A— bool) — parser A A
satisfy P A = if P A then [A]

The parameter P represents a property over the elements of type A. The
representation, the parameter A, is also the only element of the generated sen-
tence. For instance, the goal:

satisfy is_digit R == "5"
yields the answer yes, with R instantiated to 5. Notice the possible non-
determinism of the parser satisfy P for each given parser P: it may generate
as many sentences as different values satisfy the function P. For instance, in
the example above the parser satisfy is_digit represents 10 different sentences,
namely ” 07’ ”1” ” 9”
, yeeay 97,

The definition of terminal appears now as a specialization of satisfy. Actu-

ally, terminal can be written in terms of satisfy easily:

terminal::A — parser [A] A
terminal T = satisfy (T==)

The new definition of terminal relies on satisfy in order to get the repre-
sentation, and therefore does not include the additional parameter.

We may also think that a good representation for parsers terminal and sat-
isfy could be the own generated sentence [T'] instead of the element T'. These
variants of terminal and satisfy may be called terminal_l and satisfy_l respec-
tively, denoting that they return lists, and may be defined as follows:

satisfy_l::(A — bool) — parser [A] A

satisfy_| P [R] = satisfy PR
terminal_l::A — parser [A] A
terminall T [R] = terminal T R

3.7 Parser Combinators.

We have already defined functions representing a few basic parsers. What we
need now is a set of Parser Combinators in order to join the basic parsers in
different ways and to enrich their expressiveness. The parser combinators are
higher-order functions which take parsers as input parameters and return a new
parser as output value. In the example at the figure 1 we have presented two
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such parsers: the operators // and ++. We need to adapt their definitions, as
initially they did not deal with representations.

The choice operator // will be represented from now on through the non-
deterministic function <|>. It takes two parsers and return one of them using
non-determinism. Its representation is the representation of the selected parser:

infixr 10 <[>

(<] >)::parser A B — parser A B — parser A B
(<|>) PLP2R = P1 R

(<|>) PLP2R = P2 R

For instance the parser alpha generates all the strings whose only character
is an alphanumeric character:

alpha::parser [char] char
alpha = (satisfy is_digit) <|> (satisfy is_letter)

where is_digit and is_letter are defined as convenient.

The updated version of the sequence operator ++ , which is denotated by
<x> , takes account of the representations. The representation of the second
parser is supposed to be a list L of elements or type A, while the representation of
the first one must be an element E of the same type A. The final representation
is the list whose head is E and whose tail is L, i.e. the result of appending the
representation of the second parser to the representation of the first parser:

infixr 20 <>
(<*> )::parser A B — parser [A] B — parser [A] B
(<x>)P1P2[E|L] = (P1E) ++ (P2L)

The generated sentence is still the concatenation of the sentences generated from
P1 and P2. Both <*> and <|> associate to the right, and their priorities are
defined as to minimize parentheses.

Sometimes the representation of one of the parsers in a sequence is not
important (e.g. when it is a puntuaction mark), and we prefer to retrieve only
the representation of the other parser. This variations of <x> are the operators
<* and *> defined as

infixr 20 <x
(<* )::parser A B — parser C B — parser A B
(<x)PLP2E = (P1E) ++ (P2))

infixr 20 *>
(*> )::parser A B — parser C B — parser C B
(+> ) PLP2E = (P1_) ++ (P2 E)

Another useful parser combinator usually defined in functional parsers is the
parser that allows the repetitive application of a given parser. We call it the
star combinator and admits the recursive definition:

star::parser A B — parser [A] B
star P = P <x> (star P) <|> empty
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that is, the sentences generated by star P are of the form sgs; ...sn, n > 0 being
S1,82,- .. Sy sentences generated by P. Of course, if P is a deterministic parser
and its only generated sentence is s then starP = {s™ : n > 0}. Otherwise the
s;’s of the previous expression may be any different sentence generated by P.
The next example defines an identifier being a string of alphanumeric characters
beginning with a letter:

ident::parser [char] char
ident = satisfy is_letter <> star alpha

Using star it is easy to define the function some which allows the repetition
of one or more sentences generated by the given parser. It is like star but
discarding the empty word.

some::parser A B — parser [A] B
some P = P <> (star P)

For intance, we could represent a non-empty sequence of letters a and b as:

sec_ab: parser [char] char
sec_.ab = some (terminal 'a’ <|> terminal 'b")

3.8 Handling non-determinism.

Although easily understable, the definition of star contains a quite subtle tech-
nical point which is worth noting. Actually, if we examine carefully the rule
for star it seems erroneous. The problem is that in the right-hand side of the
function the variable P appears twice, and due to sharing the two P’s must
stand for the same value. Thus, if the non-deterministic function P takes for
example the values 0’ and ’1’, then all the sentences generated using star P will
be of the form ”0™” or ”1™”, but they will not include, for example, ”01”.

To find out the answer to this apparently important drawback we have to
examine where the non-determinism of P may come from. If we suppose that P
is built using only the previous basic parsers and combinators, the only possible
sources of non-determinism are parsers of the form (P1 <|> P2), or satisfy F,
being P1 and P2 parsers and F' any boolean function. But examining again
the definitions of <|> and satisfy we may check that both functions need the
representation parameter to become concrete values. This means that although
< | > and satisfy represent two or more sentences of the languages, they can
not be directly reduced and will not become a concrete sentence until their
representations are provided, or in other words, that they always appear as
partial functions and not like concrete values. Thus, if P is a non-deterministic
parser, the repetition of P in the body of star causes no trouble, as P is a partial
function.

Conversely, the definition of star is reduced directly, as it doesn’t need any
parameters. Therefore, the different program arity of star, satisfy and < | >
introduces a sequence in the order the functions are reduced.

3.9 Functional-Logic do.

In the definition of the type parser, the output value of the parsers need to be a
list, but any type is allowed for the representation. Anyway, each basic parser
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and basic parser combinator we have presented so far provides a specific default
representation. For instance the parser terminal returns the parsed element as
representation, while the parser star P retrieves a list with the sentences gener-
ated by using P. When defining more complicated parsers the user may provide
its desired representation, but it is also possible forget representations and just
rely on the default one.

For example, if we would like to parse senteces with one or more letters a,
but we are not interested in the representation, we may just write:

as = some (terminal 'a’
and we may try the goal:
as R == "aaaa”

which returns yes, retrieving R=="aaaa” as default representation. There-
fore if we don’t care about representation we will get as default representation
a copy of the output string.

This technique provides an useful way of taking care about representation when
necessary, but dismissing it whenever the default representation seems appropi-
ate. However, it also constraints the type of the parsers in order to match the
type of the parameters of the combinators.

For example if we try the parser:

sec_abs: parser [char] char
sec_abs = (star (terminal 'a’)) <*> (star (terminal 'b"))

the type checker returns an error, because the first argument of <*> should be
of type char, while some (terminal ’a’) is of type [char].

Of course we might define a wide set of combinators for sequence, extending
the types to combine lists with lists. Another solution is to enforce all the rep-
resentations to be lists which are easier to combine *. Any of these approaches
lead to rather complicated parsers, partially loosing our aim of providing simple
mechanisms for defining parsers easily. Moreover, the previous solutions do not
tackle all the posibilities.

Consider that we would like to define a parser for assign sentences. This
sentences are of the form form ”Var=Expr;”. The expressions are those we
defined in figure 5, while the name of the variable is an identifier whose parser
we defined above.

The representation of an assign sentence will be an element of the type:

data binding = string := prec_tree

where the string is the identifier of the variable, the value of type prec_tree is
the representation of the expression as defined in figure 5, and “:=’is an infix
data constructor.

It seems clear that parser assign should use parsers expression and ident.
But the types of the representations of expression and ident are different, and

4This is done in next section.
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neither <x> nor the alternative operators we suggest above are able to combine
the representations of these two parsers, yet the definition of assign we propose
is meaningful.

The problem may be only accomplished defining an ad hoc sequence com-
binator, which combine elements of types string and prec_tree. Actually, what
is needed here is a general frame for constructing such ad hoc sequence com-
binators. This is achived using the function do. It offers an alternative to the
sequencing operator, without providing any implicit mechanism for building
representations. The definition of the do construction is simply a generalization
of our first version of the sequence operator, ++ :

do::[[A]] = [A]
do = concat

The do construction takes a list of parsers with their representations, that
is a list of sentences of the same type, and just generates the sentence resulting
of concat all the elements of its input list (concat is a standard function that
concatenates a list of lists). This surprisingly simple construction provides a
straightforward solution for the problem of defining the assign parser:

assign::parser binding char
assign (N := E) = do [id N, terminal '="_, expression E, terminal ';" ]

The representation of each component parser appears in the form of argument,
while the pattern N := E is the ad hoc combinator we were looking for. Note
the presence of anonymous variables _ to denote that we are not interested in
the representations of the terminals ‘=" and ‘;’. We may try for example:

assign R == "Count=1*0+1;"
which succeeds with
== "Count” := (op plus (op mult (val 1) (val 0)) (val 1))

Therefore the do construction provide an easy way of combining parsers, with-
out the addition of any syntactic modification to the language.

As final examples of this subsection, the sequence combinators <*> , <* and
x> could have been easily defined using do:

(<x>)PLP2[H|T] = do[P1H, P2T]
(<+) P1 P2 H = do[P1H, P2 ]
(+>)PLP2T = do[P1_ P2T]

3.10 Limitations of the Generate and Test parsers.

In this subsection we will reach the limitations ot the parsers we have presented
so far. These limitations will lead us to the input/output parsers whose detailed
discussion is carried out in the following section.

So far, our parsers have retrieved representations using patterns built with the
intermediate representations of its component parsers. However, the general
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definition of representations should consider combinating the intermediate rep-
resentations using functions, not only through patterns. But this aim results,
alas, not possible in the context of g&t parsers, as we show in the next example.

Consider that we would like to parse type declarations of the form
vary,vars, - - .,var, = type;

where the strings var; represent the names of the variables, while the string type
is the name of the type. As we prefer to relate each variable with its type, a
possible representation for this sentence may be a list of pairs of strings , the first
string of each pair representing the type name and the second string the variable
name. A failed attempt of defining a parser satisfying these requirements is:

type.dec R = do [vars LVars, terminal '=" _, ident Type]
< map (mkpair Type) LVars == R
vars = ident <*> (star (terminal ’," x> ident) )

The parser vars return a list of identifiers, using the parser ident defined
previously, while the parser type_dec try to construct the list of pairs using the
funcion map. The function map is defined as usual in functional programming:

map:: (A = B) — [A] = [B]
map F [] =

[]
map F [X|Xs] [(F X)|(map F Xs)]

The first argument of map, namely mkpair Type, is the function we pretend
to apply to each element of the list, defined elsewhere as

mkpair :: A - B — (AB)
mkpair X Y = (X,Y)

The variable Type is the name of the type, while the second argument of
map, LVars, is a list whose elements are the names of the variables parsed by
vars. If we try the goal:

type_.dec R == "v1,v2=integer”
returns successfully de desired result
R == ("integer', "v1"), ("integer”, "v2")]

The problem arises when we try to parse a sentence which is not valid. For
example in the following goal the symbol ‘="after v2 is missed:

type_dec R == "vl1,v2integer”

the expected answer is no but, instead of that, the system just loops, without
providing any answer.

To understand the reason of this strange behavior we must point out that
the conditions of a function rule are computed before the body of the function.
Thus, in the previous example the strict equality

map (mkpair Type) LVars == R
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is performed at the start of the computation of the parser type_dec. At this
point, the variables Type, LVars and R are unbounded. To solve the strict
equality map first bound LVars to the empty list and the condition is satisfied.
The do is then tried, but fails (the sentence ”v1,v2integer” is not part of the
language). Then backtracking enforces map to take another alternative and it
bounds LVars to a list with at least one element. The do is then tried again, and
of course fails again. Repeating the actions, the strict equality of the condition
will be satisfied with an infinite number of lists, while the construction do always
will fail, and hence the goal never fails nor succeeds.

This behaviour may be generalized to several other situations in which we
need to evaluate a general expression to construct the representation. In fact,
if we use conditions to build representations, we must keep in mind that the
variable standing for the intermediate representations are unbounded when eval-
uating the conditions, and hence we must assure that the expression involved
are deterministic in these conditions. In the example above this rule is not satis-
fied, as function map behaves in a non-deterministic way if its second argument
is an unbounded variable. On the other hand, notice that patterns are always
deterministic, regardeless of the intantiation of the variables, and therefore can
be used safely.

Unfortunately, this important drawback of g&t parsers is not avoidable.
Therefore these parsers must be used mainly to build a kind of intermediate
representations through pattern expressions, which can be processed later. Of
course, this point of view complicate the parsing process, for now is necessary
a second stage that converts the intermediate representation into final values.
Hence, it would be desiderable that parsers could retrieve the final represen-
tations directly. This aim is satisfied by the input/output parsers, which are
presented in the next section.

4 Input/Output parsers.

4.1 Input/Output Parsers.

In this section we introduce a new kind of parsers. Conversely to the g&t parsers,
the new ones will have the input sentence as input parameter. If some prefix of
the input sentence is recognized as part of the language, the remainder list, i.e.
the yet not parsed part of the sentece, is returned as output value.

Therefore, the type of the input/output parsers, or simply parsers may be
defined as:

type parser Repr Token = Repr — [Token] — [Token]

Of course, the previous type definition is not the only one feasible (see the
discussion of the type for the g&t parsers), but we have adopted the definition
above as it allows building the representations in the apealling way showed in
the previous section. In addition, the use of the extra argument will be decisive
in a later section, where the use of parsers as data values is discussed.
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4.2 Basic Parsers and Parser Combinators,

Carrying the input sentence as an explicit parameter enforce basic parsers and
parser combinators to perform the actions that were performed by the system in
the case of the g&t parsers. For instance, the function satisfy need to remove
the recognized character from the input string, returning the rest as output
value. The complete set of redefined functions may be seen in figure 6.

type parser Repr Token = Repr — [Token] — [Token]
empty:: parser [A] B

empty [] L = L

satisfy:: (bool — A) — parser [A] A

satisfy C [X] [X|R] = if C X then R

terminal:: A — parser [A] A

terminal [T][TIR] = R

(<*>):: parser [A] B — parser [A] B — parser [A] B

(Pl<s>P2)RL = P2R201<«<=P1R1L==01, R1++R2==R
(<|>):: parser A B — parser A B — parser A B

(P1<|>P2) RL = P1RL

(P1<|>P2) RL = P2RL

Figure 6: Basic parsers and parser combinators.

Observe that the definitions are very similar to those of the previous section,
but including some treatment for the input sentence. This is particularly obvious
in the case of the sequence combinator. In this case the first condition is used
to apply the first parser and get its output sentence (OI, which is the input
parameter of the second parser as showed in the body of the function. The
representation is the same that in the case of g&t parsers. Furthermore the
properties presented in the previous section - the use the parsers as generators,
the skill in defining context sensitive grammars - are also valid for input/output
parsers.

Note, however, that the representations of terminal and satisfy have changed,
as they now return a list with a single element - the recognized symbol - instead
of the symbol alone. This is due to a technical reason, namely that it provides
uniformity to the parser definitions, as now all the basic parsers return lists.
Actually, they could have been defined in this way for the gé&t parsers, but
the approach considered there was useful for constructing representations as
patterns, while the one considered in this section provides a reduced set of
combinators. The problem of combining representations of different types will
be tackled by the new definition of the do combinator.

Al the other combinators defined in the previous sections, as star, some,
terminal_l or alpha are still valid, as a nice outcome of the new definitions.
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4.3 The do family.

For the moment, the new parameter only has complicated the definitions of the
basic parsers and parser combinators, providing no visible benefit. But this
apparent nuisance becomes useful when constructing involved representations.
Effectively, the function do presented in the previous section only was used when
constructing representations as patterns. Here, the function do will be used to
construct general representations, that is, representations given by a expression,
usually depending upon the representations returned by the component parsers.
Remember that this was not possible using g&t parsers, and hence this is the
major contribution of the input/output parsers.

We first define a version of do, what we call simple do or do_s, which simulates
the g&t do. Now the definition is slightly more involved, as we must carry the
input sentence throughout the computation.

dos:[[A]l= [A]]l — [A]— [A]
dos [] Input = Input
dos [X|Xs] Input = dos Xs O1 <= X Input == 01

The type [[A]— [A]] corresponds to a list of parsers with their explicit repre-
sentations. The definition of do_s applies the input parsers in sequence, passing
the output string of a given parser as the input string of the next one. This
function can replace the g&t do with the same behaviour.

Following, the definition of the new do is introduced. It takes two additional
parameters, the expression with the representation of the do sequence and the
representation parameter of the function . If all the parsers in the list succeed,
the expression is evaluated and tried to match with the representation of the
function.

do::[parser_rec A] - B — parser B A
do L Exp Rep Input = O <= do_s L Input == O, Exp==Rep

In order to understand the possibilities provided by this definition, we re-
vise the example that showed the limitations of the g&t parsers, that is the
definitions of multiple identifiers. The definition of type_dec is now

type_dec R = do.s [vars LVars, terminal '=" _, ident Type]
<= map (mkpair Type) LVars == R
vars = ident <*> (star ((terminal ',") x> ident) )

where
ident = satisfy is_letter ++ star (satisfy is_digit <|> satisfy is_letter)
and
(+> )P1P2T = dos [P1H, P2 T]
Again, if we try the goal
type_dec R == "v1,v2=integer”

the parser succeeds, but the goal
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type_dec R == "v1,v2integer”

does not end, although it should fail, due to the reason explained in the previous
section. Fortunately, now we have the do combinator. Simply defining type_dec
as

type_.dec R = do [vars LVars, terminal '=" _, ident Type]
(map (mkpair Type) LVars) R

avoids the problem, and now the second goal returns simply no.

As a final member of what we have called the do family, we present the
infix operator —. The expression P — R is the parser that recognizes the
same sentences as P but whose representation is R. This combinator is useful
when we pretend to change the default representation provided by a parser by
a different one, and will be used in the new version of the parser for expressions
we present next.

infixr 30
(— ):: parser AB — C — parser CB
(P—RR=P._

4.4 Expressions again.

Our ‘classical’ example of arithmetic examples is here revisited. Using the do
family of combinators we can define a parser for expressions whose represen-
tations are the result of evaluating the expression. Furthermore, the grammar
is extended to work with integer numbers, not with just the values ‘0’ and ‘1°.
The parser is presented in figure 7.

expression = term <|> plus_minus_expr

plus_minus_expr R = do [term T, plus_minus Op, expression E] (Op T E) R
term = factor <|> prod_div_expr

prod_div_expr R = do [factor F, prod_div Op, term T] (Op F T) R
factor = num <|> parexpr

par_expr R = do.s [terminal ‘(" _, expression R, terminal ")’ ]
num R = do [some digit L] (numeric_value L) R
numeric_value L = foldl ((+).(10*)) 0 (map val L)

digit = satisfy is_digit

plus_minus = (terminal '+')— (4+) <[> (terminal -")—(-)
prod_div = (terminal "*')—(*) <|> (terminal '/")—(/)

Figure 7: Parser recognizing and evaluating expressions.

The representation of parsers plus_minus and prod_div is now the infix op-
erator they represent, which is applied when building the representations of
plus_minus_expr and prod_div_expr. The representation of a number is its nu-
meric value, which is returned by the function numeric_value. This function
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used the standard functions map and foldl, together with a function wal that
transforms a single digit into its numeric value. As an example, the goal

expression R " ((10+4)*20-30)/50" == []
succeeds with

R==5

4.5 Limitations of do.

It is very important noting the argument R in the definition of num. It stands
for the variable that finally contains the representation of the number and must
not be removed of the definition of the parser. The reason is related to the
function star and its shared variable P, as discussed in Chapter 3. Without
the representation parameter, the parser num could be directly reduced to the
do construction and, due to the explicit representation L, the parser star num
would recognize only repetitions of the same number (that is, numbers with the
same representation L).

Thus, to avoid involved problems, if we are going to use the function star,
we should not use constructions do inside a star, neither directly nor through
intermediate functions without arguments. This can be avoided including always
the parameter R in the definition of functions with do constructions.

5 Numerical Constraints.

The growing interest in languages representing spatial relationships (e.g. vi-
sual languages [HMOO91]) has introduced the study of numerical constraints in
relation to the parsing problem. In this section we show a very simple but sug-
gestive example of how our parsers can integrate numerical constraints easily.
The usefulness of non-determinism in this area is also sketched.

Supposse we are interested in a parser for recognizing bozes. The terminals
of the language will be pairs of integers representing points in the plane, and
a valid sentence will be a sequence of four points standing for the corners of
the box, beginning with the lower-left and following anti-clockwise. The desired
representation is a pair of points representing the lower-left and the upper-right
corners of the box.

box R = do [point (X1,Y1), point (X2,Y2), point (X3,Y3), point (X4,Y4)]
((X1,Y1),(X3,Y3)) R
< Y1==Y2, X1==X4, X2==X3,Y4-Y1==Y3-Y2, Y1<Y4, X1<X2
point R = do [terminal (X)Y) _] (X,Y) R

The conditions assure that the points actually represent a box. Note that
these constraints are settled before parsing the points. As a consequence, if
the points do not represent a box, the parser can fail as soon as possible. For
instance, if the condition Y1==Y2 is not verified, the parser will fail just after
parsing the second point.

For our example to work properly, the language must be able to handle
numerical constraints concerning still uninstantiated variables, and to incre-
mentally check the satisfactibility of the accumulated constraints whenever new
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ones are imposed during the computation. Such an extension of the language
considered so far is described in [JM+92], and is actually implemented in the
system 7 OY (with such this example is indeed executable).

Supposse now that we would like to recognize boxes, without concerning
about the positions of the points in the list. This means that four points form
a box if there exists a permutation of the points that is recognized by parser
bor. We may define the non-deterministic function permut, which relies in the
non-deterministic function insert:

[]

insert X (permut Xs)

permut []
permut [X|Xs]

Il

insert X [] = [X]
insert X [Y|Ys] [X,Y|Ys]
insert X [Y|Ys] [Y]insert X Ys]

and try box with a non-ordered set of points
box R (permut [(60,80),(10,80).(60,20),(10,20)]) == []
which returns successfully
== ( (10,20), (60,80) )

This solution may seem rather awkward, but actually, due to laziness, it is quite
efficient. Indeed, we have seen that the conditions assure that the parser box
fails as soon as possible. This means that if a permutation is not valid, permut
will generate only the elements neccessary to make the parser fail, not the whole
permutation. Then, permut will try the next possibility using backtracking, but
discarding only the element that has triggered the fail, preserving the part of
the permutation that can be still valid. Therefore, the solution, if exists, is
found out using a clever strategy that minimizes the number of failed attempts.
It is worth noticing that function permut used in this way is another example
of the FLP generate and test technique, which we used before to define the g&t
parsers.

6 Parsers as data.

6.1 Canonical Definitions.

In previous subsections the advantages of defining parsers using non-deterministic
FLP have been discussed. Here we intend to show how functional-logic lan-
guages that include higher-order patterns can consider parsers as truly first
class data values. To achieve our objective, we need to restrict the shape of our
parsers, according with the next definition.

We say that a parser p is defined canonically iff its definition consists in a
single rule adopting one of the following forms:

(i) pR=emptyR (i) p R =terminal R
(iii) pR=(plop2)R (iv) pR=starplR
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where p! and p2 are canonicallly defined, and ¢ € {<*> ,<|>}. In the rest
of the subsection we consider only parsers defined canonically, which we call
non-terminals. Observe that these parsers are expressive enough to represent
any set of BNF-rules and therefore any context-free grammar.

Functions empty, terminal, <*> , <|> and star are the only basic parsers
and parser combinators allowed, and from now on we call them the basic set.
Their definitions are those presented in the previous section, excepting the def-
inition of star, which is:

star:: parser [A] A — parser [A] A
star Rep Input = (P <*> (star P) <|> empty) Rep Input

The inclusion of the two explicit arguments, Rep and Input, is necessary for
reasons that will become apparent soon. Note that this new version of function
star could have been introduced in the previous section as it was valid also in
that context.

As an example to be used in this section, parser list recognizes lists of 0’s
and 1’s separated by commas.

list R = (terminal [ <*> body_list <> terminal ']') R
bodylist R = (element <> star (terminal '," <*> element) <|> empty) R
element R = (terminal '0’ <|> terminal '1") R

Here list, body_list and element are non-terminals.

6.2 Handling Productions.

The key for handling parsers as data is the skill in ‘exploring’ right-hand sides
of productions (i.e. parser functions) provided by HO patterns. The first step in
this direction is function get_right which retrieves right-hand sides of productions
corresponding to non-terminals in the grammar.

get_right::parser A B — parser [B] B
get_right P = contract (expand P)

expand:: parser A B — ( [B] — [B])

expand P =P _

contract:: ([A] — [A]) — parser [A] A
contract (empty _) = empty
contract (terminal A ) = terminal A
contract ( (<x>) PLP2_) = Pl <x> P2
contract ( (<|>) AB.) = Pl<|>P2
contract ( star P ) = star P

To get the right-hand side of the parser P is used the function ezpand,
which returns the result of applying the parser to an arbitrary argument ‘.
Effectively, every non-terminal is reduced to its right-hand side when applied
to a single argument, for it must have any of the shapes described in (i)- (iv).
For the same reason, the outermost function of a right-hand side belongs to the
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basic set, and all of the functions in the basic set need two arguments to be
reduced (that is the reason for adding the two extra arguments to star). To
show this, we may try for intance the goal

expand list ==L
which succeeds with the value

L == (terminal '[' <*> body_list <> terminal ']') -

Thus, function ezpand allows getting the right side of a non-terminal par-
tially applied, that is, including an extra argument ( for this reason it returns a
parser_rec instead of a parser). Function contract performs the reverse action:
it removes the extra argument from a partially applied function of the basic set.
Here the use of HO patterns is essential, as this technique allows considering
partially applied functions as constructed data, with the name of the function
regarded as the data constructor.

Now the meaning of get_right becomes evident. For example the goal
get_right list ==L
succeeds with
== terminal '[" <> body_list <> terminal ']’
while
get_right empty ==L
returns
L == empty

because empty is not a non-terminal.
The difference between non-terminals and the rest of the valid parsers is
pointed out by the boolean function nonterminal.

nonterminal P = not (get_right P == P)

Also, based on the definition of get_right is easy to define the boolean infix
operator >>. The expression L >> R is true if R is the definition of the
non-terminal L:

(>>):: parser [A] A — parser [A] A — bool
L >> R = true <= R == get.right L, not (R == L)

The first condition assures that R is the right-hand side of L, while the second
one checks whether L is actually a non-terminal or not.
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6.3 First and Follow.

Two very important sets related to the underlying grammar are that of the
terminals and non-terminal symbols of the grammar. Function symbols takes
a non-terminal S representing the initial symbol of the grammar and returns a
pair of lists representing the terminal and non-terminals reachable from S.

symbols :: parser [A] B — ([B], [parser [A] B])
symbols P = getsymbols P ([].[])

get_symbols :: parser [A] B — ([B].[parser [A] B]) — ([B]. [parser [A] B])
get_symbols empty L = L
get_symbols (terminal A) (T,NT) = if A ‘in' T then (T,NT) else ([A|T].NT)
get_symbols (A <x> B ) L get_symbols B (get_symbols A L)
get_symbols (A <|>B) L get_symbols B (get_symbols A L)
get_symbols (star P) L get_symbols P L
get_symbols P (T,NT) = if P>>R then

if P ‘in' NT then (T,NT)

else get_symbols R (T,[P|NT])

Most of the work is performed by function get_symbols. It takes the parsers
that are currently being examined, and a pair of lists with the intermediate
results. The purpose of these lists is to avoid the inclusion of repeated elements
in the final lists, and - more important - to elude possible infinite loops. This
is done in the last rule, which is devoted to get the symbols when the parser
is a non-terminal. In this case, the first condition P >> R is used to get the
right hand-side of P, checking at the same time if P is actually a non-terminal
(>> would fail otherwise). The second condition if P “in‘ NT checks whether
the current non-terminal has been examined yet, and it is at this point where
the possible infinite loop is broken. Without this condition the goal

symbols list == S
would loop, but conversely it returns:
S == ("].10[", [ element, body.list, list ])

which are the five terminals and the three non-terminals accessible from list.
The function “n‘ used to check if an element is part of a list can be defined
easily as:

X ‘in'[] = false
Xin"[Y]Ys] = if X==Y then true else X ‘in' Ys

The rest of the rules only collect symbols from parsers whose outermost
function are in the basic set, that is from parsers that do not represent non-
terminals but right-hand sides.

Function get_prods collects every production accessible from a non-terminal
P. To represent productions pairs of values of type parser are employed, where
the first component stands for the left hand-side and the second one for the
right hand-side of the production, i.e. of the function rule.
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type prod A = (parser [A] A, parser [A] A)
get_prods::parser [A] A — [prod A]
get_prods P = zip N (map get_right N) <= symbols P == (_,N)

At this point we can define the functions neccessary for checking, for intance,
whether a given grammar satisfies the LL(1) property. Although there are a
number of efficient algorithms for checking the property directly, we are going
to follow the steps enumerated in ([ASU86]), which provide some interesting
intermediate functions.

The properties presented from now on need an extended definition for the
terminals of the grammar, including the empty word and the terminal repre-
senting the end of the input string. Therefore we introduce the following data
type:

data extended_symbols A = empty_word | term A | eos

That is, the set of extended symbols include all the terminals of type A through
the data constructor term, plus the values - constructors of arity 0 - empty_word
and end of string (eos).

We begin by defining the function first, which takes a non-terminal P as
input parameter and returns the set of terminals that can start some sentence
derived from P. If the empty word can be derived from P, it is also returned.

first :: parser [A] A — [extended_symbols A]

first empty = [empty_word]

first (terminal A) = [term A]

first (A <x> B) = if empty_word ‘in‘ L then L ‘union’ (first B) else L
—first A==1L

first (A <|>B) = (first A) ‘union’ (first B)

first (star A) = [empty-word | first A]

first P = if P>>R then first R

Given a non-terminal as input parameter, the first rule applied is the last
one, which says that the set of first symbols of a non-terminal P is the set
of first symbols corresponding to its right-hand side. The condition P>>R)
assures that P is actually a non-terminal. Among the other rules, perhaps the
only one that deserves explanation is that of the sequence combination of two
parsers A and B. The condition is here used to avoid repeated computations. It
bounds the new variable L to the set of first symbols of A. Then, if the empty
word is not in the set, the first symbols of the sequence are precisely those in L.
Otherwise the first symbols of B can appear also at the first position of some
sentence generated by the sequence, and we must return the union of the two
lists. Function union concats the elements of two lists avoiding repetitions:

union [] L = L
union [X|Xs] L = if X ‘in‘ L then union Xs L else [X|union Xs L]

To check if a given grammar satisfies the LL(1) condition we need the first
sets of every non-terminal in the grammar. We call this function all_first:

type symbols_assoc A = [(parser [A] A, [extended_symbols A])]
all first:: parser [A] A — symbols_assoc A
all_first P = zip N (map first N) <= symbols P == (T,N)
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The type definition symbols_assoc represents the set of extended symbols associ-
ated to any non-terminal in the underlying grammar. It will be used in several
ocassions in the rest of the section. The standard functions map and zip are
used here to apply the function first to all the non-terminals and to match every
non-terminal with its list of first symbols, respectively. For example:

allfirst list == F

returns
L==[ (element, [ (term’0’), (term '1") ]),
(body_list, [ (term '0"), (term '1'), empty_word ]),
(list, [(term '[)]) ]

The next function defined is follow which returns a list of pairs (NT, F),
where NT is a non-terminal and F is the set of terminals that can appear
immediately to the right of NT is some sentencial form. To calculate each set
of follow symbols we consider the next rules:

1. The special symbol eos is a follow symbol of the start non-terminal of the
grammar.

2. If there is a production of the form NT == a <*> A<x> B with 4
a non-terminal, then everything in first B, excepting the empty word is
in the set of follow symbols of A. If the empty word is in first B then
everything in follow NT is also in follow A.

3. If there is a production of the form NT == a<x> A with A a non-terminal
then all the symbols of follow NT are also symbols follow A.

Here is the definition of follow together with some definitions of its auxiliar
functions.

follow :: parser [A] A — symbols_assoc A
follow P = follow’ [(P,[eos])] (get-prods P)

follow'::symbols_assoc A — [prod A] — symbols_assoc A
follow’ List N = if List==List’ then List else follow" List’ N
<= foldl follow_prod List N == List’

Function follow gets the start non-terminal of the grammar P and collect
all the accessible productions. It also includes eos as a follow element of P,
observing the rule 1. Function follow’ call function follow_prod once and again
until no more follow symbols are discovered.

The next function, follow_prod, examines a fixed production and updates the
table of follow symbols, adding the new information entailed from the structure
of the production.
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follow_prod List (_,empty) List
follow_prod List (_,terminal T) = List
follow_prod List (NT,(<*> ) A B) =
if nonterminal A
then follow_nonterm NT List A B
else follow_prod (follow_prod List (NT,A)) (NT,B)
follow_prod List (NT,star A) =
follow_prod List (NT,A <x> A <[> empty)
follow_prod List (NT,(<|>) A B) =
follow_prod (follow_prod List (NT,A)) (NT,B)
follow_prod List (NT,A) =
if nonterminal A
then (add_symbols A (get-index NT List) List )

If the production is of the shape NT R = empty Ror NT R = terminal T then
no additional symbols are discovered and the resulting list is kept unaffected.
If it is a sequence of parsers, and the first parser is a non-terminal, then the
function follow_nonterm is called. This function regards the rule 2 to get new
follow symbols.

follow_nonterm P List A B =
if empty_word ‘in‘ FirstB
then follow_prod (add_symbols A (get_index P Listl) Listl ) (P,B)
else follow_prod Listl (P,B)
<= first B == FirstB,
add_symbols A (filter (/= empty_-word) FirstB) List == Listl

In the case of a sequence whose first component is not a non-terminal, structural
induction is performed by follow_prod. Similarly, in the case of alternative of
parsers, both components are examined and their results mixed in a single list.
A production of the form NT R = star P R is regarded as equivalent - in terms
of the set of follow symbols - to a production of the form NT R = (P <*>
P < | >empty) R. Finally the last rule of follow_prod considers the possibility
sketched in rule 3.

The function add_symbols includes new symbols in the follow set of a non-
terminal, while get_indez retrieves the current follow set associated to a given
non-terminal.

add_symbols A NewS []
add_symbols A NewS [(E,Sym)|R]

[(A.,NewS)]

if A==E

then [(E, Sym ‘union’ NewS)|R]

else [(E,Sym)|add_symbols A NewS R]

get_index NT [] = ]
get_index NT [(A,R)|Xs] = if NT==A
then R

else get_index NT Xs
As an example, the goal

follow list == L

33



returns

L == (list, [ eos ]), (element, [ (term ',’), (term ']') ]), (body_list, [ (term 'T') ]) ]

6.4 Constructing the Predictive Parsing Table.

The next function, and the last step before defining the function that checks if
the grammar has the LL(1) property, is to define the predictive parsing table
of the grammar whose initial symbol is represented by the parser P. If the
grammar has n different accessible non-terminals and m accessible terminals, the
predictive parsing table will have n rows and m+1 columns (the extra column
for the special symbol eos). Each entry (NT,T) of the table is a list with the
productions that may be tried if we are reducing the non-terminal NT and the
leftmost terminal of the input sentence is T. For instance the entry (body_list, ’]’)
of the table corresponding to the grammar of the list expressions will containt
only the production empty while the entry (body_list, ’1’) will contain element
<x> star (terminal ’,” <x> element). Of course the grammar is LL(1) if and
only if all the entries of its predictive parsing table have one production at most.

In order to construct the predictive parsing table, is useful to describe the
ideas in terms of grammar productions instead of function rules. We also use
the notation FIRST (o)) and FOLLOW (A) to denote the set of first symbols
of a sentencial form a and the set of the follow symbols of a non-terminal,
respectively.

Suppose A — « is a production of the grammar with a € FIRST (o). Then,
the entry (A,a) of the table must contain the production A — «. The only
complication occurs when the empty word is in FIRST (a), then we can reduce
A also when the input sentence begins by any symbol b € FOLLOW (A) and
therefore the entry (A,b) must contain also A — a. The code of the function
parsing_table, is

parsing_table ::parser [A] A — [ [ [parser [A] A] ]]
parsing_table P = foldl (parsing_table_prod Follow (T',N)) Table Prods
<= symbols P == (T,N),
T’ == [eos|map term T],
iniTable (length N) (length T') == Table,
get_prods P == Prods,
follow P == Follow

The type of the function shows that it gets a parser (actually a non-terminal)
and retrieves a list of lists of lists. The first level of nesting represents the
rows of the table, and each element of a row, i.e. each column, is a list of
parsers. Actually it should be a list of productions, but we only store the parser
corresponding to the right hand-side of the production, for the left hand-side,
the non-terminal, is determined by the index of the corresponding row. The
order between non-terminals is determined by the order in the list returned by
function symbols, and the same is valid for the terminals.

The conditions of the function first of all get the set of symbols of the gram-
mar and constructs the empty table, using the function

iniTable LengthN LengthT = take LengthN (repeat (take LengthT (repeat [])))
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The dimensions of the table are the length of the list of non-terminals and
the length of the list of terminals including eos. The set of follow symbols is
also collected in order to elude its repetitive calculation. Finally, the body of
parsing_table uses the standard function foldl to examine all the productions,
building incrementally the final table. The function that examines each pro-
duction is modify_parsing_table, but the function parsing_table_prod is used as a
previous filter, splitting the productions of the form A + a <|>f in two pro-
ductions A < «a and A + (3, assuring that finally function modify_parsing_table
gets the productions free of alternatives.

parsing_table_prod Follow Symbols Tab (NonTerm,((<|>) AB)) =
parsing_table_prod Follow Symbols
(parsing_table_prod Follow Symbols Tab (NonTerm,A)) (NonTerm,B)
parsing_table_prod Follow Symbols Tab (NonTerm, P) =
if (P==empty) V (P==terminal _) V (nonterminal P) Vv
(P==(star )V (P==(_<*>))
then modify_parsing_table Follow Symbols Tab (NonTerm,P)

Therefore modify_parsing_table gets a production without alternatives and
include the new information in the table.

modify_parsing_table Follow Symbols Tab (NonTerm,P) =
if empty_word ‘in’ FirstP
then add_list_parsing_table Symbols P NonTerm TabFirst FollowNonTerm
else TabFirst

p—
first P == FirstP, NonEmptyFirstP==filter (/=empty_word) FirstP,
get_index NonTerm Follow == FollowNonTerm,

TabFirst == add_list_parsing_table Symbols P NonTerm Tab NonEmptyFirstP

The conditions include the right hand-side P of the production in all the entries
of the form (NonTerm,a), with a terminal in the set of the first symbols of P.
This new table is called FirstP, and, if empty is not if the set FIRST(P), is
the value returned. Otherwise, we need to include the production also for the
terminals in the set of the follow symbols of NonTerm, as is done in the else
part of the body.

Finally the following functions include the information in the table.

add_list_parsing_table Symbols P NonTerm Tab List =
foldl (add_parsing_table Symbols P NonTerm) Tab List

add_parsing_table (T,N) New NonTerm Tab Term =
if New ‘in' SetTerm then Tab
else PrefNon++[PrefTerm++[[New|Set Term]|Post Term]|PostNon]

—
pos T Term 1 == PosTerm,
pos N NonTerm 1 == PosNonTerm,
splitAt (PosNonTerm-1) Tab == (PrefNon,[LNonTerm|PostNon]),

splitAt (PosTerm-1) LNonTerm == (PrefTerm, [SetTerm|PostTerm])

pos [X|Xs] E N = if X==E then N else pos Xs E (N+1)
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Now we are ready to get the predictive parsing table of the grammar whose
initial symbol is list.

parsing_table list == T

the result returned appears rather tangled:

T == 1. [1. [ (terminal '1") ], [ (terminal *0") ], [] ],
empty |, []. [ element <> (star (terminal ’,") <*> element) ],
[ element <> (star (terminal ’,") <x> element) |, [] ]

LI1I1 10 [0 110 [ (terminal '[') <> body_list <+> (terminal ']") ] ] 1]

L[] [
(1] 1

but can be interpreted if we remember the set of symbols associated to this
grammar.

Symbols == ( "],10[", [ element, body_list, list ])

That is, the first row corresponds to element, the second one to body_list and
the third one to list, while the six columns correspond to the right hand-side of
the productions that we can choose if the input sentence begins with eos, ’J’,
%% 1%, 707 and [’ respectively. Specifically, the fourth element of the first list,
shows that if a terminal ’1’ is found while reducing the non-terminal element,
then it must be reduced using terminal ’1’. It is worth noting that the empty
lists correspond to entries of the table with no possible production to choice,

i.e. erroneous derivations.

6.5 Defining the LL(1) Property.

Now the definition of the function lI_1 is straightforward, for it only needs to
assure that there is no entry (Noterm,Term) with two or more possible choices.

[I_1 :: parser [A] A — bool
1.1 P = filter ((>=2).length) (concat (parsing_table P)) == []

The next goal succeeds with R==yes, showing that the grammar used in
this subsection as example has the LL(1) property.

-1 list == R

A famous grammar that does not satisfy the LL(1) property is that of the if
sentences with optional elses (known as the problem of the dangling else, see
[ASUS6]).

The problem arises because in the sentence ”ixtixtoeo” - if expression then
if expression then order else order - the grammar does not specify if the else
part corresponds to the first if or to the second one. Therefore the goal

II_1 sentence == R
returns
R == false

Moreover, by examining the parsing table, we can discover the entry with two
possibilities for the table returned by
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sentence R = (terminal 'i" <*> expression <*> terminal 't’ seqp sentence <x> else_part
<|>
terminal ‘o’ ) R

else_part R = (terminal 'e’ <*> sentence <|> empty) R
expression R = (terminal 'x’) R

Figure 8: parser for if sentences with optional else parts

parsing_table sentence == T
is of the shape:

T==[ [[empty]. []. [ empty, (terminal 'e’) <x> sentence ], ...

]

And the set of symbols returned by function symbols is
Symbols == ( "oetxi", [ else_part, expression, sentence ])

meaning that the first row corresponds to the non-terminal else_part, while the
third column corresponds to the second terminal (the first column is for eos),
which is ’e’. Therefore the complication arises when trying to reduce else_part
with ’e’ at the begin of the input sentence.

7 Conclusions.

We have shown how a functional-logic language supporting non-deterministic
functions allows defining parsers which combine most of the nicest proper-
ties of both functional and logic parsers. Specifically, FLP parsers share with
LP parsers the natural way of handling non-determinism provided by non-
deterministic computations, the skill in recognizing context sensitive languages,
and the possibility of multiple modes of use. On the other hand, FLP parsers
profit from many FP features, as the definition of powerful HO combinators or
the use of functional types. For the problem of constructing involved representa-
tions of the parsed sentences, we have proposed a technique (our do contruction)
resembling FP monads in the style of parsers that can be written, but with the
advantage of no needing any extra syntactic support. As another interesting
contribution, we show how the inclussion of higher-order patterns in the lan-
guage provides a new dimension to FLP parsers, as they can be regarded as
truly, manageable, first-class data values.

There are many aspects of functional-logic parsers that deserve a thorough
study, as they could yield new interesting outcomes. One of these aspects is the
application of the g&t technique to other areas where rather involved search
are needed. In this situations, the g&t technique may define solutions close
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to the high-level specifications, providing a more abstract framework. Another
possibility, simply sketched in the paper, is the application of non-deterministic
FLP parsers with numerical constraints for parsing visual languages. Indeed, the
characteristics of these parsers might provide a suitable framework for parsing
such languages. Finally, this discussion also suggests a FLP technique used as
alternative to monads, and may be worth studiyng whether such solution can
be generalized to other areas where monads have been employed successfully.
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