
Bundles pack tighter than lists⋆

López-Fraguas, F.J., Rodrı́guez-Hortalá, J., and Sánchez-Hernández, J.

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid, Spain

fraguas@sip.ucm.es, jrodrigu@fdi.ucm.es, jaime@sip.uc m.es

Abstract

We proposebundles, an alternative to lists as data structure usually adopted for pro-
gramming non-deterministic algorithms in a functional programming style. Bundles
provide a more compact representation of collection of values, because of structure
sharing among different elements of the collection. Our presentation is based on a
small set of examples that show good performance of bundles when compared to
lists.

1 INTRODUCTION

Non-determinism plays a role in computer science from its very beginning. In
particular, many programming languages of various families have incorporated
some constructs to express and compute with non-determinism. The role of non-
determinism presents different faces. In this paper we are interested in its algo-
rithmic aspects and its use for problem solving. Of course, non-determinism is of
major importance in connection with concurrency and concurrent programming,
but it is not from this point of view that this paper has been written.

Logic programming (LP) languages [Apt90] and –more modestly– functional
logic languages [Han05], occupy a principal position in thepresent panorama of
languages having non-determinism at their core. In those languages non-determi-
nism is typically combined with backtracking-based search.

In the functional programming (FP) side, a seminal paper of Wadler [Wad85]
established what has become the standard approach to programming with non-
determinism in FP: instead of the LP implicit search space created by failure and
backtracking until a success is reached, in FP one programs the lazy generation
and traversal of alist of successes. This approach benefits of many distinctive fea-
tures of FP: laziness, HO functions, list comprehensions and, since 90’s, monadic
programming [Wad95]. The list-of-successes approach is now usually presented in
terms of thelist monador non-determinism monad.

The thesis of this paper is that, despite its simplicity, thelist-based handling
of non-determinism misses many opportunities for laziness–in a wide sense of
the term– resulting in many cases in extra inefficiencies beyond what should be
attributed to the programmed algorithm itself.

⋆This work has been partially supported by the Spanish projects TIN2005-09207-C03-03
(MERIT-FORMS-UCM) and S-0505/TIC/0407 (PROMESAS-CAM, Consejerı́a Educación CAM).

XXIV–1

We propose what we callbundles, a data structure alternative to lists to rep-
resent sets of values in a more compact form due to a great amount of sharing of
information. Nevertheless, we remark that our purpose is not to give the best rep-
resentation of sets, but one that fits well with non-deterministic lazy generation of
values as appears naturally in programs dealing with non-determinism

The presentation of our ideas is kept at the informal level. We have selected a
small bunch of examples with which we illustrate and test ourproposals. Although
examples are particular we have tried to identify general ideas and schemes behind
them that help to a future mechanization of the methodology.Programs are written
in Haskell.

The algorithms we program in our small set of examples do not pretend to be
efficient, and in some case are indeed very inefficient. From our point of view, the
important fact is whether the use of bundles improves performance when compared
to the list approach. We provide experimental measurementsof time and memory
costs for these programs that show the benefits of bundles in practice. We have
used the Glasgow Haskell Compiler running on an Intel Pentium 4 EM64T 3.20
GHz with 1 Gb of RAM memory for the benchmarks. The complete programs are
available athttp://gpd.sip.ucm.es/juanrh/pubs/tfp2007/bundles.z ip .

2 BUNDLES. GENERAL IDEAS

To a great extent, programming with non-determinism amounts to program with
sets of values. Lists provide a very uniform, type independent way of representing
sets of values, that is used in the traditional list-of-successes approach to non-
determinism. In it, each value is a independent piece of information. Thanks to
laziness, it is possible that in a given problem a set (a list)is only partially computed
and that processing any of its elements does not require to explore it completely;
but certainly processing one of its elements does not help toprocess another one.

Bundles are introduced to provide a more compact representation of sets of
values where different elements may share part of their structure. We do not look
for maximal sharing, but for an amount of sharing that stems naturally in many
problem-solving cases formulated in a non-deterministic style. It turns out to be,
as we will try to convince with our examples, that ‘near-to-the-root’ sharing is a
good option. This means that bundles will be a kind of trees (that in addition will
be collected in forests). As a matter of fact, bundles resemble tries [Knu73], a well-
known data structure invented for fast indexing of strings,and that has been gener-
alized in functional programming setting to general data types [CM95, Hin00]. In
Section 5.4 we compare our bundles to generalized tries.

As an example of bundles, consider the case of list of integers, that we want to
collect in sets. Using lists to represent sets,{[1,2,5], [1,2,7], [1,4], [2,7], [2]} would
be the list[[1,2,5],[1,2,7],[1,4],[2,7],[2]] or some reordering of
it. We could also think about some kind of tree structure ableto reflect sharing of
information of this set, like the following couple of trees where each branch ending

XXIV–2

in an underlined node corresponds to a list in the set:

1

2

5 7

4

2

7

This pictorial representation corresponds to the following list of two bundles,
one for each tree above:

[1 :< [2 :< [5 :< [BEmpty],
7 :< [BEmpty]],

4 :< [BEmpty]],
2 :< [7 :< [BEmpty],

BEmpty]
]

Here,BEmpty is the bundle for the empty list, and:< is a data constructor
for building up a bundle made of a shared head with a list of bundles as tail. The
term above is a list of two individual bundles, representingrespectively the sets
{[1,2,5], [1,2,7], [1,4]} and{[2,7], [2]}: each of them is made of elements having
a common head that is shared in the bundle, and this is made recursively: the sub-
lists [2,5] and[2,7] share the common 2. Notice however that in the bundle repre-
sentation above the lists[1,2,7] and[2,7] do not share their common substructure,
because it is not at the head.

We give now the definition of bundles of lists. Since lists arepolymorphic, so
can be bundles of lists.

infixr 5 :<
data BList a = BEmpty | a :< SList a -- Bundles of lists
type SList a = [BList a] -- Sets of lists are lists of

-- bundles of lists

BListandSListstand for ‘bundle of lists’ and ‘set of lists’. Notice thatBEmpty
represents a list (the empty one) while[] represents an empty set of lists. We
will say often ‘bundles’ to refer either to genuine, individual bundles, or to lists of
bundles. Notice also that, conceptually, each individual bundle ofBList represents
a collection of lists, and that a list of bundles[B1, . . . ,Bn] representsB1∪ . . .∪Bn.

We can define useful operations overBList astoLists, converting bundles into
lists, toBundle, for the opposite conversion,b union, b intersectfor union and in-
tersection of bundles, orb spreadAt nthat removes sharing until leveln. This will
be useful when a bundle must be processed by a function requiring such degree of
evaluation, as will happen in section 3. Let us take a closer look to two of these
operations. The code fortoListsuses the standard functionconcatMap f = concat
. (map f):

toLists:: SList a -> [[a]]
toLists = concatMap toLists’

where toLists’:: BList a -> [[a]]
toLists’ Empty = [[]]
toLists’ (x:< xss)= [(x:xs)| xs<-toLists xss]

XXIV–3

This code-pattern where a functionf overSListis defined asconcatMap f’for
a suitablef ′ operating onBList will appear frequently.

Intersection (b intersect) is also an interesting operation. Since lists of bun-
dles represent unions, to intersect two of them[. . . ,Bi, . . .]∩ [. . . ,B′

j , . . .] we must
distribute intersection to obtain

S

i, j(Bi ∩B j). Intersecting two individual bundles
Bi ∩B j may result in a new bundle or ‘fail’, a dicotomic result that is well modeled
by the use ofMaybe. This is the code forb intersect:

b_intersect :: (Eq a) => SList a -> SList a -> SList a
b_intersect b1 b2 = catMaybes [ab1 ‘b_intersect’‘ ab2 | ab1 < - b1, ab2 <- b2]

b_intersect’ :: (Eq a) => BList a -> BList a -> Maybe (BList a)
Empty ‘b_intersect’‘ Empty = Just Empty
Empty ‘b_intersect’‘ _ = Nothing -- failure
_ ‘b_intersect’‘ Empty = Nothing -- failure
(x:<xss) ‘b_intersect’‘ (y:<yss)

| x == y = Just (x:<(xss ‘b_intersect‘ yss))
| otherwise = Nothing -- failure

Bundles of lists will be enough for our first examples, but theidea of bundles
can be applied in general to any data constructor type. For instance, the data type
of Peano numbers:data Nat = Zero | S Nat
has its corresponding bundles:

data BNat = BZero | BS SNat -- Bundles of naturals
type SNat = [BNat] -- Sets of naturals are lists of

-- bundles of naturals

Bundles are not very interesting for flat types, whose different values cannot
share any structure. For these types, lists are sufficient torepresent sets. Just to not
leave these types without bundles, we can define them as type alias, as in:

type SBool = [BBool]
type BBool = Bool

In Section 5 we examine bundles for tree-like structures.
A final remark in this section: unfortunately, bundles cannot be defined in

Haskell as a polymorphic typeBundle a , because bundles of different types re-
quire different data constructors. We can think ofBundle as a pseudo-polymorphic
type, where each of its instances must be defined as separatedtypes. Most prob-
ably, a proper treatment of types for bundles can be given in the framework of
polytypic programming[Hin99] as happens with generalized tries [CM95, Hin00],
but we do not further discuss this issue here.

3 FIRST EXAMPLE: PERMUTATION SORT

Logic programmers inventedpermutation sort[SS86] what is probably the worst
sorting algorithm ever proposed, but at the same time is a nice example of a very
simple declarative specification using a problem-solving non-deterministic scheme
known asgenerate and test. The Prolog code for permutation sort is:

permSort(Xs,Ys) :- permute(Xs,Ys),
sorted(Ys).

XXIV–4

together with suitable definitions ofpermute(Xs,Zs)to generate inZspermutations
of Xs, andsorted(Zs)to check if the generated permutation is already sorted. If
not, computation backtracks to generate a new candidate. Generate and test is easy
to program in FP using a list of successes.
permuts :: [a] -> [[a]]
permuts [] = [[]]
permuts (x:xs) = [(y:zs)|(y,ys)<-pickOne (x:xs),zs<-per muts ys]

where pickOne [x] = [(x,[])]
pickOne (x:xs) = (x,xs):[(y,x:ys)|(y,ys)<-pickOne xs]

sorted :: Ord a => [a] -> Bool
sorted [] = True
sorted [x] = True
sorted (x:y:ys) = (x <= y) && sorted (y:ys)
permSort :: Ord a => [a] -> [a]
permSort = head . (filter sorted) . permuts

With this program, the list of permutations is generated andfiltered lazily until
a sorted one is found. In the worst case, the last permutationwill be the good one
and therefore, even if the rest were immediately discarded by the filter, a traversal
of the whole list is done, giving a complexity ofO(n!), wheren is the lenght of the
list to sort. The same happens with the Prolog code.

However, we can do much better – without changing the essenceof the algo-
rithm, needless to say – if the set of permutations is more compactly generated
giving the filter the opportunity of discarding many permutations at once. If one
sees the code forpermuts, it is clear that the construction of the list comprehension
misses the opportunity of sharing they at the head. Using bundles, the generation
of permutations of a list is given by:
b permuts:: [a] -> SList a
b permuts [] = [Empty]
b permuts (x:xs) = [(y:<b permuts ys)|(y,ys)<-pickOne (x:xs)]

Filtering sorted lists fromb permutsis made by the following code:
filterSorted:: Ord a => SList a -> SList a
filterSorted xss = concatMap filterSorted’ (b spreadAt 1 xss)

filterSorted’:: Ord a => BList a -> SList a
filterSorted’ Empty = [Empty]
filterSorted’ (x:< [Empty]) = [x:< [Empty]]
filterSorted’ (x:< [y:<yss]) = if x > y || null zss then [] else [x:<zss]

where zss = filterSorted [y:<yss]

The rules forfilterSorted’ have been distilled from those ofsorted. And no-
tice thatfilterSorted’ is applied over(b spreadAt 1 xss)and not directly overxss
because the filter demands the first two elements of each permutation. Finally the
permutation-sort function using bundles is:
b permSort:: Ord a => [a] -> [a]
b permSort = head . toLists . filterSorted . b permuts

It can be shown that complexity ofb permSortis O(2n). Probably one would
not choose it for sorting his classroom lists, but at least ismuch smaller thanO(n!).

Table 1 contains a comparative ofpermSort, b permSortwhich is consistent
with these complexities. Cells contain running times corresponding to evaluation
of expressions of the formf (reverse [N,N-1..1]); where f is permSortin the first
row andb permSortin the second one; eachf has the indicated range ofN’s.

N = 6..10 0.01 0.07 0.49 4.22 41.80
N = 6..10, 15, 19 0.01 0.01 0.01 0.02 0.05 2.07 43.64

Table 1: permutation sort

XXIV–5

4 WORD SEARCHING

Our next problem is a classical one: given a set of chains thatacts like a dictionary
and an input chain, we must find any appearance in the input of any chain present in
the dictionary. Thegenerate-and-testscheme provides a pretty simple solution, by
generating the set containing every consecutive subsegment of the input and taking
only those subsegments present in the dictionary. This can be easily encoded in FP
using a list of successes, as follows:

type Set a = [a]
type Dictionary a = Set [a]

-- List-based solution
lookupSet :: (Eq a) => Dictionary a -> [a] -> Set [a]
lookupSet dic xs = filter ((flip elem) dic) (sublists xs)

Wheresublistsreturns a list containing every consecutive subsegment of its input
list. But once again, we can get a better performance using bundles, employing the
bundle intersection operator seen in section 2. We are looking for chains present in
the dictionary that are also a consecutive subsegment of theinput chain. To do that
we simply define the bundles representing both sets, and intersect them:

-- Bundle-based solution
lookupBundle :: (Eq a) => Dictionary a -> [a] -> SList a
lookupBundle dic xs =

(setToBundle dic) ‘b_intersect‘ ((bsublists . toBundle) x s)

-- packs a set of lists into a SList representing the same
-- set, trying to get the tightest possible package
setToBundle :: (Eq a) => Set [a] -> SList a
setToBundle [] = []
setToBundle ([]:yss) = Empty:(setToBundle (filter (not . n ull) yss))
setToBundle ((x:xs):yss) =

let (c, nc) = partition (sameHead x) yss
in (x:< setToBundle (xs:(map tail c))):(setToBundle nc)

where sameHead _ [] = False
sameHead x (y:ys) = x == y

-- bsublists xs returns a bundle containing
-- every consecutive subsegment of xs
bsublists :: SList a -> SList a
bsublists = concatMap bsublists’

bsublists’ :: BList a -> SList a
bsublists’ Empty = [Empty]
bsublists’ b@(x :< xss) = (binits1 [b]) ++ (bsublists xss)

-- binits1 xs returns a bundle containing
-- every non empty prefix of xs
binits1 :: SList a -> SList a
binits1 = concatMap binits1’

binits1’ :: BList a -> SList a
binits1’ Empty = []
binits1’ (x :< xss) = [x :< (Empty:(binits1 xss))]

Note that the definition forbsublistsis quite similar to the classical definition for
sublists. From this example we can infer a new programming scheme for non-

XXIV–6

deterministic search problems, thebundle intersectionscheme. As bundles repre-
sent sets, intersecting the bundle generated from the inputwith a bundle represent-
ing the filtering condition leads us to the set of solutions.

The bundle-based algorithm gets a much better performance than the list-based
algorithm in the tests we have done so far, as we can see in Table 2.

Expression Seconds Bytes
lookupSet dic((concat.(take 120))dic) 19.63 3303096456
toLists(lookupBundle dic((concat.(take 120))dic)) 0.09 13944344
toLists(lookupBundle dic (concat dic)) 0.29 67500736

Table 2: word searching

5 BUNDLES OF NON LINEAR DATA TYPES

Our first two examples have in common that bundles are used to represent sets of
lists, which are data values with alinear structure. We now address the problem of
making bundles oftree-like structures.

We first shortly discuss two possible representations for bundles of trees: the
first one is coarser and essentially performs a cross productof bundles, while the
second one is finer and allows to maintain sharing of roots in more complex situa-
tions. After that discussion we give one example for each of these representations,
and finally we see how our bundles can be used to implementfinite maps, which
was the main purpose of generalized tries [Hin00].

5.1 Two possible representations

Consider the following datatype definition for binary treescontaining information
in internal nodes:
data Bin a = Leaf | Node (Bin a) a (Bin a)

According of the idea of bundles, trees are to be collected bysharing their roots.
But with respect to children there is not a unique way to proceed. In a first, simpler
possibility, children of a shared root in a bundle of trees are also (lists of) bundles:
type SBin a = [BBin a]

data BBin a = BLeaf | BNode (SBin a) a (SBin a)

In this representation, the set of trees represented by a bundle (BNode S x S′) re-
sults of placingx as root of all trees whose children are the pairs of trees in the
cross-productS×S′. For instance, the following bundle
BN [BN [BL] y1 [BL],BN [BL] y2 [BL]] x [BN [BL] z1 [BL],BN [BL] z2 [BL]]

(whereBL, BNabbreviateBLeaf, BNoderesp.) represents the set{T11,T12,T21,T22},
where eachTi j is the tree(N (N L yi L) x (N L zj L)).

This packing of trees is a bit coarse, since it is not able to express finer de-
pendencies of subtrees under a given shared root. For instance the set{T11,T22}
cannot be represented in a single bundle with a sharedx at the root. Instead, each
tree requires its own singleton bundle, that must be collected in a list.

We propose then a second possibility that allows to express such dependencies
of siblings. What is needed is to replace, in the definition ofSBin, the explicit
pointing of the root to its pair of sub-bundles by a list of pairs (SB,SB′), each of

XXIV–7

them indicating a possible combination of left/right sub-bundles:
type SBin’ a =[BBin’ a] data BBin’ a = BLeaf’ | BNode’ a [(SBin’
a,SBin’ a)]
Now, the set{T11,T22} can be represented by a single bundle of typeSBin’ with
a sharedx at the root:

BN’ x [([BN’ y1 [(BL’,BL’)]],[BN’ z1 [(BL’,BL’)]]),
([BN’ y2 [(BL’,BL’)]],[BN’ z2 [(BL’,BL’)]])]

It is clear that each bundle of typeBBina can be converted intoBBin′a with-
out losing any amount of sharing, while the opposite is not true. Still, BBin-like
bundles are sufficient in some occasions, as the following example shows.

5.2 The countdown problem

This is a popular game: given a list of operands (integers), find how to combine all
of them by means of arithmetical operations as to reach a given Total.

We program agenerate-and-testsolution to it that is not very clever, but cor-
responds quite straightforwardly to the specification of the problem: we blindly
generate the set of all possible arithmetical expressions with the given operands,
and then filter this set to find which expressions evaluate to the givenTotal. The
test is incremental in the sense that some expressions can bediscarded without
fully evaluating them: for instance, an expression of the form e*e’ cannot evaluate
to Total if the evaluation ofedoes not divideTotal.

As usual throughout this paper, we give two encodings: one represents sets
of arithmetical expressions (which are tree-like structures) as lists of expressions,
while the second uses bundles, in their first variant explained in the previous sub-
section. We expect bundles to behave better, because all theexpressions packed in
a bundle can be immediately discarded if the first operand is not adequate1. As we
shall see, experimental results confirm these predictions.

Let us start programming. These are the involved datatypes:

data Exp = Num Int |Add Exp Exp |Sub Exp Exp |Mul Exp Exp |Divi Ex p Exp
type SExp = [BExp] -- sets of expressions as lists of bundles
data BExp = BNum Int | BAdd SExp SExp | BSub SExp SExp

| BMul SExp SExp | BDiv SExp SExp

Now we address the generation of the set of possible expressions from a list of
operandsxs. We make use of a functionsplit for partitioning a list into a two non-
empty subsets. The code for generating expressions, both for the case of[Exp]
(list-of-successes) andSExp(bundles) is the following:

genLExp:: [Int] -> [Exp]
genLExp (x:[])=[Num x]
genLExp xs@(_:_:_)=[exp|(ys,zs)<-split xs, u<-genLExp y s, v<-genLExp zs,

exp <- [Add u v,Sub u v,Sub v u,
Mul u v,Divi u v,Divi v u]]

1Incrementality is what gives bundles a chance for improvingperformance. If the test consists in
fully evaluation of the expression and comparison toTotal, nothing is gained with the sharing of
structure provided by bundles, which indeed give in this case poorer results due to the overhead of
managing the bundle structure.

XXIV–8

genSExp:: [Int] -> SExp
genSExp (x:[]) =[BNum x]
genSExp xs@(_:_:_)=[bexp | (ys,zs)<-split xs,

bexp<-let {u=genSExp ys;v=genSExp zs}
in [BAdd u v,BSub u v, BSub v u,

BMul u v,BDiv u v, BDiv v u]]

Notice that since generation is kept independent from evaluation, nothing avoids to
generate meaningless expressions (e.g., division by 0). Notice also that both gen-
erators are remarkably similar, but the sizes of the resulting lists are quite different.
Por instance,(genLExp [1,2,3,4])has 3240 expressions, while(genSExp [1,2,3,4])
consists of 42 bundles.

For the test with[Exp], we need an evaluation functioneval:: Exp -¿ Maybe
Int. It ranges overMaybe Intbecause of ill-behaved expressions. The definition of
eval is clear and is omitted . The testeqValdoes not perform complete evaluation,
but tries to discard expressions useless to reach theTotal.

-- eqVal total e=True iff e is useful and evaluation of e gives total
eqVal:: Int -> Exp -> Bool
eqVal t (Num n) = n == t
eqVal t (Mul e e’) = case eval e of

Just ve -> 0<ve && mod t ve == 0 && eqVal e’ (div t ve)
Nothing -> False

-- similar for the rest of arithmetic operations

Finally, the set of solutions is obtained by

solution:: [Int] -> Int -> [Exp]
solution operands total = filter (eqVal total) (genLExp ope rands)

In the case of bundlesSExp, the test requires also of an evaluation function
mapEvaland its incremental continuationbeqVal, which are counterparts ofeval
andeqVal. Its types are:

mapEVal:: SExp -> [(Int,SExp)] beqVal:: Int -> SExp -> SExp

The type ofmapEvalrequires a comment:(mapEval bes)evaluates the expressions
packed inbes. Since not all the expressions will evaluate to the same value, it
returns a list[(n1,bes1),...,(nk,besk)] meaning that all expressions packed inbesi
evaluate toni . Actually, in this example, allbesi are singletons. Notice thatMaybe
is not needed in the result sincemapEvalreturns a list.

mapEval = concatMap mapEval’ -- mapEVal’:: BExp->[(Int,SE xp)]
mapEval’ (BNum n) = [(n,[BNum n])]
mapEval’ (BAdd x y) = [(n+m,[BAdd bes bes’])|(n,bes) <- mapE val x,

(m,bes’) <- mapEval y]
-- similar for the rest of arithmetic operations
beqVal total = concat.map (beqVal’ total) -- beqVal’:: Int- >BExp->SExp
beqVal’ n (BNum m) = if n == m then [BNum n] else []
beqVal’ n (BAdd e e’) = [be|(m,es) <- mapEval e, 0< m && m < n,

be <- let es’ = beqVal (n-m) e’
in if null es’ then [] else [BAdd es es’]]

Finally, the set of solutions is given by:

bsolution’:: [Int] -> Int -> SExp
bsolution’ operands total = beqVal total (genSExp operands)

XXIV–9

Table 3 contains results for a pair of instances of the problem, one with several
solutions (operands [1,2,3,4,5,6] and total 101), and the other with no solution at
all ([1,2,3,4,5,6] and 284). In the first case figures correspond to the first solution
found, while the second traverse the whole search space. We see again the benefits
of using bundles over lists.

Parameters Method Seconds Bytes
[1,2,3,4,5,6] Total=101 Lists 0.04 s 5467616
[1,2,3,4,5,6] Total=101 Bundles 0.02 s 2987288
[1,2,3,4,5,6] Total=284 Lists 44.00 s 4029314104
[1,2,3,4,5,6] Total=284 Bundles 27.57 s 3061838808

Table 3: countdown problem

5.3 Acrobat castles

Our next program uses the second kind of bundles for non-linear structures, those
in which the correspondence between the recursive “type calls” is not lost. The
example consists in building castles made of persons like those done by acrobats
in the circus, or in some folkloric celebrations. More precisely, given a group of
players, each one having a fixed weight and strength, we want to build a castle of
persons standing one on top of another. This castle is just a complete binary tree of
persons, where each parent node stands above the shoulders of the root of each of
his two sons. To represent the available players we use an enumerated data type,
and we encode their weight and strength as functions with thesame name.

data Player = P0 | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | ...
data Castle = Ground Player | Stands Player Castle Castle

We also want this castle to be stable, that is, such that no player has to hold more
weight than his or her own strength. The weight taken by each player is computed
assuming that it is distributed equitably between each pairof brothers, so each
player must take half of the weight of his parent node plus half of the weight held
by his parent node, as specified in the functionholdsbelow.

holds :: Castle -> [(Player, Float)]
holds = hAc 0

where hAc ac (Ground p) = [(p, ac)]
hAc ac (Stands p hi hd) = (p, ac):(hAc w hi) ++ (hAc w hd)

where w = (ac + (weight p)) / 2

Finally, the input of the problem will be the desired number of floors in the return-
ing castle. Note that forp floors the number of involved players will ben= 2p−1.
To keep the problem simpler we will build the castles only using the firstn players
available, although more castles could be built using the other players.

The generate-and-testscheme can be again used providing a simple solution
for this problem, and as usual it can be easily encoded in FP using lists of successes,
as follows:

-- List-based solution
makeCastlesL :: Int -> [Castle]
makeCastlesL p = ((filter stands) . playersLCastle) player s

where players = enumFromTo (toEnum 0) (toEnum (n-1))
n = 2ˆp - 1

XXIV–10

-- gets the list of possible castles built up with a given list of players
playersLCastle :: [Player] -> [Castle]
playersLCastle [p] = [Ground p]
playersLCastle ps = [Stands p ls rs |(p, ps) <- pickOne ps

,(h1,h2) <- halvesSet ps,ls <- playersLCastle h1,rs <- play ersLCastle h2]

-- decides if a given castle is stable or not
stands :: Castle -> Bool
stands c = and (map (\(p, h) -> h <= (strength p)) (holds c))

wherehalvesSetreturns a list containing every pair obtained splitting itsinput list
in two equal halves. Once again, we can improve the peformance of this algorithm
using bundles instead of lists to represent sets of results.We use the following type
for bundles of castles:

type SCastle = [BCastle]
data BCastle = BGround Player | BStands Player [(SCastle, SC astle)]

The solution with bundles is very close to the solution with lists. The main dif-
ference is that the filter function has to be designed ad hoc, while for lists it was
the partial application ofstandsto filter. But this is not as different as it could
seem, asstandshad to be designed ad hoc and so doesholds, upon which that was
defined. Hence the filtering function for bundles follows a schema similar to the
one forholds, propagating it through the bundle. Nevertheless, higher level func-
tions for bundles should be developed in future works, to ease the design process
of these kind of functions. Finally, as usual when dealing with bundles, and addi-
tional step in which the castles included in the bundle are extracted into a list had
to be included, through the functiontoLCastle. So, the solution with bundles is the
following:

-- Bundle-based solution
makeCastlesS :: Int -> [Castle]
makeCastlesS p = (toLCastle . standsS . playersSCastle) pla yers

where players = enumFromTo (toEnum 0) (toEnum (n-1))
n = 2ˆp -1

-- gets the bundle of possible castles built up with a given li st of players
playersSCastle :: [Player] -> SCastle
playersSCastle [p] = [BGround p]
playersSCastle ps = map cast (pickOne ps)

where cast (p, ps) = BStands p (map (\(h1,h2)
-> (playersSCastle h1, playersSCastle h2)) (halvesSet ps))

-- filters the stable castles of a bundle
standsS :: SCastle -> SCastle
standsS = stdAcS 0

where stdAcS :: Float -> SCastle -> SCastle
stdAcS ac = mapMaybe (stdAcB ac)
stdAcB :: Float -> BCastle -> Maybe BCastle
stdAcB ac b@(BGround p) =

if ac > (strength p)
then Nothing -- the player cannot take it
else Just b

stdAcB ac (BStands p sons) = filterFather >>= filterSons
where filterFather = if ac > (strength p)

then Nothing
else Just p

w = (ac + (weight p)) / 2
filterSons p =

let fs = filter (not . (any2 null))

XXIV–11

(map (map2 (stdAcS w)) sons)
in if null fs

then Nothing
else Just (BStands p fs)

As expected, the bundle-based algorithm reaches a much better performance in the
tests, as we can see in Table 4.

Depth of castle Lists version Bundles version
n head (makeCastlesL n) head (makeCastlesS n)

1 0.0 0.0
2 0.001 0.0
3 0.007 0.002
4 interrupted 71.37
Table 4: running time (in secs.) for making stable castles

In these test we use each algorithm to get only the first stablecastle with the
number of floors specified. Unfortunately, the search space grows very quickly to
get more results. Anyway, the bundle-based algorithm was able to get a result for
four floors while the list-based algorithm could not get any result.

5.4 Finite maps as bundles

Tries are a well known structure used fundamentally to represent finite maps from
keys to values [Knu73, CM95]. In a trie, the structure of the data type correspond-
ing to the search keys is used to compact its representation,thus improving the
efficiency of the lookup function, and also saving memory space. In its simpler
form, a trie is a mapping from strings to values:

data MapStr v = TrieStr (Maybe v) (MapChar (MapStr v))
type MapChar v = [(Char, v)]

lookupStr :: String -> MapStr v -> v
lookupStr [] (TrieStr node hs) = value node

where value Nothing = error "not found"
value (Just v) = v

lookupStr (c:cs) (TrieStr _ hs) = (lookupStr cs . lookupChar c) hs

lookupChar :: Char -> MapChar v -> v
lookupChar _ [] = error "not found"
lookupChar c ((c’, v):xs) = if c==c’ then v else lookupChar c x s

This is similar to our bundles of lists and it is not surprising to discover that we can
use bundles to define a similar mapping from strings to values. The main idea here
is hiding the values associated to the string-key in its non-recursive constructor,
that is, in[] . This should work well as every list has only one appearance of the
constructor[] in it, and because, anyway, when looking for a key, we will need
to traverse entirely every candidate string to ensure that it was the key we were
looking for, before accepting it. On the other hand, note that to reject a key only
one mismatch is needed, this property is what is exploited inthe tries framework to
obtain efficiency, and is also the basis for the bundle representation and algorithm.
As in tries, it is assumed as an invariant that in these mappings there is only a value
associated to each string, and that those are constructed tomaximize the sharing of
the keys, as for example usingsetToBundle, but in aSMapStrversion:

XXIV–12

infixr 5 :<
type SMapStr v = [BMapStr v]
data BMapStr v = BEmpty v | Char :< SMapStr v

-- lookups for the value associated to the input String in the
-- input mappping
lookupSMS :: String -> SMapStr v -> Maybe v
lookupSMS [] mappping =

(listToMaybe . (filter emptyBMS)) mappping >>= contentsBM S
lookupSMS (c:cs) mappping = lookupBMS c mappping >>= lookup SMS cs

-- lookups in the input SMapStr for the BMapStr starting with
-- the input Char, and returns the SMapStr corresponding to
-- its descendants
lookupBMS :: Char -> SMapStr v -> Maybe (SMapStr v)
lookupBMS _ [] = fail "not found"
lookupBMS c ((BEmpty _):bs) = lookupBMS c bs
lookupBMS c ((c’:<hs):bs) = if c==c’ then return hs else look upBMS c bs

The functionemptyBMSreturns true iff the input mapping is a mapping for the
empty string (constructorBEmpty) and a functioncontentsBMSreturns the value
stored in a constructorBEmptyif its argument matches it orNothing otherwise.
This bundle version has the advantage that it is not necessary to carry an element
of Maybe vin each node of the mapping, as it is the case for tries. In a trie for
strings we have only one constructor, thus it must representalso the mapping for
the empty string, so an element ofMaybe vis always attached to that constructor.
This results in a great amount ofNothingelements present in the trie, that is, a lot
of memory space wasted representing no information.

Subsequent works on tries as [Hin00], generalized the concept of trie to permit
indexing by elements of arbitrary non-parameterized data types. We will study
the case for binary trees, as those are the paradigmatic example of non-linear data
structure. We start with the following representation of binary trees:

data Bin = Leaf | Node Bin Char Bin

To build a finite map for binary trees we proceed in a similar way as in the case for
strings, using a single data constructor withMaybe vas its first argument, for the
case of mappings for leaves, and with a mapping from binary trees to mappings
from characters to mappings from binary trees to values as its second argument:

data MapBin v = TrieBin (Maybe v) (MapBin (MapChar (MapBin v)))

What we have do is, after attaching the corresponding element from Maybe v, using
each argument ofNodeto construct a mapping from it to the rest of the mapping,
and reading the arguments from left to right. The resulting type is an instance of a
particular kind of types callednested data types, characterized for being parame-
terized datatypes in whose definition some instances of the own datatype are used.
This forces us to use an special kind of recursion calledpolymorphic recursion,
getting the following lookup function:

lookupBin :: Bin -> MapBin v -> v
lookupBin Leaf (TrieBin node mps) = value node

where value Nothing = error "not found"
value (Just v) = v

lookupBin (Node l c r) (TrieBin node mps)
= (lookupBin r . lookupChar c . lookupBin l) mps

XXIV–13

The advantage of this approach is that the lookup functions are defined in a clear,
compositional, systematic way. In fact, what is done in these tries is encoding the
tree traversal ”left son-root-right son“ in a serial of nested mappings, thus lineariz-
ing the structure of binary trees. As this traversal is a list, this can be branched
exploiting the sharing of prefixes, in a way similar to what was done for tries of
strings. And that is what it is done here in fact, as each mapping is a branching in
the tree of possible traversals. Note that as the traversal chosen is ”left son-root-
right son“ (any other traversal could be chosen) then the value corresponding to a
binary tree is conceptually stored in its rightmost leaf.

Now, using the methodology employed for strings above, we will use a bundle
for Bin to represent the keys, hiding the associated values in its non-recursive con-
structor. It is pretty clear that in this case is mandatory touse the second kind of
bundles for non-linear structures, because we should not lose the correspondence
between siblings in aBin used as key. But the problem here is that, unlike with
strings, there could be several appearances of the constructor Leaf in a binary tree,
so, which of the values stored in the leaves should be chosen as the value corre-
sponding to the whole tree? To overcome this problem we use a technique similar
to the one used for tries: we hide the value in the rightmost leave. To achieve this
goal in our setting, we use the typeInSMBto, either hide the corresponding value,
or to report the success recognizing a part of the key. We willsee howInSMB
implements theMonadclass in a way such that a key is totally recognized and its
associated value returned only when the whole key has been checked:

type SMapBin v = [BMapBin v]
data BMapBin v = BLeaf (InSMB v) | BNode Char [(SMapBin v, SMap Bin v)]
data InSMB v = Follow | Value v

instance Monad InSMB where
-- the (>>) operator is the key: it returns its second argumen t
-- only if its first argument could be reduced to Follow
Follow >> y = y

-- lookups for the value associated to the input binary tree i n
-- the input mappping
lookupSMB :: Bin -> SMapBin v -> Maybe (InSMB v)
lookupSMB Leaf mappping =

(listToMaybe . (filter leafBMB)) mappping >>= contentsBMB
lookupSMB (Node hi c hd) mapping =

lookupBMB c mapping >>= lookupSMBPair (hi, hd)
where lookupSMBPair (hi, hd) hss =

let lookDescendants = map (zipWithPair lookupSMB (hi, hd)) hss
in (sieve lookDescendants) >>= combine

sieve = listToMaybe . (filter (not . (any2 isNothing)))
combine (vi, vd) = return ((fromJust vi) >> (fromJust vd))

-- lookups in the input SMapBin for the BMapBin with the input
-- Char as root node and returns the list of its paired descend ants
lookupBMB :: Char -> SMapBin v -> Maybe [(SMapBin v, SMapBin v)]
lookupBMB _ [] = fail "not found"
lookupBMB c ((BLeaf _):bs) = lookupBMB c bs
lookupBMB c ((BNode c’ hs):bs) = if c==c’ then return hs else l ookupBMB c bs

Functionsany2 and zipWithPair are just the pair versions of the corresponding
standard list functions, whileleafBMBandcontentsBMBare the same functions as
their SMapStrcounterparts just changing the constructors used for pattern match-
ing. That resemblance is a consequence of the methodology employed to develop

XXIV–14

the mapping for a given data type. Nevertheless, there is notsuch a close resem-
blance betweenlookupSMBandlookupSMS, although we can find a close relation
between them:lookupSMSis a simplified form oflookupSMB(with its construc-
tors adapted, obviously). AsBin is a data type more complicated thanString, as it
contains two recursive calls in its constructorBNode, so does its lookup function.
The ideas behindlookupSMBcould be used to defining lookup functions for other
non-linear data types.

The main advantage of the bundle mapping for binary trees is that it is much
more simple from the type system point of view, as it is not a nested data type and
thus does not require polymorphic recursion to deal with it.On the other hand,
lookup functions for tries can be defined in a very simple, elegant way, which is
clearly the main virtue of this approach.

6 CONCLUSIONS AND FUTURE WORK

This paper introduces bundles as an alternative to lists forrepresenting sets of
values in functional programming. The traditional way for dealing with non-
deterministic algorithms in the functional setting is by means of lists of successes
[Wad85] that collect the set of possible results of such algorithms. This is a rea-
sonable and simple way to proceed and works well for a range ofproblems. Never-
theless, there are a wide collection of problems that can be solved in a natural and
easy way bygenerate and testwhere lists of successes are not enough to capture
all the oportunities for lazyness. Things can be done much better using another
structure able to share information of different branches of the algorithm.

A bundle is a data structure intended to share information ofthe search space,
saving memory and reducing the time cost of the search, by allowing greater
prunes. We have showed a collection of problems solved in Haskell using stan-
dard lists and also the corresponding solutions using bundles instead of lists. The
important point is that the initial algorithm is not changed: lists are replaced by
bundles and then the program is adapted to the new representation preserving the
essence of the algorithm. Moreover this transformation, far from being a tricky
one, follows a metodology that suggests a general translation schema. The exper-
imental efficiency measurements with these examples reflectthe benefits of using
bundles, and are in fact quite surprising in some cases.

The metodology used in these examples is enough general to claim that any
data type has a corresponding bundle-based version. Moreover there can be more
than one possible bundle for the same data type, depending onthe amount of shar-
ing that we want to have. It will be interesting as future workto formalize the
construction of bundles for a generic data type, and also to (pseudo)automatize
these contructions. The examples also show that there are some operations that
appear frequently when using bundles. In particular, as bundles represent sets of
values, the usual operations on sets like union, intersecion, etc, have a clear mean-
ing for bundles; different traversal operations can also beinvestigated, expansion of

XXIV–15

bundles (conversion to flat list of values) or partial expansion (expansion of some
level of sharing). As future work it will be interesting to investigate these set of
operations to cope with bundles as an abstract data type and to develop a richer
metodology for using them in functional programming.

From a general point of view bundles are related to (generalized) tries [Knu73,
CM95, Hin00], another structure designed with the main purpose of representing
finite maps. We have shown that bundles can also be used to encode finite maps,
and we have compared both approaches within some examples; an advantage of
bundles is their greater simplicity from the point of view oftypes.
Acknowledgements: We thank Mario Rodrı́guez for many valuable ideas about
bundles, in particular their name. We also thank the anonymous referees for their
useful comments.

REFERENCES

[Apt90] K.R Apt. Logic programming. In J van Leeuwen, editor, Handbook of Theoret-
ical Computer Science, volume B, pages 495–574. Elsevier, 1990.

[CM95] Richard H. Connelly and F. Lockwood Morris. A generalization of the trie data
structure.Mathematical Structures in Computer Science, 5(3):381–418, 1995.

[Han05] M. Hanus. Functional logic programming: From theory to Curry. Technical
report, Christian-Albrechts-Universität Kiel, 2005.

[Hin99] Ralf Hinze. Polytypic programming with ease. InProc. 4th Fuji Int. Symp. on
Functional and Logic Programming (FLOPS’99), pages 21–36. Springer LNCS
1722, 1999.

[Hin00] Ralf Hinze. Generalizing generalized tries.J. Funct. Program., 10(4):327–351,
2000.

[Knu73] D. E. Knuth.The Art of Computer Programming, Vol. 3: Sorting and Searching.
Addison-Wesley, 1973.

[SS86] L. Sterling and E. Shapiro.The Art of Prolog. MIT Press, 1986.

[Wad85] P. Wadler. How to replace failure by a list of successes. InProc. Functional
Programming and Computer Architecture. Springer LNCS 201, 1985.

[Wad95] P. Wadler. How to declare an imperative. InProc. International Logic Program-
ming Symposium (ILPS’95), pages 18–32. MIT Press, 1995.

XXIV–16

