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Universidad Complutense de Madrid, Spain

Avda. Complutense s/n, 28040 Madrid

ABSTRACT
The new generic scheme CFLP (D) has been recently pro-
posed in [24] as a logical and semantic framework for lazy
constraint functional logic programming over a parametri-
cally given constraint domain D. In this paper we extend
such framework with a suitable operational semantics, which
relies on a new constrained lazy narrowing calculus for goal
solving parameterized by a constraint solver over the given
domain D. This new calculus is sound and strongly com-
plete w.r.t. the declarative semantics of CFLP (D) pro-
grams, which was formalized in [24] by means of a Constraint
Rewriting Logic CRWL(D).

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming; D.1.6 [Programming Techniques]:
Logic Programming; D.3.2 [Programming Languages]:
Language Classifications—Constraint and logic languages ;
D.3.3 [Programming Languages]: Language Constructs
and Features—Constraints

General Terms
Algorithms, Languages, Performance, Theory

Keywords
Functional logic programming languages, constraint logic
programming, rewrite systems, narrowing, constraint solvers

1. INTRODUCTION
The idea of Constraint Functional Logic Programming aro-

se around 1990 as an attempt to combine two lines of re-
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search in declarative programming, namely Constraint Logic
Programming and Functional Logic Programming.

Constraint logic programming was started by a seminal
paper published by J. Jaffar and J.L. Lassez in 1987 [16],
where the CLP scheme was first introduced. The aim of
the scheme was to define a family of constraint logic pro-
gramming languages CLP (D) parameterized by a constraint
domain D, in such a way that the well established results on
the declarative and operational semantics of logic programs
[20, 1] could be lifted to all the CLP (D) languages in an ele-
gant and uniform way. The best updated presentation of the
classical CLP semantics can be found in [18]. In the course
of time, CLP has become a very successful programming
paradigm, supporting a clean combination of logic program-
ming and domain-specific methods for constraint satisfac-
tion, simplification and optimization, and leading to practi-
cal applications in various fields [32, 17, 28].

On the other hand, functional logic programming refers
to a line of research started in the 1980s and aiming at the
integration of the best features of functional programming
and logic programming. As far as we know, the first a-
ttempt to combine functional and logic languages was done
by J.A. Robinson and E.E. Sibert when proposing the lan-
guage LOGLISP [30]. Some other early proposals for the
design of functional + logic languages are described in [9].
A good survey of the operational principles and implemen-
tation techniques used for the integration of functions into
logic programming can be found in [14]. Narrowing, a natu-
ral combination of rewriting and unification, originally pro-
posed as a theorem proving tool, has been used as a goal
solving mechanism in functional logic languages such as Cu-
rry [15] and T OY [22]. Under various more or less restric-
tive conditions, several narrowing strategies are known to
be complete for goal solving [14, 29].

To our best knowledge, the first attempt of combining
constraint logic programming and functional logic program-
ming was the CFLP (D) scheme proposed by J. Darlington,
Y.K. Guo and H. Pull [8]. The idea behind this approach can
be described by the equation CFLP (D) = CLP (FP (D)),
intended to mean that a CFLP language over the constraint
domain D is viewed as a CLP language over an extended
constraint domain FP (D) whose constraints include equa-
tions between expressions involving user defined functions,
to be solved by narrowing.

The CFLP (D) scheme proposed by F.J. López-Fraguas
in [21] aimed at providing a declarative semantics such that



CLP (D) programs could be formally understood as a particu-
lar case of CFLP (D) programs. In the classical approach
to CLP semantics a constraint domain is viewed as a first
order structure D, and constraints are viewed as first order
formulas that can be interpreted in D. In [21] programs were
built as sets of constrained rewrite rules. In order to support
a lazy semantics for the user defined functions, constraint
domains D were formalized as continuous structures, with a
Scott domain [13] as carrier, and a continuous interpretation
of function and predicate symbols. The resulting semantics
had many pleasant properties, but also some limitations. In
particular, defined functions had to be first order and deter-
ministic, and the use of patterns in function definitions had
to be simulated by means of special constraints.

More recently, yet another CFLP scheme has been pro-
posed in the Phd Thesis of M. Marin [25]. This approach
introduces CFLP (D, S, L), a family of languages parame-
terized by a constraint domain D, a strategy S which defines
the cooperation of several constraint solvers over D, and a
constraint lazy narrowing calculus L for solving constraints
involving functions defined by user given constrained rewrite
rules. This approach relies on solid work on higher-order
lazy narrowing calculi and has been implemented on top of
Mathematica [26, 27]. Its main limitation from our view-
point is the lack of declarative semantics.

In a recent work [24] we have proposed a new generic
scheme CFLP (D), intended as a logical and semantic frame-
work for lazy Constraint Functional Logic Programming over
a parametrically given constraint domain D, which provides
a clean and rigorous declarative semantics for CFLP (D)
languages as in the CLP (D) scheme but overcomes the limi-
tations of our older CFLP (D) scheme [21]. CFLP (D) pro-
grams are presented as sets of constrained rewrite rules that
define the behaviour of possibly higher-order and/or non-
deterministic lazy functions over D. The main novelties
in [24] were a new formalization of constraint domains for
CFLP , a new notion of interpretation for CFLP (D) pro-
grams, and a new Constraint Rewriting Logic CRWL(D)
parameterized by a constraint domain, which provides a logi-
cal characterization of program semantics.

Our aim in this paper is to formalize an operational seman-
tics for the new generic scheme CFLP (D) proposed in [24].
We present a lazy constrained narrowing calculus CLNC(D)
for solving goals for CFLP (D) programs, which can be
proved sound and strongly complete w.r.t. CRWL(D)’s
semantics. These properties qualify CLNC(D) as a con-
venient computation mechanism for declarative constraint
programming languages.

The reader of this paper is assumed to have some know-
ledge on the foundations of logic programming [20, 1] and
term rewriting [5]. The rest of the paper is organized as
follows. The next section is devoted to summarize the pre-
sentation of the CFLP (D) scheme [24] and to formalize the
notion of a constraint solver over a given constraint domain.
In Section 3 we give a formal presentation of the calculus
CLNC(D). We discuss the soundness and completeness re-
sults in Section 4. Finally, some conclusions and plans for
future work are drawn in Section 5.

2. THE GENERIC SCHEME CFLP(D)
In this section we introduce the main features of the

CFLP (D) scheme [24], as a basis for the constraint narro-
wing calculus CLNC(D) presented in the rest of the paper.

2.1 Applicative expressions, patterns and subs-
titutions

We briefly introduce the syntax of applicative expressions
and patterns, which is needed for understanding the cons-
truction of constraint domains and constraint solvers.

We assume a universal signature Σ = 〈DC, FS〉, where
DC =

⋃
n∈NDCn and FS =

⋃
n∈N FSn are families of

countably infinite and mutually disjoint sets of data cons-
tructors resp. evaluable function symbols, each one with an
associated arity. We write Σ⊥ for the result of extending
DC0 with the special symbol ⊥, intended to denote an
undefined data value. As notational conventions, we use
c, d ∈ DC, f, g ∈ FS and h ∈ DC ∪ FS, and we define
the arity of h ∈ DCn ∪ FSn as ar(h) = n. We also a-
ssume that DC0 includes the three constants true, false
and success, which are useful for representing the results
returned by various primitive functions. Next we assume a
countably infinite set V of variables X, Y, . . . and a set U of
urelements u, v, . . ., mutually disjoint and disjoint from Σ⊥.
Urelements are intended to represent some domain specific
set of values, as e.g. the set R of the real numbers used
in the well-known CLP language CLP (R) [19]. Partial ex-
pressions e ∈ Exp⊥(U) have the following syntax:

e ::= ⊥ | u | X | h | (e e1)

where u ∈ U , X ∈ V, h ∈ DC ∪ FS. These expressions
are usually called applicative, because (e e1) stands for the
application operation (represented as juxtaposition) which
applies the function denoted by e to the argument denoted
by e1. Applicative syntax is common in higher order func-
tional languages. The usual first order syntax for expres-
sions can be translated to applicative syntax by means of so-
called curried notation. For instance, f(X, g(Y )) becomes
(f X (g Y )). Following a usual convention, we assume that
application associates to the left, and we use the notation
(e en) to abbreviate (e e1 . . . en). The set of variables occur-
ring in e is written var(e). An expression e is called linear
iff there is no X ∈ var(e) having more than one occurrence
in e. The following classification of expressions is also use-
ful: (X em), with X ∈ V and m ≥ 0, is called a flexible
expression, while u ∈ U and (h em) with h ∈ DC ∪ FS are
called rigid expressions. Moreover, a rigid expression (h em)
is called active iff h ∈ FS and m ≥ ar(h), and passive other-
wise. Intuitively, reducing an expression at the root makes
sense only if the expression is active. Some interesting sub-
sets of Exp⊥(U) are: GExp⊥(U), the set of the ground ex-
pressions e such that var(e) = ∅; Exp(U), the set of the total
expressions e with no occurrences of ⊥; GExp(U), the set of
the ground and total expressions GExp⊥(U)∩Exp(U). Ano-
ther important subclass of expressions is the set of partial
patterns s, t ∈ Pat⊥(U), whose syntax is defined as follows:

t ::= ⊥ | u | X | c tm | f tm

where u ∈ U , X ∈ V, c ∈ DCn, m ≤ n, f ∈ FSn, m < n.
Note that expressions (f tm) with (f ∈ FSn, m ≥ n) are not
allowed as patterns, because they are potentially evaluable
using a primitive or user given definition for function f .
Patterns of the form (f tm) with f ∈ FSn, m < n, have
been used in functional logic programming [12] as a con-
venient representation of higher order values. The subsets
Pat(U), GPat⊥(U), GPat(U) ⊆ Pat⊥(U) consisting of the
total, ground and total and ground patterns, respectively, are



defined in the natural way. Following the spirit of denota-
tional semantics [13], we view Pat⊥(U) as the set of finite
elements of a semantic domain, and we define the informa-
tion ordering v as the least partial ordering over Pat⊥ sa-
tisfying the following properties: ⊥ v t for all t ∈ Pat⊥(U),
and (htm) v (ht′m) whenever these two expressions are pat-
terns and ti v t′i for all 1 ≤ i ≤ m. In the sequel, tm v t′m
will be understood as meaning that ti v t′i for all 1 ≤ i ≤ m.
Note that a pattern t ∈ Pat⊥(U) is maximal w.r.t. the infor-
mation ordering iff t is a total pattern, i.e. t ∈ Pat(U). For
some purposes it is useful to extend the information ordering
to the set of all partial expressions. This extension is sim-
ply defined as the least partial ordering over Exp⊥(U) which
verifies⊥ v e for all e ∈ Exp⊥(U), and (e e1) v (e′ e′1) when-
ever e v e′ and e1 v e′1. As usual, we define substitutions
σ ∈ Sub⊥(U) as mappings σ : V → Pat⊥(U) extended to
σ : Exp⊥(U) → Exp⊥(U) in the natural way. Similarly, we
consider total substitutions σ ∈ Sub(U) given by mappings
σ : V → Pat(U), ground substitutions σ ∈ GSub⊥(U) given
by mappings σ : V → GPat⊥(U), and ground total substi-
tutions σ ∈ GSub(U) given by mappings σ : V → GPat(U).
By convention, we write ε for the identity substitution, eσ
instead of σ(e), and σθ for the composition of σ and θ,
such that e(σθ) = (eσ)θ for any e ∈ Exp⊥(U). We de-
fine the domain and the variable range of a substitution in
the usual way, namely: dom(σ) = {X ∈ V | σ(X) 6= X}
and ran(σ) =

⋃
X∈dom(σ) var(σ(X)). As usual, a substitu-

tion σ such that dom(σ) ∩ ran(σ) = ∅ is called idempotent.
For any set of variables X ⊆ V we define the restriction
σ ¹ X as the substitution σ′ such that dom(σ′) = X and
σ′(X) = σ(X) for all X ∈ X . We use the notation σ =X θ
to indicate that σ ¹ X = θ ¹ X , and we abbreviate σ =V\X θ
as σ =\X θ. Finally, we consider two different ways of com-
paring given substitutions σ, σ′ ∈ Sub⊥(U). σ is said to be
less particular than σ′ over X ⊆ V (in symbols, σ ≤X σ′)
iff σθ =X σ′ for some θ ∈ Sub⊥(U). The notation σ ≤ σ′

abbreviates σ ≤V σ′. σ is said to bear less information than
σ′ over X ⊆ V (in symbols, σ vX σ′) iff σ(X) v σ′(X) for
all X ∈ X . The notation σ v σ′ abbreviates σ vV σ′.

2.2 Constraints over a given constraint do-
main

Intuitively, a constraint domain is expected to provide a
set of specific data elements, along with certain primitive
functions and predicates operating upon them. The follo-
wing definition extends the notion of constraint domain D
introduced in [24] by adding a constraint solver:

Definition 1. Constraint Domains.

1. A constraint signature is any family PF =
⋃

n∈N PF n

of primitive function symbols p, each one with an as-
sociated arity, such that PF n ⊆ FSn for each n ∈ N.

2. A constraint domain of signature PF is any structure
D = 〈DU , {pD | p ∈ PF}, SolveD〉 such that the car-
rier set DU = GPat⊥(U) coincides with the set of
ground patterns for some set of urelements U , the in-
terpretation pD of each p ∈ PF n satisfies the following
requirements:

(a) pD ⊆ Dn
U × DU , which boils down to pD ⊆ DU

in the case n = 0. In the sequel we always write
pD tn → t to indicate that (tn, t) ∈ pD. In the
case n = 0, this notation boils down to pD → t.

(b) pD behaves monotonically in its arguments and
antimonotonically in its result; i.e., if pD tn → t,
tn v t′n and t w t′ one has pD t′n → t′.

(c) pD behaves radically in the following sense: when-
ever pD tn → t and t 6= ⊥, there is some total
t′ ∈ DU such that pD tn → t′ and t′ w t.

and SolveD is a constraint solver, whose expected be-
haviour will be explained in Definition 5 below.

Assuming an arbitrarily fixed constraint domain D built
over a certain set of urelements U , we will now define the
syntax of constraints. In the sequel, we will write DF =
FS \ PF for the set of user defined function symbols, and
DF n = FSn \ PF n for the set of user defined function
symbols of arity n. The following definition distinguishes
primitive constraints without any active occurrence of de-
fined function symbols, from user defined constraints that
can have such occurrences. For the sake of brevity, we some-
times write simply ‘constraints’ instead of ‘user defined cons-
traints’.

Definition 2. Syntax of Constraints.

1. Atomic Primitive Constraints have the syntactic form
p tn →! t , with p ∈ PF n, ti ∈ Pat⊥(U) for all 1 ≤ i ≤
n, and t ∈ Pat(U). The special constants ♦ and ¨ are
also atomic primitive constraints.

2. Primitive Constraints are built from atomic primitive
constraints by means of logical conjunction ∧ and exis-
tential quantification ∃.

3. Atomic Constraints have the syntactic form p en →! t ,
with p ∈ PF n, ei ∈ Exp⊥(U) for all 1 ≤ i ≤ n, and
t ∈ Pat(U). The special constants ♦ and ¨ are also
atomic constraints.

4. Constraints are built from atomic constraints by means
of conjunction ∧ and existential quantification ∃.

In the sequel we use the notations: PCon⊥(D) for the
set of all the primitive constraints π over D and PCon(D)
for the set of all the total primitive constraints over D, de-
fined as {π ∈ PCon⊥(D) | π has no occurrences of ⊥}.
We also write DCon⊥(D) for the set of all the user defined
constraints δ over D, as well as DCon(D) for the subset of
DCon⊥(D) consisting of total constraints. We reserve the
capital letters Π resp. C for sets of primitive resp. user
defined constraints, often interpreted as conjunctions. The
semantics of primitive constraints depends on the notion of
solution, presented in the next definition.

Definition 3. Solutions of Primitive Constraints.

1. The set of valuations resp. total valuations over D
is defined as V al⊥(D) = GSub⊥(U) resp. V al(D) =
GSub(U).

2. The set of solutions of π ∈ PCon⊥(D) is a subset
SolD(π) ⊆ V al⊥(D) recursively defined as follows:

(a) SolD(♦) = V al⊥(D) and SolD(¨) = ∅.
(b) SolD(p tn →! t) = {η ∈ V al⊥(D) | tη is total and

pD tnη → tη}.
(c) SolD(π1 ∧ π2) = SolD(π1) ∩ SolD(π2).



(d) SolD(∃X.π) = {η ∈ V al⊥(D) | η′ ∈ SolD(π) for
some η′ =\{X} η}.

3. The set of solutions of Π ⊆ PCon⊥(D) is defined as
SolD(Π) =

⋂
π∈Π SolD(π), corresponding to a logical

reading of Π as the conjunction of its members. In
particular, SolD(∅) = V al⊥(D), corresponding to the
logical reading of an empty conjunction as the identi-
cally true constraint ♦.

Using the notion of solution, some useful semantic notions
related to primitive constraints are easily introduced:

Definition 4. Primitive Semantic Notions.
Assuming a finite set Π ⊆ PCon⊥(D) of primitive cons-
traints, a primitive constraint π ∈ PCon⊥(D), expressions
e, e′ ∈ Exp⊥(U), patterns tn, t ∈ Pat⊥(U), and a primitive
function symbol p ∈ PF n, we define:

1. π is called satisfiable in D (in symbols SatD(π)) iff
SolD(π) 6= ∅. Otherwise π is called unsatisfiable (in
symbols UnsatD(π)). Analogously for constraint sets.

2. π is a consequence of Π in D (in symbols, Π |=D π)
iff SolD(Π) ⊆ SolD(π). In particular, p tn →! t is a
consequence of Π in D (in symbols, Π |=D p tn →! t)
iff pD tnη → tη with tη total holds for all η ∈ SolD(Π).

3. e v e′ is a consequence of Π in D (in symbols, Π |=D
e v e′) iff eη v e′η holds for all η ∈ SolD(Π).

At this point we can specify the expected behaviour of the
constraint solver SolveD introduced in Definition 1. The
following definition is inspired in [21, 2, 23].

Definition 5. Constraint Solvers.

1. We say that a variable X ∈ V is demanded by a set
of primitive constraints Π ⊆ PCon(D) iff µ(X) 6= ⊥
holds for every µ ∈ SolD(Π). We write dvarD(Π) for
the set of the variables demanded by Π. For practical
constraint domains, dvarD(Π) is expected to be com-
putable (see Appendix A).

2. A constraint solver over a constraint domain D is a
function named SolveD expecting as parameters a fi-
nite set S ⊆ PCon(D) of atomic primitive constraints
(called the constraint store) and a finite set of variables
χ ⊆ V (called the set of protected variables). The solver
is expected to return a finite disjunction SolveD(S, χ) =∨k

i=1(Si ¤ σi) satisfying the following requirements:

(a) Each Si ⊆ PCon(D) is a finite set of atomic
primitive constraints such that SolveD(Si, χ) =
Si ¤ ε (i.e. Si is in χ-solved form). Furthermore,
var(Si) ∩ χ = ∅ or else dvarD(Si) ∩ χ 6= ∅.

(b) Each σi ∈ Sub(U) is an idempotent substitution
of total patterns for variables such that dom(σi) ∩
var(Si) = ∅ and χ ∩ (dom(σi) ∪ ran(σi)) = ∅.

(c) SolD(S) =
⋃k

i=1 SolD(∃\S . Si ¤ σi), where ∃\S is
the existential quantification of all the variables
U i in Si ¤ σi (1 ≤ i ≤ k) not occurring free in
S and SolD(∃U i. Si ¤ σi) = {µ ∈ V al⊥(D) | e-
xists µ′ ∈ V al⊥(D) such that µ′ =\Ui

µ, µ′ ∈
SolD(Si) and Xµ′ ≡ tµ′ for each X 7→ t ∈ σi}.

In the case k = 0,
∨k

i=1(Si ¤ σi) is understood as ¨.
In this case, SolD(S) ⊆ SolD(¨) = ∅ means failure
detection.

From an operational viewpoint, a solver offers a choice
between k alternatives. No alternative can bind protected
variables. Moreover, for each alternative Si ¤ σi, either all
the protected variables disappear or some protected variable
becomes demanded. More details on the working of solvers
will be given in Section 3.

Example 1. The constraint domain Hseq. We consider
the constraint domain Hseq built over an empty set of ure-
lements and having the strict equality seq as its only primi-
tive, interpreted to behave as follows: seqHseq t t → true
for all total t ∈ GPat(∅); seqHseq t s → false for all t, s ∈
GPat⊥(∅) such that t, s have no common upper bound w.r.t.
the information ordering; seqHseq t s → ⊥ otherwise. In the
sequel, t == s abbreviates seq t s →! true, t /= s abbre-
viates seq t s →! false and Tot(t) abbreviates seq t t →!
true. A possible constraint solver SolveHseq can be found
in Appendix A. The specification of solvers for other useful
constraint domains is planned as future work.

2.3 CFLP(D)-programs
In the sequel we assume an arbitrarily fixed constraint

domain D built over a set of urelements U . In this setting,
CFLP (D)-Programs are presented as sets of constrained
rewrite rules that define the behaviour of possibly higher or-
der and/or non-deterministic lazy functions over D, called
program rules. More precisely, a program rule R for f ∈
DF n has the form R : f tn → r ⇐ P 2 C and is required
to satisfy the conditions listed below:

1. The left-hand side f tn is a linear expression, and for
all 1 ≤ i ≤ n, ti ∈ Pat(U) are total patterns.

2. The right-hand side r ∈ Exp(U) is a total expression.

3. P is a finite sequence of so-called productions ei → si

(1 ≤ i ≤ k) also intended to be interpreted as con-
junction, and fulfilling the following admissibility con-
ditions:

(a) For all 1 ≤ i ≤ k, ei ∈ Exp(U) is a total expres-
sion, si ∈ Pat(U) is a total linear pattern, and
var(si) ∩ var(f tn) = ∅.

(b) It is possible to reorder the productions of P in
the form P ≡ e1 → s1, . . . , ek → sk where var(ei)
∩ var(sj) = ∅ for all 1 ≤ i ≤ j ≤ k.

(c) For all 1 ≤ i < j ≤ k, var(si) ∩ var(sj) = ∅.
4. C ⊆ DCon(D) is a finite set of total constraints, in-

tended to be interpreted as conjunction, and possibly
including occurrences of defined function symbols.

A program rule such that P and C are both empty can be
abbreviated as f tn → r. We note that an equivalent formu-
lation for the admissibility condition 3.(b) can be obtained
by defining the production relation X ÀP Y iff there is some
1 ≤ i ≤ k such that X ∈ var(ei) and Y ∈ var(si), and re-
quiring that the transitive closure of ÀP must be irreflexive,
or equivalently, a strict partial order.

Example 2. The following CFLP (D)-program can be used
over the constraint domain Hseq presented in Example 1.



We use the constructors 0 ∈ DC0, s ∈ DC1, a constructor
for pairs (i.e. (e1, e2) denotes the pair of a first element e1

and a second element e2) and a Prolog-like syntax for list
constructors (i.e. [ ] denotes the empty list and [X|Xs] de-
notes a non-empty list consisting of a first element X and a
remaining list Xs). More examples of CFLP (D)-programs
can be found in [24].

from N → [N |from(s N)]
null [ ] → s 0
null [X|Xs] → 0

split [ ] → ([ ], [ ])
split [X|Xs] → case R X Ys Zs ⇐ split Xs → (Ys, Zs)

2 seq X s 0 →! R

case true X Ys Zs → ([X|Ys], Zs)
case false X Ys Zs → (Ys, [X|Zs])

2.4 The Constraint Rewriting Logic CRWL(D)

The Constraint Rewriting Logic CRWL(D), paramete-
rized by a constraint domain D, was introduced in [24] in
order to provide a declarative semantic for CFLP (D)-pro-
grams. In order to define this logic, we must first introduce
some preliminary notions about the constrained statements
that we intend to derive from a given CFLP (D)-program.

Definition 6. Constrained Statements and D-entail-
ment. Let D be any fixed constraint domain over a set of
urelemets U . In what follows we assume partial patterns
t, ti ∈ Pat⊥(U), partial expressions e, ei ∈ Exp⊥(U), and a
finite set Π ⊆ PCon⊥(D) of primitive constraints.

1. We consider two possible kinds of constrained state-
ments (c-statements):

(a) c-productions e → t ⇐ Π. A c-production is
called trivial iff t = ⊥ or UnsatD(Π).

(b) c-atoms p en →! t ⇐ Π, with p ∈ PF n and t
total. A c-atom is called trivial iff UnsatD(Π).

2. Given two c-statements ϕ and ϕ′, we say that ϕ D-
entails ϕ′ (in symbols, ϕ <D ϕ′) iff one of the two
following cases holds:

(a) ϕ = e → t ⇐ Π, ϕ′ = e′ → t′ ⇐ Π′, and
there is some σ ∈ Sub⊥(U) such that Π′ |=D Πσ,
Π′ |=D e′ w eσ, Π′ |=D t′ v tσ.

(b) ϕ = p en →! t ⇐ Π, ϕ′ = p e′n →! t′ ⇐ Π′,
and there is some σ ∈ Sub⊥(U) such that Π′ |=D
Πσ, Π′ |=D p e′n w (p en)σ, Π′ |=D t′ w tσ. 1

The next definition assumes a given CFLP (D)-program
P and uses the notation [P]⊥ for the set {Rθ | R ∈ P, θ ∈
Sub⊥(U)} consisting of all the possible instances of the func-
tion defining rules belonging to P. The purpose of the calcu-
lus is to infer the semantic validity of arbitrary c-statements
from the program rules in P.

Definition 7. Constrained Rewriting Calculus. We
write P `D ϕ to indicate that the c-statement ϕ can be de-
rived from P in the constrained rewriting calculus CRWL(D)
using the inference rules given in Figure 1. Some of these
rules depend on the semantic notions given in Definition 4

1Note that Π′ |=D t′ v tσ would be wrong, because →! be-
haves monotonically both in its arguments and in its result.
See Definition 3.(b).

and the following semantic notion for productions: p tn → t
is a consequence of Π in D (in symbols, Π |=D p tn → t) iff
pD tnη → tη holds for all η ∈ SolD(Π).

By convention, we agree that no inference rule of the
constrained rewriting calculus is applied in case that some
textually previous rule can be used. In particular, no rule
except TI can be used to infer a trivial c-statement, and SP
is not applied whenever RR is applicable. Moreover, we also
agree that the premise P 2 C ⇐ Π in rule DFP must be un-
derstood as a shorthand for several premises α ⇐ Π, one
for each atomic statement α occurring in P 2 C.

Any derivation in the constrained rewriting calculus can
be represented as a proof tree whose nodes are labelled by
c-statements, where each node has been inferred from its
children by means of the inference rules. In the sequel, we
will use the following notations:

1. T is called an easy proof tree iff T makes no use of the
inference rules DFP , PF and AC.

2. | T | denotes the restricted size of the proof tree T ,
defined as the number of nodes in T which are inferred
with some of the rules DFP , PF or AC. Obviously,
| T |= 0 iff T is an easy proof tree.

3. T : P `D ϕ indicates that P `D ϕ is witnessed by
the proof tree T .

The next result state two useful properties of the cons-
trained rewriting calculus. The (rather technical) proof and
other properties of CRWL(D) can be found in [24].

Lemma 1. Properties of the CRWL(D) Calculus.

1. Approximation Property: For any e ∈ Exp⊥(U), t ∈
Pat⊥(U): Π |=D e w t iff there is some easy proof
tree T such that T : `D e → t ⇐ Π (derivation from
empty program).

2. Entailment Property: T : P `D ϕ and ϕ <D ϕ′

implies T ′ : P `D ϕ′ for some proof tree T ′ such that
| T ′ | ≤ | T |.

Correctness results relating CRWL(D)-derivability to a
suitable model-theoretic semantics are also given in [24].
More precisely, as argued in [24], CRWL(D) is sound and
complete w.r.t. strong semantics, and sound and ground
complete w.r.t. weak semantics, two different classes of se-
mantics.

3. THE CLNC(D) CALCULUS
This section presents a new Constrained Lazy Narrowing

Calculus over a parametrically given constraint domain D
(shortly, CLNC(D)) for solving CFLP (D)-goals, borrowing
ideas and techniques from previous lazy narrowing calculi
for FLP [11, 12, 31] and CFLP [21, 2, 3] languages. We
give first a precise definition for the class of admissible goals,
answers and solutions we are going to work with.

Definition 8. A goal for a given CFLP (D)-program must
have the form G ≡ ∃U. P ¤ C ¤ S ¤ σ, where the symbol ¤
must be interpreted as conjunction, and:

• evar(G) =def U is the set of so-called existential varia-
bles of the goal G. These are intermediate variables,
whose bindings in a solution may be partial patterns.
fvar(G) =def var(G)\evar(G) is the set of so-called
free variables of the goal G.



TI Trivial Inference
ϕ

if ϕ is a trivial c-statement.

RR Restricted Reflexivity
t → t ⇐ Π

if t ∈ U ∪ V.

SP Simple Production
s → t ⇐ Π

if s ∈ Pat⊥(U), s ∈ V or t ∈ V, and Π |=D s w t.

DC Decomposition e1 → t1 ⇐ Π, . . . , em → tm ⇐ Π
hem → htm ⇐ Π

if hem is passive.

IR Inner Reduction e1 → t1 ⇐ Π, . . . , em → tm ⇐ Π
hem → X ⇐ Π

if hem is passive but not a pattern, X ∈ V and Π |=D htm w X.

PF Primitive Function e1 → t1 ⇐ Π, . . . , en → tn ⇐ Π
p en → t ⇐ Π

if p ∈ PF n, ti ∈ Pat⊥(U) for each 1 ≤ i ≤ n, and Π |=D p tn → t.

DFP P-Defined Function e1 → t1 ⇐ Π, . . . , en → tn ⇐ Π, P 2 C ⇐ Π, r → t ⇐ Π
f en → t ⇐ Π

e1 → t1 ⇐ Π, . . . , en → tn ⇐ Π, P 2 C ⇐ Π, r → s ⇐ Π, s ak → t ⇐ Π
f enak → t ⇐ Π

if f ∈ DF n (k > 0), (f tn → r ⇐ P 2 C) ∈ [P]⊥, s ∈ Pat⊥(U). .

AC Atomic Constraint e1 → t1 ⇐ Π, . . . , en → tn ⇐ Π
p en →! t ⇐ Π

if p ∈ PF n, ti ∈ Pat⊥(U) for each 1 ≤ i ≤ n, and Π |=D p tn →! t .

Figure 1: Rules for CRWL(D)-derivability

• P ≡ e1 → t1, . . . , en → tn is a finite conjunction of
productions where ei ∈ Exp(U) and ti ∈ Pat(U) for
all 1 ≤ i ≤ n. The set of produced variables of G is
defined as pvar(P ) =def var(t1) ∪ . . . ∪ var(tn).

• C ≡ δ1, . . . , δk is a finite conjunction of atomic cons-
traints (possibly including occurrences of defined func-
tion symbols).

• S ≡ π1, . . . , πl is a finite conjunction of atomic primi-
tive constraints, called constraint store.

• σ is an idempotent substitution called answer substi-
tution such that dom(σ) ∩ var(P ¤ C ¤ S) = ∅.

Additionally, any admissible goal must satisfy the following
admissibility conditions, called goal invariants:

LN Each produced variable is produced only once, i.e. the
tuple t1, . . . , tn must be linear.

EX All the produced variables must be existential, i.e.
pvar(P ) ⊆ evar(G).

NC The transitive closure of the production relation ÀP

(given in Subsection 2.3) must be irreflexive, or equiva-
lently, a strict partial order.

SL No produced variable enters the answer substitution,
i.e. var(σ) ∩ pvar(P ) = ∅.

Similarly to [11, 12, 31], CLNC(D) uses a notion of de-
manded variable to deal with lazy evaluation, but now w.r.t.
a constraint store. Intuitively, productions e → X in G,
where e is not a pattern, do not propagate the binding
{X 7→ e}. Instead, evaluation of e must be triggered, pro-
vided that X is demanded in G. The result will be shared
by all the occurrences of X.

Definition 9. Let G ≡ ∃U. P ¤ C ¤ S ¤ σ be an admis-
sible goal for a given CFLP (D)-program and X ∈ var(G).
We say that X is a demanded variable in G iff X ∈ dvarD(S)
(see Definition 5) or there exists some production (Xak →
t) ∈ P such that, either t /∈ V or else k > 0 and t is a
demanded variable in G. We write dvarD(G) (or more pre-
cisely dvarD(P ¤ S)) for the set of demanded variables in
the goal G.



DC Decomposition ∃U. hem → htm, P ¤ C ¤ S ¤ σ `̀ DC ∃U. em → tm, P ¤ C ¤ S ¤ σ if hem is passive.

SP Simple Production ∃[X], U. X → t, P ¤ C ¤ S ¤ σ `̀ SP[1],2 ∃U. (P ¤ C ¤ S)σ0 ¤ σ[σ0] if t /∈ V, [X /∈ U ] and σ0 = {X 7→ t}.

∃X, U. t → X, P ¤ C ¤ S ¤ σ `̀ SP3 ∃U. (P ¤ C ¤ S)σ0 ¤ σ if t ∈ Pat(U) and σ0 = {X 7→ t}.

IM Imitation ∃X, U. hem → X, P ¤ C ¤ S ¤ σ `̀ IM ∃Xm, U. (em → Xm, P ¤ C ¤ S)σ0 ¤ σ

if hem /∈ Pat(U) is passive, X ∈ dvarD(P ¤ S) and σ0 = {X 7→ hXm} with Xm new variables such

that hXm ∈ Pat(U).

EL Elimination ∃X, U. e → X, P ¤ C ¤ S ¤ σ `̀ EL ∃U. P ¤ C ¤ S ¤ σ if X /∈ var(P ¤ C ¤ S ¤ σ).

PF Primitive Function ∃U. pen → t, P ¤ C ¤ S ¤ σ `̀ PF ∃Xq , U. eq → Xq , P ¤ C ¤ ptn →! t, S ¤ σ

if p ∈ PF n, t /∈ V or t ∈ dvarD(P ¤ S), and Xq are new variables (0 ≤ q ≤ n is the number of ei /∈
Pat(U)) such that ti ≡ Xj (0 ≤ j ≤ q) if ei /∈ Pat⊥(U) and ti ≡ ei otherwise for each 1 ≤ i ≤ n.

DF Defined Function ∃U. fen → t, P ¤ C ¤ S ¤ σ `̀ DF1 ∃Y , U. en → tn, r → t, P ′, P ¤ C′, C ¤ S ¤ σ

∃U. fenak → t, P ¤ C ¤ S ¤ σ `̀ DF2 ∃X, Y , U. en → tn, r → X, Xak → t, P ′, P ¤ C′, C ¤ S ¤ σ

if f ∈ DF n (k > 0), t /∈ V or t ∈ dvarD(P ¤ S) and R : ftn → r ⇐ P ′¤ C′ is a fresh variant of a rule

in P, with Y = var(R) and X new variables.

FV Functional Variable ∃[F ], U. Feq → t, P ¤ C ¤ S ¤ σ `̀ FV[1],2 ∃Xp, U. (hXpeq → t, P ¤ C ¤ S)σ0 ¤ σ[σ0]

if [F /∈ pvar(P )], q > 0, t /∈ V or t ∈ dvarD(P ¤ S), σ0 = {F 7→ hXp} and Xp are new variables such

that hXp ∈ Pat(U).

Figure 2: CLNC(D)-rules for constrained lazy narrowing

CS Constraint Solving ∃U. P ¤ C ¤ S ¤ σ `̀ CS{χ} ∃Y i, U. (P ¤ C)σi ¤ Si ¤ σσi

if χ = pvar(P ), S is not χ-solved, SolveD(S, χ) =
∨k

i=1(Si ¤ σi), and Y i are the new variables intro-

duced by the solver in Si ¤ σi, for each 1 ≤ i ≤ k.

AC Atomic Constraint ∃U. P ¤ pen →! t, C ¤ S ¤ σ `̀ AC ∃Xq , U. eq → Xq , P ¤ C ¤ ptn →! t, S ¤ σ

if p ∈ PF n, pen →! t is an atomic constraint, Xq are new variables (0 ≤ q ≤ n is the number of ei /∈
Pat⊥(U)) such that ti ≡ Xj (0 ≤ j ≤ q) if ei /∈ Pat⊥(U) and ti ≡ ei otherwise for each 1 ≤ i ≤ n.

CF Conflict Failure ∃U. hep → h′tq , P ¤ C ¤ S ¤ σ `̀ CF ¥ if hep is passive, and h 6= h′ or else p 6= q.

SF Solving Failure ∃U. P ¤ C ¤ S ¤ σ `̀ SF{χ} ¥ if χ = pvar(P ), S is not χ-solved, and SolveD(S, χ) = ¨.

Figure 3: CLNC(D)-rules for constraint solving and failure detection

An admissible goal G ≡ ∃U. P ¤ C ¤ S ¤ σ is called a
solved goal iff P and C are empty and S is in ∅-solved form
in the sense of Definition 5. An initial goal can be any
admissible goal.

Definition 10. An answer for an admissible goal G ≡ ∃U.
P ¤ C ¤ S ¤ σ and a given CFLP (D)-program P, must have
the form Π ¤ θ, where Π ⊆ PCon(D) is a finite conjunction
of atomic primitive constraints, θ ∈ Sub⊥(U) is an idempo-
tent substitution such that dom(θ) ∩ var(Π) = ∅, and there
is some substitution θ′ =\evar(G) θ fulfilling the following

conditions:

• P `D (P ¤ C)θ′ ⇐ Π,

• Π |=D Sθ′,
• Xθ′ ≡ tθ′ for each X 7→ t ∈ σ, abbreviated as θ′ ∈

Sol(σ).

A witness M for the fact that Π ¤ θ is an answer of G is
defined as a multiset containing all the CRWL(D)-proofs
mentioned above. We write AnsP(G) for the set of all ans-
wers for G. An answer Π ¤ θ ∈ AnsP(G) is called trivial if
UnsatD(Π) and non-trivial otherwise.



Definition 11. Let G ≡ ∃U. P ¤ C ¤ S ¤ σ be an admis-
sible goal for a given CFLP (D)-program P. We say that a
valuation µ ∈ V al⊥(D) is a solution of G if there is some
valuation µ′ =\evar(G) µ satisfying the following conditions:

• P `D (P ¤ C)µ′,

• |=D Sµ′ (i.e. µ′ ∈ SolD(S)),

• Xµ′ ≡ tµ′ for each X 7→ t ∈ σ, abbreviated as µ′ ∈
Sol(σ).

We write SolP(G) for the set of all solutions for G. Analo-
gously, we define the set of solutions for an answer Π ¤ θ as
SolD(Π ¤ θ) =def {µ ∈ V al⊥(D) |µ ∈ SolD(Π) ∩ Sol(θ)}.

From Definition 10 and Definition 11, it is easy to prove
that the notion of solution is a particular case of the notion
of answer for a goal. More formally, if G is an admissible goal
and µ ∈ V al⊥(D) then µ ∈ SolP(G) ⇔ ∅¤ µ ∈ AnsP(G).
Another useful relationship between answers and solutions
is given in the next proposition.

Proposition 1. Let G ≡ ∃U. P ¤ C ¤ S ¤ σ be an ad-
missible goal for a given CFLP (D)-program P and Π ¤ θ ∈
AnsP(G) an answer for G. Then, SolD(Π ¤ θ) ⊆ SolP(G).
Furthermore, if G is in solved form then S ¤ σ ∈ AnsP(G).

Proof. Since Π ¤ θ ∈ AnsP(G), there is some θ′ satis-
fying: (a) θ′ =\evar(G) θ; (b) P `D (P ¤ C)θ′ ⇐ Π; (c)
Π |=D Sθ′; and (d) θ′ ∈ Sol(σ). For proving SolD(Π ¤ θ) ⊆
SolP(G), we assume any valuation µ such that (1) µ ∈
SolD(Π) and (2) µ ∈ Sol(θ). Then, µ ∈ SolP(G) holds
because the valuation µ′ = θ′µ verifies: (a’) θ′µ =\evar(G)

µ, because of (a) and θµ = µ (which follows from (2));
(b’) P `D (P ¤ C)θ′µ, because of (a) and the Entailment
Property from Lemma 1 (note that (P ¤ C)θ′ ⇐ Π <D
(P ¤ C)θ′µ follows from (1)); (c’) θ′µ ∈ SolD(S), or equiva-
lently, µ ∈ SolD(Sθ′), because of (1) and (c); and (d’)
θ′µ ∈ Sol(σ), because of (d). For proving the second part
of the proposition, let us assume that P and C are empty.
Then, S ¤ σ ∈ AnsP(G) holds because σ′ = σ trivially veri-
fies σ′ =\evar(G) σ, and also P `D (P ¤ C)σ ⇐ S (be-
cause P ¤ C is empty); S |=D Sσ (because Sσ = S); and
σ ∈ Sol(σ) (trivially).

The calculus CLNC(D) consists of a set of transforma-
tion rules for admissible goals. Each transformation takes
the form G `̀ G′, specifying one of the possible ways of
performing one step of goal solving. We write G `̀ R G′ to
indicate that G `̀ G′ by means of the CLNC(D) transfor-
mation rule R. Derivations are sequences of `̀ -steps. As in
the case of constrained SLD derivations for CLP (D) pro-
grams [18], successful derivations will eventually end with a
solved goal. Failing derivations (ending with an obviously
inconsistent goal ¥) and infinite derivations are also possi-
ble. The goal transformation rules concerning productions
(see Figure 2) are designed with the aim of modelling the be-
haviour of constrained lazy narrowing with sharing, but now
involving primitive functions, possibly higher-order defined
functions and functional variables. The notation em → tm

abbreviates e1 → t1, . . . , em → tm. Some CLNC(D) rules
use the notation ”[. . .]” meaning an optional part of a goal,
present only under certain conditions. For example, in the
Simple Production rules, if we have the condition X /∈
U (and then X /∈ pvar(P ) by the admissibility condition

EX) we have the rule ∃U. X → t, P ¤ C ¤ S ¤ σ `̀ SP1

∃U. (P ¤ C ¤ S)σ0 ¤ σσ0, and the rule ∃X, U. X → t, P ¤ C
¤ S ¤ σ `̀ SP2 ∃U. (P ¤ C ¤ S)σ0 ¤ σ otherwise. Analogously
for the Functional Variable rules. The goal transforma-
tion rules concerning constraints (see Figure 3) are designed
to combine atomic (primitive or user defined) constraints
with the action of a constraint solver that fulfill the require-
ments given in Definition 5. Failure rules in Figure 3 are
used for failure detection in constraint solving and failure
detection in the syntactic unification of the produced part
of the goal.

Important Convention: all the goal transformation rules are
applied by viewing P and C as sets, rather than sequences.
For example, rule DF1 allows to select an arbitrary produc-
tion fen → t occurring in the current goal.

Finally, the section is closed with two examples of goal sol-
ving which highlight the main properties of the CLNC(D)
calculus. At each goal transformation step, we underline
which subgoal is selected.

Example 3. We compute all the answers from the goal
G0 ≡ ∃Ys. from Y →Ys ¤ X /= s(null Ys) ¤ ¤ ε using the
CFLP (Hseq)-program of Example 2 over the constraint do-
mainHseq of Example 1. We have the following CLNC(Hseq)
derivation starting from G0:

∃Ys. from Y →Ys¤ X /= s(null Ys) ¤ ¤ ε `̀ AC

∃R,Ys. s(null Ys) → R, from Y →Ys¤ ¤
X /= R ¤ ε `̀ IM{R 7→ s K}

∃K,Ys. null Ys → K, from Y →Ys¤ ¤
X /= s K ¤ ε `̀ CS{K,Ys}

Now, the constraint solver (see Appendix A) gives two possi-
ble alternatives

SolveHseq ({X /= s K}, {K,Ys}) = ( ¤ {X 7→ 0}) ∨
({M /= K}¤ {X 7→ s M})

and there are three possible continuations of the compu-
tation

1. ∃K,Ys. null Ys → K, from Y → Ys¤ ¤
¤ {X 7→ 0} `̀ EL

∃Ys. from Y → Ys¤ ¤ ¤ {X 7→ 0} `̀ EL

¤ ¤ ¤ {X 7→ 0}
computed answer: S1 ¤ σ1 ≡ ¤ {X 7→ 0}.

2. ∃M, K,Ys. null Ys → K, from Y → Ys¤ ¤
M /= K ¤ {X 7→ s M} `̀ DF

∃M, K,Ys. Ys → [ ], s 0 → K, from Y → Ys¤ ¤
M /= K ¤ {X 7→ s M} `̀ 2

SP{Ys 7→[ ],K 7→ s 0}
∃M. from Y → [ ] ¤ ¤ M /= s 0 ¤ {X 7→ s M} `̀ DF

∃N, M. Y → N, [N |from (s N)] → [ ] ¤ ¤
M /= s 0 ¤ {X 7→ s M} `̀ CF ¥

3. ∃M, K,Ys. null Ys → K, from Y → Ys¤ ¤
M /= K ¤ {X 7→ s M} `̀ DF

∃U,Us, M, K,Ys. Ys → [U |Us], 0 → K, from Y → Ys¤ ¤
M /= K ¤ {X 7→ s M} `̀ 2

SP{Ys 7→[U|Us],K 7→0}
∃U,Us, M. from Y → [U |Us] ¤ ¤

M /= 0 ¤ {X 7→ s M} `̀ DF

∃N, U,Us, M. Y → N, [N |from (s N)] → [U |Us] ¤ ¤
M /= 0 ¤ {X 7→ s M} `̀ SP{N 7→ Y}



∃U,Us, M. [Y |from (s Y )] → [U |Us] ¤ ¤
M /= 0 ¤ {X 7→ s M} `̀ DC

∃U,Us, M. Y → U, from (s Y ) → Us¤ ¤
M /= 0 ¤ {X 7→ s M} `̀ 2

EL

∃M. ¤ ¤ M /= 0 ¤ {X 7→ s M}
computed answer: S2 ¤ σ2 ≡ M /= 0 ¤ {X 7→ s M}.

For this example, is also possible to prove that Π ¤ θ ≡
X /= s 0 ¤ {Y 7→ s Z} is a correct answer of G0 such that
SolHseq (Π ¤ θ) ⊆ ⋃2

i=1 SolHseq (Si ¤ σi); but no single com-
puted answer S ¤ σ verifies SolHseq (Π ¤ θ) ⊆ SolHseq (S ¤ σ).
We will see in Theorem 2 that this is true in general.

Example 4. Splitting a list. The next example splits a
list with only one element using the CFLP (Hseq)-program
split given in Example 2.

¤ split [X] == (Xs,Ys) ¤ ¤ ε `̀ AC

∃R1. split [X] → R1 ¤ ¤ R1 == (Xs,Ys) ¤ ε `̀ ∗
DF

∃Ys1,Zs1, R, R1. case R X Ys1 Zs1 → R1,
split [ ] → (Ys1,Zs1) ¤ ¤ seq X s 0 →! R,

R1 == (Xs,Ys) ¤ ε `̀ DF

∃Ys1,Zs1, R, R1. case R X Ys1 Zs1 → R1,
([ ], [ ]) → (Ys1,Zs1) ¤ ¤ seq X s 0 →! R,

R1 == (Xs,Ys) ¤ ε `̀ ∗
DC,SP{Ys1 7→[ ], Zs1 7→[ ]}

∃R, R1. case R X [ ] [ ] → R1 ¤ ¤
seq X s 0 →! R, R1 == (Xs,Ys) ¤ ε `̀ CS{R1}

Now, the constraint solver over Hseq (see Appendix A) gives
three possible alternatives

SolveHseq ({seq X s 0 →! R, R1 == (Xs,Ys)}, {R1}) =
({R1 == (Xs,Ys)}¤ {R 7→ true, X 7→ s 0}) ∨
({R1 == (Xs,Ys)}¤ {R 7→ false, X 7→ 0}) ∨
({R1 == (Xs,Ys), M /= 0}¤ {R 7→ false, X 7→ s M})

and there are three possible continuations of the compu-
tation, each of one with a computed answer associated

1. ∃R1. case true s 0 [ ] [ ] → R1 ¤ ¤
R1 == (Xs,Ys) ¤ {X 7→ s 0} `̀ DF

∃R1. ([s 0], [ ]) → R1 ¤ ¤
R1 == (Xs,Ys) ¤ {X 7→ s 0} `̀ SP

¤ ¤ ([s 0], [ ]) == (Xs,Ys) ¤ {X 7→ s 0} `̀ CS{}
¤ ¤ ¤ {X 7→ s 0,Xs 7→ [s 0],Ys 7→ [ ]}
answer: S1 ¤ σ1 ≡ ¤ {X 7→ s 0, Xs 7→ [s 0], Ys 7→ [ ]}.

2. ∃R1. case false 0 [ ] [ ] → R1 ¤ ¤
R1 == (Xs,Ys) ¤ {X 7→ 0} `̀ DF

∃R1. ([ ], [0]) → R1 ¤ ¤
R1 == (Xs,Ys) ¤ {X 7→ 0} `̀ SP

¤ ¤ ([ ], [0]) == (Xs,Ys) ¤ {X 7→ 0} `̀ CS{}
¤ ¤ ¤ {X 7→ 0,Xs 7→ [ ],Ys 7→ [0]}
answer: S2 ¤ σ2 ≡ ¤ {X 7→ 0, Xs 7→ [ ], Ys 7→ [0]}.

3. ∃M, R1. case false s M [ ] [ ] → R1 ¤ ¤
R1 == (Xs,Ys), M /= 0 ¤ {X 7→ s M} `̀ DF

∃M, R1. ([ ], [s M ]) → R1 ¤ ¤
R1 == (Xs,Ys), M /= 0 ¤ {X 7→ s M} `̀ SP

∃M. ¤ ¤ ([ ], [s M ]) == (Xs,Ys), M /= 0 ¤
{X 7→ s M} `̀ CS{}

∃M. ¤ ¤ M /= 0 ¤ {X 7→ s M,Xs 7→ [ ],Ys 7→ [s M ]}
answer: S3 ¤ σ3 ≡ M/= 0 ¤ {X 7→ s M, Xs 7→ [ ],
Ys 7→ [s M ]}.

4. PROPERTIES OFCLNC(D)
This section presents the main results of the paper, namely

soundness and completeness of goal solving in CLNC(D)
w.r.t. CRWL(D) semantics. We emphasize the technical
difficulty of the Completeness Theorem 2, harder to prove
than related results for FLP languages [11, 12, 31] and also
stronger and more general than previous related results for
CFLP languages [21, 2, 3]. As main differences w.r.t. the
constrained lazy narrowing calculus for the CFLP (D, S, L)
scheme [25], we provide a logical semantics for correct ans-
wers (Definition 10) and a formal notion of constraint solver
(Definition 5) well suited to that semantics.

Our first result proves correctness of a single transfor-
mation step. It says that transformation steps preserve ad-
missibility of goals, fail only in case of unsatisfiable goals
and do not introduce new solutions.

Lemma 2. Correctness Lemma.

1. The transformation steps preserve admissibility of go-
als: If G `̀ CLNC(D) G′ and G is admissible, then G′

is admissible. Moreover, fvar(G′) ⊆ fvar(G).

2. The transformation steps fail only in case of unsatis-
fiable goals: If G `̀ CLNC(D) ¥ then SolP(G) = ∅ (or
equivalently, AnsP(G) includes only trivial answers).

3. The transformation steps do not introduce new solu-
tions: If G `̀ CLNC(D) G′ and Π ¤ θ ∈ AnsP(G′) then
Π ¤ θ ∈ AnsP(G).

The following soundness result follows easily from the Co-
rrectness Lemma. It ensures that computed answers for a
goal G are indeed correct answers of G.

Theorem 1. Soundness of CLNC(D).
If G0 is an initial goal and G0 `̀ ∗

CLNC(D) Gn,where Gn ≡
∃U. ¤ ¤ S ¤ σ is a solved goal, then S ¤ σ ∈ AnsP(G0).

Proof. From Proposition 1 we get S ¤ σ ∈ AnsP(Gn).
Now, if we repeatedly backwards apply item 3. of the Co-
rrectness Lemma, we obtain S ¤ σ ∈ AnsP(G0).

Completeness of CLNC(D) is based on the following idea:
whenever Π ¤ θ ∈ AnsP(G) and G is not yet solved, there
are finitely many local choices for a first computation step
G `̀ Gj (1 ≤ j ≤ l) so that the new goals Gj are ”closer to
be solved” and ”cover all the solutions of Π ¤ θ”. This idea
is made precise in the next lemma, which relies on a sophis-
ticated well-founded progress ordering. A similar technique
was used in [11, 12, 31] to prove completeness of lazy narro-
wing calculi for FLP languages. In the present CFLP (D)
setting, the solver SolveD must be taken into account. As
a consequence, the number l of local choices can be greater
that 1 in general, and the progress ordering is more compli-
cated than those used in [11, 12, 31].

Lemma 3. Progress Lemma.
Assume an admissible goal G not in solved form, and a wit-
nessed non-trivial answer M : Π ¤ θ ∈ AnsP(G). Then:

1. There is some CLNC(D) transformation rule applica-
ble to G.



2. For any CLNC(D) rule R applicable to G, there exist
l goals Gj with witnessed non-trivial answers Mj :
Πj ¤ θj ∈ AnsP(Gj) (1 ≤ j ≤ l) such that:

• G `̀ R Gj for each 1 ≤ j ≤ l,

• SolD(Π ¤ θ) ⊆ ⋃l
j=1 SolD(∃\G. Πj ¤ θj),

• (G,M) B (Gj ,Mj) for each 1 ≤ j ≤ l, where
B is the well-founded progress ordering defined in
Appendix B.

Proof. (1) If G ≡ ∃U. P ¤ C ¤ S ¤ σ is an admissible
goal not in solved form, then P or C is not empty. We
will proceed by assuming gradually that no rule, except
one (namely EL), is applicable to G, and then we will con-
clude that this remaining rule EL must be applicable. Note
that failure rules cannot be applicable because otherwise G
would have no answer, due to item 2. in the Correctness
Lemma. Assume that AC is not applicable. Then, C must
be empty and the goal has the form G ≡ ∃U. P ¤ ¤ S ¤ σ
with P not empty. Now assume that DC, SP, IM, PF,
DF and FV are not applicable. Then it must be the case
that all the production in P are of the form hem → X or
fenak → X (k ≥ 0) or pen → X or Fak → X (k > 0)
where hem is a rigid and passive expression but not a pat-
tern and in all cases X is a produced but not demanded
variable, in particular X /∈ dvarD(S). Consider the set
χ of such X ′s, that is, χ = pvar(G). If the rule CS is
not applicable, S must be in χ-solved form. But then,
due to the fact that χ ∩ dvarD(S) = ∅ and the require-
ment (a) of constraint solvers in Definition 5, we conclude
χ ∩ var(S) = ∅. Choose now some X ∈ χ minimal in the
À+

P relation (such minimal elements do exists, due to the
finite number of variables occurring in G and the property
NC of admissible goals). Such X cannot appear neither in
any other approximation statement in P nor in the subs-
titution σ of the goal by the admissibility condition SL and
then verifies X /∈ var(P ¤ C ¤ S ¤ σ). Therefore, the rule
EL can be applied to the production where X appears. (2)
This can be proved by case analysis, using the Table 1 given
in Appendix B, which shows the behaviour of the different
CLNC(D) transformations w.r.t. the five components of
the lexicographic progress ordering. Details are omitted here
due to lack of space.

Reiterated application of the previous lemma leads to the
desired completeness result:

Theorem 2. Completeness of CLNC(D).
Let G0 an initial admissible goal and Π0 ¤ θ0 ∈ AnsP(G0)
non-trivial. Then there exist a finite number of derivations
ending in solved goals G0 `̀ ∗ Gi (1 ≤ i ≤ k) such that

SolD(Π0 ¤ θ0) ⊆
⋃k

i=1 SolP(Gi).

Proof. By repeated application of the Progress Lemma
3, we can build a finitely branching tree T with root M0 :
Π0 ¤ θ0 ∈ AnsP(G0) such that, each node M : Π ¤ θ ∈
AnsP(G) associated to a goal G not in solved form, has
children Mj : Πj ¤ θj ∈ AnsP(Gj) (1 ≤ j ≤ l). Since B
is a well-founded ordering, there are not infinite paths in
T . Because of König’s Lemma, T is a finite tree with k
leaves associated to solved goals Gi (1 ≤ i ≤ k) such that
G0 `̀ ∗ Gi for each 1 ≤ i ≤ k. We prove SolD(Π0 ¤ θ0) ⊆⋃k

i=1 SolP(Gi) by induction on the depth p of T .

• Base case (p = 0). T has only the root node M0 :
Π0 ¤ θ0 ∈ AnsP(G0), where G0 is a goal in solved
form. In this case, k = 1, G1 ≡ G0 and directly
SolD(Π0 ¤ θ0) ⊆ SolP(G0) using Proposition 1.

• Inductive case (p > 0). T has a root node M0 :
Π0 ¤ θ0 ∈ AnsP(G0) and subtrees Tj (1 ≤ j ≤ l),
each of them with root Mj : Πj ¤ θj ∈ AnsP(Gj) and
leaves associated to solved goals Gj,i (1 ≤ i ≤ kj).

We prove SolD(Π0 ¤ θ0) ⊆
⋃l

j=1

⋃kj

i=1 SolP(Gj,i). By

applying the Progress Lemma, we have SolD(Π0 ¤ θ0)

⊆ ⋃l
j=1 SolD(∃\G0 . Πj ¤ θj). Assume that W j are the

existentially quantified variables in ∃\G0 . Πj ¤ θj . By
induction hypothesis for each 1 ≤ j ≤ l (the depth

of each subtree Tj is pj < p), SolD(Πj ¤ θj) ⊆
⋃kj

i=1

SolP(Gj,i). Moreover, since W j are not free variables
in Gj,i for all 1 ≤ i ≤ kj , we also have SolD(∃W j . Πj ¤
θj) ⊆

⋃kj

i=1 SolP(Gj,i), and the result follows easily
from both inclusions.

From the proof of Theorem 2 we see that completeness is
strong in the sense that the local choice of the goal transfor-
mation rule applied at each step can be a don’t care choice.
Moreover, Example 3 shows that the number k of computed
answers needed to cover the solutions of the given answer
Π ¤ θ must be allowed to be greater than 1 in general. A
similar situation occurs in Maher’s completeness theorem for
CLP (D) [18], although the underlying semantics and proof
techniques are quite different in that context. In our set-
ting, item 2. in Definition 5 (concerning the behaviour of
constraint solvers) is responsible for the finite number k of
computed answers in the completeness theorem.

5. CONCLUSIONS AND FUTURE WORK
We have presented a new constrained lazy narrowing cal-

culus CLNC(D) parameterized by a constraint domain D,
intended as a formal specification of a goal solving proce-
dure for constraint functional logic programs in a recently
proposed CFLP (D) scheme [24]. CLNC(D) relies on a new
formal notion of constraint solver. It is sound and strongly
complete w.r.t. the declarative semantics given in [24].

In the near future, we plan to investigate both improve-
ments and applications of the CFLP (D) scheme. Planned
improvements include enriching the scheme with algebraic
data constructors in the vein of [4] and the optimization
of CLNC(D) by means of definitional trees, extending the
approach of [31]. Planned applications will focus on prac-
tical instances of the CFLP (D) scheme, supporting arith-
metic constraints over the real numbers and finite domain
constraints. In particular, we plan to formalize the work
started in [10] as an instance of the CFLP (D) scheme, and
to investigate practical constraint solving methods and ap-
plications of the resulting language.

Last but not least, we plan to extend the work on declara-
tive debugging of functional logic programs started in [6, 7]
to CFLP (D)-programs, considering the diagnosis of both
wrong answers and missing answers, and implementing the
resulting debugging methods for some practical instances of
the CFLP (D) scheme.
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APPENDIX

A. A CONSTRAINT SOLVER OVER HSEQ

Definition 12. The Constraint Solver SolveHseq .
We assume the constraint domain Hseq described in Exam-
ple 1. Let χ ⊆ V be a set of protected variables and S ⊆
PCon(Hseq) a conjunction of atomic primitive constraints
over Hseq of the form S ≡ seq t1 s1 →! r1, . . . , seq tn sn →!
rn, where ti, si ∈ Pat(∅) and ri ∈ {true, false} ∪ V. We
define a constraint solver for equality and disequality cons-
traints as follows: SolveHseq (S, χ) =

∨k
i=1(Si ¤ σi) ⇔def

S ¤ ε Ã∗
χ

∨k
i=1(Si ¤ σi) 6Ãχ, where the relation Ãχ defined

below denotes one constraint solver step, and ϕ 6Ãχ express
that ϕ is not reducible by Ãχ.

The following rule system specifies the behaviour of the
relation Ãχ between constraint disjunctions of the form∨

i(Si ¤ σi), such that each Si ⊆ PCon(Hseq), σi ∈ Sub(∅),
χ ∩ var(Si) = ∅ and var(Si) ∩ dom(σi) = ∅. When apply-
ing the rules for Ãχ, we ignore the order of S and we view
== and /= as symmetric.

General rules for Ãχ

R0 . . . ∨ Si ¤ σi ∨ . . . Ãχ . . . ∨∨
j(S

′
j ¤ σ′j) ∨ . . .

if Si ¤ σi Ãχ

∨
j(S

′
j ¤ σ′j).

R1 seq t s →! R, S ¤ σ Ãχ (t == s, Sθ1 ¤ σθ1) ∨
(t /= s, Sθ2 ¤ σθ2)

if R /∈ χ, θ1 = {R 7→ true} and θ2 = {R 7→ false}.

Rules for strict equality

R2 htn == hsn, S ¤ σ Ãχ t1 == s1, . . . , tn == sn, S ¤ σ
R3 X == t, S ¤ σ Ãχ Tot(t), Sθ ¤ σθ

if X /∈ χ ∪ var(t), var(t) ∩ χ = ∅ and θ = {X 7→ t}.

Rules for strict disequality

R4 htn /= hsn, S ¤ σ Ãχ

∨n
i=1(ti /= si, S ¤ σ)

R5 htn /= h′sm, S ¤ σ Ãχ S ¤ σ if h 6= h′ or m 6= n.
R6 X /= htn, S ¤ σ Ãχ (

∨
i(Sθi ¤ σθi)) ∨

(
∨n

k=1(Uk /= tkθ, Sθ ¤ σθ))

if X /∈ χ, var(tn) ∩ χ 6= ∅, θi = {X 7→ hiY ini} for each
hi 6= h and θ = {X 7→ hUn} with Y ini , Un new variables.

(In practice, R6 is used by limiting the choice of hiY ini

to patterns of the same type as X. Therefore, the number n
of choices is finite.)

Failure rules

R7 htn == h′sm, S ¤ σ Ãχ ¨ if h 6= h′ or m 6= n.
R8 X == t, S ¤ σ Ãχ ¨ if X 6≡ t and X ∈ var(t).
R9 X /= X, S ¤ σ Ãχ ¨

Calculation of demanded variables in Hseq

The following rules serve to compute the set dvarHseq (S)
of demanded variables by a satisfiable set of primitive cons-
traints S ⊆ PCon(Hseq).

dvar(seq t s →! R, S) =
{R} ∪ (dvarHseq (t == s, Sθ1) ∩ dvar(t /= s, Sθ2))

if R is a variable, θ1 = {R 7→ true} and θ2 = {R 7→ false}.

dvar(htn == hsn, S) = dvar(t1 == s1, . . . , tn == sn, S)

dvar(X == t, S) = {X} ∪ var(t) ∪ dvar(Sθ)
where θ = {X 7→ t}.

dvar(htn /= h′sm, S) = dvar(S), if h 6= h′ or n 6= m.

dvar(htn /= hsn, S) =
dvar(t1 /= s1, S) ∩ . . . ∩ dvar(tn /= sn, S)

dvar(X /= Y, S) = {X, Y } ∪ dvar(S)
dvar(X /= t, S) = {X} ∪ dvar(S), if t is not a variable.

It is assumed that the last two rules are not applied if one
of the previous rule is applicable. Otherwise, the computa-
tion of dvar(S) does not work properly with these rules.

B. PROGRESS ORDERING

Definition 13. Well-founded progress ordering. Let
P be a CLNC(D)-program, G ≡ ∃U. P ¤ C ¤ S ¤ σ an ad-
missible goal for P and M : Π ¤ θ ∈ AnsP(G) a witnessed
answer. We define the following sizes associated to G and
M:

• The restricted size of the witness M = {{T1, . . . , Tn}}
(represented by | M |) is the multiset of natural num-
bers {{| T1 |, . . . , | Tn |}}, where | Ti | denotes the res-
tricted size of each proof tree Ti (1 ≤ i ≤ n), as defined
in Subsection 2.4.

• The size | G |1 is the number of occurrences in G of
expressions Fek with F a variable and k > 0.

• The size | G |2 is the number of occurrences in G of rigid
and passive expressions hen that are not patterns.

• The size | G |3 is the total syntactic size of the right
hand sides of productions in G.

• The restricted size of the constraint store (represented
by | S |) is evaluated to 1 if S is in solved form and 0
in other case.

Over pairs (G,M) we define a well-founded progress ordering

(G,M) B (G′,M′) ⇔def (| M |, | G |1, | G |2, | G |3, | S |) Âlex

(| M′ |, | G′ |1, | G′ |2, | G′ |3, | S′ |)
where Âlex is the lexicographic product of Âmul × >N × >N
× >N × >N, Âmul is the multiset order for multisets over N,
and >N is the usual ordering over N. See [5] for definitions
of these notions.

The following table shows the behaviour of the different
CLNC(D) transformations w.r.t. the five components of
the lexicographic progress ordering.

RULE | M | | G |1 | G |2 | G |3 | S |
DC ºmul >N >N >N
SP ºmul >N >N >N
IM ºmul >N >N
EL ºmul >N >N >N
PF Âmul

DF Âmul

FV ºmul >N
CS ºmul >N >N >N >N
AC Âmul

Table 1: progress ordering


