
Functional Logic Programming with Failure: A
Set-Oriented View�

F.J. López-Fraguas and J. Sánchez-Hernández

Dep. Sistemas Informáticos y Programación, Univ. Complutense de Madrid
{fraguas,jaime}@sip.ucm.es

Abstract. Finite failure of computations plays an important role as
programming construct in the logic programming paradigm, and it has
been shown that this also extends to the case of the functional logic pro-
gramming paradigm. In particular we have considered CRWLF, a previ-
ous proof-theoretic semantic framework able to deduce negative (failure)
information from functional logic programs. The non-deterministic na-
ture of functions considered in CRWLF leads naturally to set-valued
semantic description of expressions. Here we reformulate the framework
to stress that set flavour, both at syntactic and semantic levels. The
given approach, for which we obtain equivalence results with respect to
the previous one, increases the expressiveness for writing programs and
(hopefully) clarifies the understanding of the semantics given to non-
deterministic functions, since classical mathematical notions like union
of sets or families of sets are used. An important step in the reformu-
lation is a useful program transformation which is proved to be correct
within the framework.

1 Introduction

Functional logic programming (FLP for short) [7] is a powerful programming
paradigm trying to combine into a single language the nicest features of both
functional and logic programming styles. Most of the proposals consider some
kind of constructor-based rewrite systems as programs and use some kind of
narrowing as operational mechanism. There are practical systems, like Curry [8]
or T OY [11], supporting most of the features of functional and logic languages.

There is nevertheless a major aspect of logic programming still not incorpo-
rated to existing FLP proposals. It is negation as failure, a main topic of research
in the logic programming field (see [4] for a survey), and a very useful expressive
resource for writing logic programs.

There have been a few works devoted to this issue. In [13,14] the work of
Stuckey [16] about constructive negation is adapted to FLP, in strict and lazy
versions. A different approach has been followed in [12], where a Constructor
Based ReWriting Logic with Failure (CRWLF) is proposed as a proof-theoretic
� The authors have been partially supported by the Spanish CICYT (project TIC
98-0445-C03-02 ‘TREND’)

R. Nieuwenhuis and A. Voronkov (Eds.): LPAR 2001, LNAI 2250, pp. 455–469, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

456 F.J. López-Fraguas and J. Sánchez-Hernández

semantic framework for failure in FLP. Starting from CRWL [5,6], a well estab-
lished theoretical framework for FLP including a deduction calculus for reduc-
tion, CRWLF consists of a new proof calculus able to prove (computable cases
of) failure of CRWL-provability corresponding to ‘finite failure’ of reduction.
The non-deterministic nature of functions considered in CRWL and CRWLF
leads naturally to set-valued semantic description of expressions. In this paper
we reformulate the framework to stress that set flavour, both at syntactic and
semantic levels.

The organization of the paper is as follows. We first give some motivations
and discuss preliminary examples to help the understanding of the paper. Section
3 presents the CRWLF framework. In Section 4 we define and give correctness
results for a program transformation which is needed for the rest of the paper.
In Section 5 we reformulate in a set-oriented manner the CRWLF framework:
at the syntactic level we introduce set-constructs like unions or indexed unions;
we present a proof calculus for the new programs; we explain how to transform
CRWLF -programs into this new syntax, and give a strong result of semantic
equivalence.

2 Preliminary Discussion

• CRWLF and non-deterministic functions: CRWL [5,6] models reduction
by means of a relation e → t, meaning operationally ‘the expression e reduces to
the term t’ or semantically ‘t is an approximation of e’s denotation’. The main
technical insight of CRWLF was to replace the CRWL-statements e → t by the
statements e � C, where C is what we call a Sufficient Approximation Set (SAS)
for e, i.e., a finite set of approximations collected from all the different ways of
reducing e to the extent required for the proof in turn. To prove failure of e
corresponds to prove e � {F}, where F is a constant introduced in CRWLF to
represent failure.

While each proof of CRWL concentrates on one particular way of reducing e,
CRWLF obtains proofs related to all the possible ways of doing it. That the two
things are not the same is because CRWL-programs are not required to be con-
fluent, therefore defining functions which can be non-deterministic, i.e. yielding,
for given arguments, different values coming from different possible reductions.
The use of lazy non-deterministic functions is now a standard programming
technique in systems like Curry or T OY.

Non-determinism induces some kind of set-valued semantics for functions and
expressions. As a simple example, assume the constructors z and s, and consider
the non-confluent program:

f(X) = X
f(X) = s(X)

add(z, Y) = Y
add(s(X), Y) = s(add(X,Y))

For each X, f(X) can be reduced to two possible values, X and s(X). The
expression add(f(z), f(z)) can be reduced in different ways to obtain three pos-
sible values: z, s(z) and s(s(z)). This set-valued semantics is reflected in the

Functional Logic Programming with Failure: A Set-Oriented View 457

model semantics of CRWL, but not at the level of the proof calculus. CRWL is
only able to prove separately add(f(z), f(z)) → z, add(f(z), f(z)) → s(z) and
add(f(z), f(z)) → s(s(z)) (and partial approximations like add(f(z), f(z)) →
s(⊥)).

In contrast, the calculus of CRWLF is designed to collect sets of values. For
instance, to prove failure of the expression g(add(f(z), f(z))), when g is defined
by g(s(s(s(X)))) = z, CRWLF needs to prove add(f(z), f(z))�{z, s(z), s(s(z))}.
One of our main interests in the present work has been to reconsider some
aspects of CRWLF to emphasize this set-minded view of programs.

• Call-time choice semantics: The semantics for non-deterministic func-
tions adopted in CRWL is call-time choice [9]. Roughly speaking it means:
to reduce f(e1, . . . , en) using a rule of f , first choose one of the possible val-
ues of e1, . . . , en and then apply the rule. Consider for instance the function
double(X) = add(X,X), and the expression double(f(z)), where f is the non-
deterministic function defined above. The values for double(f(z)) come from
picking a value for f(z) and then applying the rule for double, obtaining then
only two values, z and s(s(z)), but not s(z).

To understand the fact that double(f(z)) and add(f(z), f(z)) are not the
same in call-time choice, one must think that in the definition of double the
variable X ranges over the universe of values (constructor terms), and not over
the universe of expressions, which in general represent sets of values. This cor-
responds nicely to the classical view of functions in mathematics: if we de-
fine double(n) = add(n, n) for natural numbers (values), then the equation
double(A) = add(A,A) is not valid for sets A of natural numbers, according
to the usual definition of application of a function f to a subset of its domain:
f(A) = {f(x) | x ∈ A}. In fact, we have double({0, 1}) = {double(x) | x ∈
{0, 1}} = {0, 2}, while add({0, 1}, {0, 1}) = {add(x, y) | x ∈ {0, 1}, y ∈ {0, 1}} =
{0, 1, 2} That is, mathematical practice follows call-time semantics.

The use of classical set notation can clarify the reading of expressions. For
instance, instead of double(f(z)) we can write

⋃
X∈f(z) double(X). These kind

of set-based changes in syntax is one of our contributions.

• Overlapping programs: To write programs in a set-oriented style we find
the problem that different values for a function application can be spread out
through different rules. This is not the case of non-overlapping rules, and the
case of rules with identical (or variant) heads is also not problematic, since
the rules can be merged into a single one: for the function f above, we can
write f(X) = {X} ∪ {s(X)}. The problem comes with definitions like l(z, z) =
z , l(z,X) = s(z), where the heads overlap but are not variants. To avoid such
situations Antoy introduces in [3] the class of overlapping inductively sequential
programs and proposes in [1] a transformation from general programs to that
format. We consider also this class of programs when switching to set-oriented
syntax, and propose a transformation with a better behavior than that of [1].

458 F.J. López-Fraguas and J. Sánchez-Hernández

3 The CRWLF Framework

The CRWLF calculus that we show here is a slightly modified version of that
in [12], in two aspects. First, for the sake of simplicity we have only considered
programs with unconditional rules. Second, in [12] programs were ‘positive’, not
making use of failure inside them. Here we allow programs to use a ‘primitive’
function fails() intended to be true when its argument fails to be reduced,
and false otherwise. This behavior of fails is determined explicitly in the proof
calculus.

The function fails is quite an expressive resource. As an application we show
by an example how to express default rules in function definitions.

Example 1. In many pure functional systems pattern matching determines the
applicable rule for a function call, and as rules are tried from top to bottom,
default rules are implicit in the definitions. In fact, the n+1-th rule in a definition
is only applied if the first n rules are not applicable. For example, assume the
following definition for the function f :

f(z) = z f(X) = s(z)

The evaluation of the expression f(z) in a functional language (like Haskell
[15]), will produce the value z by the first rule. The second rule is not used
for evaluating f(z), even if pattern matching would succeed if the rule would
be considered individually. This contrasts with functional logic languages (like
Curry [8] or T OY [11]) which try to preserve the declarative reading of each
rule. In such systems the expression f(z) would be reduced, by applying in a
non-deterministic way any of the rules, to the values z and s(z).

To achieve the effect of default rules in FLP, an explicit syntactical construc-
tion ’default’ can be introduced, as suggested in [13]. The function f could be
defined as:

f(z) = z
default f(X) = s(z)

The intuitive operational meaning is: to reduce a call to f proceed with the
first rule for f ; if the reduction fails then try the default rule. Using the function
ifThen (defined as ifThen(true,X) = X) and the predefined function fails, we
can transform the previous definition into:

f(X) = f ′(X)
f(X) = ifThen(fails(f ′(X)), s(z)) f ′(z) = z

This definition achieves the expected behavior for f without losing the equa-
tional meaning of rules.

3.1 Technical Preliminaries

We assume a signature Σ = DCΣ∪FSΣ∪{fails} whereDCΣ =
⋃

n∈IN DCn
Σ is a

set of constructor symbols containing at least true and false, FSΣ =
⋃

n∈IN FSn
Σ

Functional Logic Programming with Failure: A Set-Oriented View 459

is a set of function symbols, all of them with associated arity and such that
DCΣ∩FSΣ = ∅, and fails �∈ DC∪FS (with arity 1). We also assume a countable
set V of variable symbols. We write TermΣ for the set of (total) terms (we say
also expressions) built over Σ and V in the usual way, and we distinguish the
subset CTermΣ of (total) constructor terms or (total) cterms, which only make
use of DCΣ and V. The subindex Σ will be usually omitted. Terms intend to
represent possibly reducible expressions, while cterms represent data values, not
further reducible.

We will need sometimes to use the signature Σ⊥ which is the result of ex-
tending Σ with the new constant (0-arity constructor) ⊥, that plays the role of
the undefined value. Over Σ⊥, we can build the sets Term⊥ and CTerm⊥ of
(partial) terms and (partial) cterms respectively. Partial cterms represent the re-
sult of partially evaluated expressions; thus, they can be seen as approximations
to the value of expressions. The signature Σ⊥,F results of adding to Σ⊥ a new
constant F, to express failure of reduction. The sets Term⊥,F and CTerm⊥,F are
defined in the natural way.

We will use three kind of substitutions CSubst, CSubst⊥ and CSubst⊥,F de-
fined as applications from V into CTerm,CTerm⊥ and CTerm⊥,F respectively.

As usual notations we will write X,Y, Z, ... for variables, c, d for constructor
symbols, f, g for functions, e for terms and s, t for cterms. In all cases, primes
(’) and subindices can be used.

Given a set of constructor symbols D, we say that the terms t and t′ have an
D-clash if they have different constructor symbols of D at the same position.

A natural approximation ordering � over Term⊥,F can be defined as the least
partial ordering over Term⊥,F satisfying the following properties:

• ⊥ � e for all e ∈ Term⊥,F,
• h(e1, ..., en) � h(e′

1, ..., e
′
n), if ei � e′

i for all i ∈ {1, ..., n}, h ∈ DC ∪ FS ∪
{fails} ∪ {F}

The intended meaning of e � e′ is that e is less defined or has less information
than e′. Notice that according to this F is maximal. Two expressions e, e′ ∈
Term⊥,F are consistent if there exists e′′ ∈ Term⊥,F such that e � e′′ and
e′ � e′′.

We extend the order � and the notion of consistency to sets of terms: given
C, C′ ∈ CTerm⊥,F, C � C′ if for all t ∈ C there exists t′ ∈ C′ with t � t′ and for
all t′ ∈ C′ there exists t ∈ C with t � t′. The sets C, C′ are consistent if there
exists C′′ such that C � C′′ and C′ � C′′.

A CRWLF -program P is a set of rewrite rules of the form f(t) → e, where
f ∈ FSn; t is a linear tuple (each variable in it occurs only once) of cterms;
e ∈ Term and var(e) ⊆ var(t). We say that f(t) is the head and e is the body of
the rule. We write Pf for the set of defining rules of f in P.

To express call-time choice, the calculus of the next section uses the set of
c-instances of a rule R, defined as [R]⊥,F = {Rθ | θ ∈ CSubst⊥,F}.

460 F.J. López-Fraguas and J. Sánchez-Hernández

3.2 The Proof Calculus CRWLF

The proof calculus CRWLF defines the relation e � C where e ∈ Term⊥,F and
C ⊆ CTerm⊥,F; we say that C is a Sufficient Approximation Set (SAS) for the
expression e. A SAS is a finite approximation to the denotation of an expression.
For example, if f is defined as f(X) → X, f(X) → s(X), then we have the sets
{⊥}, {z,⊥}, {z, s(⊥)}, {⊥, s(⊥)}, {⊥, s(z)} and {z, s(z)} as finite approxima-
tions to the denotation of f(z).

Table 1. Rules for CRWLF -provability

(1)
e � {⊥} e ∈ Term⊥,F (2)

X � {X} X ∈ V

(3)
e1 � C1 ... en � Cn

c(e1, ..., en) � {c(t) | t ∈ C1 × ... × Cn} c ∈ DCn ∪ {F}

(4)
e1 � C1 ... en � Cn ... f(t) �R CR,t ...

f(e1, ..., en) � µ(
⋃

R∈Pf ,t∈C1×...×Cn
CR,t)

f ∈ FSn

(5)
f(t) �R {⊥} (6)

e � C
f(t) �R C (f(t) → e) ∈ [R]⊥,F

(7)
f(t1, ..., tn) �R {F}

R ≡ (f(s1, ..., sn) → e), ti and si have a
DC ∪ {F}-clash for some i ∈ {1, ..., n}

(8)
e � {F}

fails(e) � {true} (9)
e � C

fails(e) � {false} t ∈ C, t �= ⊥, t �= F

Rules for CRWLF -provability are shown in Table 1. Rules 1 to 7 are the
restriction of the calculus in [12] to unconditional programs. Rules 8 and 9 define
the function fails according to the specification given in Sect. 3.

The auxiliary relation �
R
used in rule 4 depends on a particular program

rule R, and is defined in rules 5 to 7. The function µ in rule 4 is a simplification
function for SAS’s to delete irrelevant occurrences of F. It is defined as µ({F}) =
{F}; µ(C) = C − {F} otherwise (see [12] for a justification).

Given a program P and an expression e, we write P �CRWLF e�C to express that
the relation e � C is provable with respect to CRWLF and the program P. The
denotation of e is defined as [[e]]CRWLF = {C | P �CRWLF e�C}. Notice that the deno-
tation of an expression is a set of sets of partial values. For the function f above
we have [[f(z)]]CRWLF = {{⊥}, {z,⊥}, {z, s(⊥)}, {⊥, s(⊥)}, {⊥, s(z)}, {z, s(z)}}

The calculus CRWLF verifies the following properties:

Proposition 1. Let P be a CRWLF-program. Then:

Functional Logic Programming with Failure: A Set-Oriented View 461

a) Consistency of SAS’s: P �CRWLF e � C, e � C′ ⇒ C and C′ are consistent.
Moreover, there exists C′′ such that P �CRWLF e�C′′, with C � C′′ and C′ � C′′.

b) Monotonicity: e � e′ and P �CRWLF e � C ⇒ P �CRWLF e′ � C
c) Total Substitutions: P �CRWLF e � C ⇒ P �CRWLF eθ � Cθ, for θ ∈ CSubst.

These properties can be understood in terms of information. As we have seen,
in general we can obtain different SAS’s for the same expression corresponding to
different degrees of evaluation. Nevertheless, Consistency ensures that any two
SAS’s for a given expression can be refined to a common one.Monotonicity says
that the information that can be extracted from an expression can not decrease
when we add information to the expression itself. And Total Substitutions
shows that provability in CRWLF is closed under total substitutions.

4 Overlapping Inductively Sequential Programs

In [3], Antoy introduces the notion of Overlapping Inductively Sequential pro-
grams (OIS-programs) based on the idea of definitional trees [2]. We give here
an equivalent but slightly different definition.

Definition 1 (OIS-CRWLF -Programs). A CRWLF-program is called over-
lapping inductively sequential if every pair of rules f(t1) → e1, f(t2) → e2 sat-
isfies: the heads f(t1) and f(t2) are unifiable iff they are the same up to variable
renaming.

We next see that every CRWLF -program can be transformed into a seman-
tically equivalent OIS-CRWLF-program.

4.1 Transformation of CRWLF -Programs into OIS-CRWLF -
Programs

We need some usual terminologies about positions in terms. A position u in a
term e is a sequence of positive integers p1 · ... ·pm that identifies the symbol of e
at position u. We write VP(e) for the set of positions in e occupied by variables.
We say that a position u is demanded by a rule f(t) → e if the head f(t) has a
constructor symbol of DC at position u. Given a set of rules Q and a position
u, we say that u is demanded by Q if u is demanded by some rule of Q, and we
say that u is uniformly demanded by Q if it is demanded by all rules of Q.
Definition 2 (Transformation of Sets of Rules). The transformation algo-
rithm is specified by a function ∆(Q, f(s)) where:

– Q = {(f(t1) → e1), ..., (f(tn) → en)}
– f(s) a pattern compatible with Q, i.e., s is a linear tuple of cterms and
for all i ∈ {1, ..., n}, f(s) is more general than f(ti) (i.e., sθ = ti, for some
θ ∈ CSubst).

∆ is defined by the following three cases:

462 F.J. López-Fraguas and J. Sánchez-Hernández

1. Some position u in V P (f(s)) is uniformly demanded by Q (if there
are several, choose any).
Let X be the variable at position u in f(s). Let C = {c1, ..., ck} be the set of
constructor symbols at position u in the heads of the rules of Q and sci =
s[X/ci(Y)], where Y is a m-tuple of fresh variables (assuming ci ∈ DCm).
For each i ∈ {1, ..., k} we define the set Qci as the set of rules of Q demanding
ci at position u.
Return ∆(Qc1 , f(sc1)) ∪ ... ∪ ∆(Qck

, f(sck
))

2. Some position in V P (f(s)) is demanded by Q, but none is uniformly
demanded.
Let u1, ..., uk be the demanded positions (ordered by any criterion). Consider
the following partition (with renaming of function names in heads) over Q:
• Let Qu1 be the subset of rules of Q demanding position u1, where the
function symbol f of the heads has been replaced by fu1 , and Qu1 = Q−Qu1 .
• Let Qu2 be the subset of rules of Qu1 demanding position u2, where the
function symbol f of the heads have been replaced by fu2 and let Qu2 =
Qu1 − Qu2 .
...
• Let Quk be the subset of rules Quk−1 demanding position uk, where the
function symbol f of the heads have been replaced by fuk .
• And let Q0 be the subset of rules of Q that do not demand any position.
Return Q0 ∪ {f(s) → fu1(s), ..., f(s) → fuk(s)} ∪ ∆(Qu1 , fu1(s)) ∪ ... ∪
∆(Quk , fuk(s))

3. No position in V P (f(s)) is demanded by Q, then Return Q

The initial call for transforming the defining rules of f will be ∆(Pf , f(X)),
and a generic call will have the form ∆(Q, fN (s)), where Q is a set of rules and
fN (s) is a pattern compatible with Q. We illustrate this transformation by an
example:

Example 2. Consider the constants a, b and c and a function defined by the set of
rules Pf = {f(a,X) → a, f(a, b) → b, f(b, a) → a}. To obtain the corresponding
OIS-set of rules the algorithm works in this way:

∆({f(a,X) → a, f(a, b) → b, f(b, a) → a}, f(Y, Z))︸ ︷︷ ︸
by 1

=

∆({f(a,X) → a, f(a, b) → b}, f(a, Z))︸ ︷︷ ︸
by 2

∪∆({f(b, a) → a}, f(b, Z))︸ ︷︷ ︸
by 1

=

{f(a,X) → a} ∪ {f(a, Z) → f2(a, Z)} ∪ ∆({f2(a, b) → b}, f(a, Z))︸ ︷︷ ︸
by 1

∪

∆({f(b, a) → a}, f(b, a))︸ ︷︷ ︸
by 3

=

{f(a,X) → a}∪{f(a, Z) → f2(a, Z)}∪∆({f2(a, b) → b}, f(a, b))︸ ︷︷ ︸
by 3

∪{f(b, a) → a} =

Functional Logic Programming with Failure: A Set-Oriented View 463

{f(a,X) → a} ∪ {f(a, Z) → f2(a, Z)} ∪ {f2(a, b) → b} ∪ {f(b, a) → a} =
{f(a,X) → a, f(a, Z) → f2(a, Z), f(b, a) → a, f2(a, b) → b}
Our transformation is quite related to the actual construction of the defi-

nitional tree [2,10] of a function. A different algorithm to obtain an OIS-set of
rules from a general set of rules is described in [1]. For the example above, such
algorithm provides the following set of rules:

f(X,Y) → f1(X,Y) | f2(X,Y) f1(a, Y) → a
f2(a, b) → b

f2(b, a) → a

where the symbol ‘|’ stands for a choice between two alternatives. This trans-
formed set is worse than the one obtained by our transformation: for evaluating
a call to f it begins with a search with two alternatives f1 and f2, even when
it is not needed. For example, for evaluating f(b, a), it tries both alternatives,
but this reduction corresponds to a deterministic computation with the original
program and also with our transformed one. The situation is clearly unpleasant
if instead of b, we consider an expression e with a costly reduction to b.

Definition 3 (Transformation of Programs). Given a CRWLF-program P
we define the transformed program ∆(P) as the union of the transformed sets of
defining rules for the functions defined in P.

It is easy to check that ∆(P) is indeed an OIS-CRWLF-program, and that
∆(P) = P if P is already an OIS-CRWLF-program.

Theorem 1 (Correctness of the Transformation). For every CRWLF-
program P, ∆(P) is an OIS-CRWLF-program satisfying: for every e ∈ Term⊥,F

built over the signature of P, P �CRWLF e � C ⇔ ∆(P) �CRWLF e � C.

5 A Set Oriented View of CRWLF : ̂CRWLF

In this section we introduce the notion of sas-expression as a syntactical con-
struction, close to classical set notation, that provides a clear “intuitive seman-
tics” for the denotation of an expression.

5.1 Sas-Expressions

A sas-expression is intended as a construction for collecting values. These val-
ues may either appear explicitly in the construction or they can be eventually
obtained by reducing function calls. Formally, a sas-expression S is defined as:

S ::= {t} | ⋃
X∈f(t) S1 |⋃X∈fails(S1) S2 | ⋃

X∈S1
S2 | S1 ∪ S2

where t ∈ CTerm⊥,F, t ∈ CTerm⊥,F × ... × CTerm⊥,F, f ∈ FSn and S1,S2 are
sas-expressions.

The variable X in
⋃

X∈S1
S2 is called a produced variable. We can define

formally the set pvar(S) of produced variables of a sas-expression S as:

464 F.J. López-Fraguas and J. Sánchez-Hernández

– pvar({t}) = ∅
– pvar(

⋃
X∈f(t) S) = {X} ∪ pvar(S)

– pvar(
⋃

X∈fails(S1) S2) = {X} ∪ pvar(S1) ∪ pvar(S2)
– pvar(

⋃
X∈S1

S2) = {X} ∪ pvar(S1) ∪ pvar(S2)
– pvar(S1 ∪ S2) = pvar(S1) ∪ pvar(S2)

A sas-expression S is called admissible if it satisfies the following properties:
– if S = S1 ∪ S2 then it must be (var(S1) − pvar(S1)) ∩ pvar(S2) = ∅, and
conversely (var(S2) − pvar(S2)) ∩ pvar(S1) = ∅. The aim of this condition
is to express that a variable can not appear in both S1 and S2 as produced
and as not-produced variable.

– if S = ⋃
X∈r S then X �∈ var(r) ∪ pvar(S) and var(r) ∩ pvar(S) = ∅

In the following we write SasExp for the set of admissible sas-expressions.

We now define substitutions for non-produced variables.

Definition 4 (Substitutions for Sas-Expressions). Given S ∈ SasExp,
Y �∈ pvar(S) and s ∈ CTerm⊥,F, the substitution S[Y/s] is defined on the
structure of S as:

– {t}[Y/s] = {t[Y/s]}
– (

⋃
X∈f(t) S1)[Y/s] =

⋃
X∈f(t)[Y/s] S1[Y/s]

– (
⋃

X∈fails(S1) S2)[Y/s] =
⋃

X∈fails(S1[Y/s]) S2[Y/s]
– (

⋃
X∈S1

S2)[Y/s] =
⋃

X∈S1[Y/s] S2[Y/s]
– (S1 ∪ S2)[Y/s] = S1[Y/s] ∪ S2[Y/s]

The expression Sθ, where θ = [Y1/s1]...[Yk/sk], stands for the successive
application of the substitutions [Y1/s1], ..., [Yk/sk] to S.

We will also use set-substitutions for sas-expressions: given a set C =
{s1, ..., sn} ∈ CTerm⊥,F we will write S[Y/C] as a shorthand for the distribution
S[Y/s1] ∪ ... ∪ S[Y/sn].

In order to simplify some expressions, we also introduce the following nota-
tion: given h ∈ DCn ∪ FSn and C = {t1, ..., tm} ⊆ CTerm⊥,F, we will write
h(e1, ..., ei−1, C, ei+1, ..., en) � C′ as a shorthand for C′ = C1 ∪ ... ∪ Cm, where
h(e1, ..., ei−1, t1, ei+1, ..., en) � C1,..., h(e1, ..., ei−1, tm, ei+1, ..., en) � Cm. We will
also use a generalized version of this notation and write h(C1, ..., Cn) � C, where
C1, ..., Cn ∈ CTerm⊥,F.

5.2 Terms as Sas-Expressions

In this section we precise how to convert expressions into the set-oriented syntax
of sas-expressions.

Definition 5 (Conversion into Sas-Expressions). The sas-expression ê cor-
responding to e ∈ Term⊥,F is defined inductively as follows:

Functional Logic Programming with Failure: A Set-Oriented View 465

– X̂ = {X}
– ̂c(e1, ..., en) =

⋃
X1∈ê1

...
⋃

Xn∈ên
{c(X1, ..., Xn)}, for every c ∈ DCn ∪{⊥, F},

where the variables X1, ..., Xn are fresh.
– ̂f(e1, ..., en) =

⋃
X1∈ê1

...
⋃

Xn∈ên

⋃
X∈f(X1,...,Xn){X}, for every f ∈ FSn,

where the variables X1, ..., Xn and X are fresh.
– ̂fails(e) =

⋃
X∈fails(ê){X}, where the variable X is fresh.

As an example of conversion we have

̂double(f(X)) =
⋃

Y ∈f̂(X)

⋃
Z∈double(Y){Z} =⋃

Y ∈⋃
Y1∈{X}

⋃
Y2∈f(Y1){Y2}

⋃
Z∈double(Y){Z}

This expression could be simplified to the shorter one
⋃

Y ∈f(X)
⋃

Z∈double(Y){Z},
but this is not needed for our purposes and we do not insist in that issue.

The set-based syntax of sas-expressions results in another benefit from the
point of view of expressiveness. The notation

⋃
X∈S S ′ is a construct that binds

the variable X and generalizes the sharing-role of (non-recursive) local defini-
tions of functional programs. For instance, an expression like

⋃
Y ∈f(X){c(Y, Y)}

expresses the sharing of f(X) through the two occurrences of Y in c(Y, Y). The
same expression using typical let notation would be let Y = f(X) in c(Y, Y).

5.3 Denotational Semantics for Sas-Expressions: ̂CRWLF

In this section we present the proof calculus ̂CRWLF for sas-expressions. This
calculus is defined for programs with a set oriented notation. The idea is to start
with a CRWLF -program P, transform it into an OIS-CRWLF-program ∆(P)
and then, transform the last into a ̂CRWLF-program ∆̂(P), obtained by joining
the rules with identical heads into a single rule whose body is a sas-expression
obtained from the bodies of the corresponding rules. We have proved in Sect. 4
that the first transformation preserves the semantics. In this section we prove
the same for the last one, obtaining then a strong equivalence between CRWLF
and ̂CRWLF.

Definition 6 (̂CRWLF-Programs). A ̂CRWLF-Program P̂ is a set of non-
overlapping rules of the form: f(t) � S, where f ∈ FSn; t is a linear tu-
ple (each variable occurs only once) of cterms; s ∈ SasExp and (var(S) −
pvar(S)) ⊆ var(t). Non-overlapping means that there is not any pair of rules
with unifiable heads in P̂.

According to this definition, it is easy to obtain the corresponding ̂CRWLF-
program P̂ from a given OIS-CRWLF-program P:

P̂ = {f(t) � ê1 ∪ ... ∪ ên | f(t) → e1, ..., f(t) → en ∈ P
and there is not any other rule in P with head f(t)}

466 F.J. López-Fraguas and J. Sánchez-Hernández

Table 2. Rules for ̂CRWLF-provability

(1) S �̂ {⊥} S ∈ SasExp (2) {X} �̂ {X} X ∈ V

(3)
t1 �̂ C1 tn �̂ Cn

{c(t1, ..., tn)} �̂ {c(t′) | t′ ∈ C1 × ... × Cn} c ∈ DC ∪ {F}

(4)
S ′ �̂ C′ S[X/C′] �̂ C⋃

X∈f(t) S �̂ C (f(t) � S ′) ∈ [P̂]⊥,F

(5)
S[X/F] �̂ C⋃
X∈f(t) S �̂ C

for all (f(s1, ..., sn) � S ′) ∈ P̂,
ti and si have a DC ∪ {F}-clash for some i ∈ {1, ..., n}

(6)
S1 �̂ {F} S2[X/true] �̂ C⋃

X∈fails(S1) S2 �̂ C

(7)
S1 �̂ C′ S2[X/false] �̂ C⋃

X∈fails(S1) S2 �̂ C there is some t ∈ C′, t �= ⊥, t �= F

(8)
S1 �̂ C′ S2[X/C′] �̂ C⋃

X∈S1
S2 �̂ C (9)

S1 �̂ C1 S2 �̂ C2

S1 ∪ S2 �̂ C1 ∪ C2

The non-overlapping condition is guaranteed because we join all the rules
with the same head (up to renaming) into a single rule.

Table 2 shows the rules for ̂CRWLF-provability. Rules 1, 2 and 3 have
a natural counterpart in CRWLF. For rule 4 we must define the set of c-
instances of rules of the program: [P̂]⊥,F = {Rθ | R = (f(t) � S) ∈ P̂ and
θ ∈ CSubst⊥,F |var(t)}. The notation CSubst⊥,F |var(t) stands for the set of
substitutions CSubst⊥,F restricted to var(t). As var(t) ∩ pvar(S) = ∅ the sub-
stitution is well defined according to Definition 4.

Notice that rule 4 uses a c-instance of a rule, and this c-instance is unique
if it exists (due to the non-overlapping condition imposed to programs). If such
c-instance does not exist, then by rule 5, the corresponding expression reduces
to F. Rules 6 and 7 are the counterparts of 8 and 9 of CRWLF. Finally, rules 8
and 9 are due to the recursive definition of sas-expressions and have a natural
reading.

Given a ̂CRWLF-program P̂ and S ∈ SasExp we write P̂ �ĈRWLF S �̂ C if
the relation S �̂ C is provable with respect to ̂CRWLF and the program P̂. The
denotation of S is defined as [[S]]ĈRWLF = {C | S �̂ C}.
Example 3. Assume the OIS-CRWLF-program:

add(z, Y) → Y
add(s(X), Y) → s(add(X,Y))

double(X) → add(X,X)
f(X) → X
f(X) → s(X)

The corresponding ̂CRWLF-program P̂ is:

Functional Logic Programming with Failure: A Set-Oriented View 467

add(z, Y) � {Y }
add(s(X), Y) � ⋃

A∈⋃
B∈{X}

⋃
C∈{Y }

⋃
D∈add(B,C){D}{s(A)}

double(X) � ⋃
A∈{X}

⋃
B∈{X}

⋃
C∈add(A,B){C}

f(X) � {X} ∪ ⋃
A∈{X}{s(A)}

Within CRWLF we can prove double(f(z))�{z, s(s(z))}, and within ̂CRWLF we
can obtain the same SAS by proving ̂double(f(z)) �̂ {z, s(s(z))}. Let us sketch
the form in which this proof can be done. First, we have:

̂double(f(z)) =
⋃

A∈⋃
C∈{z}

⋃
D∈f(C){D}

⋃
B∈double(A){B}

By rule 8 of ̂CRWLF this proof is reduced to the proofs:
⋃

C∈{z}
⋃

D∈f(C){D} �̂ {z, s(z)} (ϕ1)

⋃
B∈double(z){B} ∪ ⋃

B∈double(s(z)){B} �̂ {z, s(z)} (ϕ2)

By rule 8 (ϕ1) is reduced to the proofs {z} �̂ {z} and ⋃
D∈f(z){D} �̂ {z, s(z)}.

The first is done by rule 3 and the other is reduced by rule 4. On the other hand,
by rule 9 the proof (ϕ2) can be reduced to the proofs:

⋃
B∈double(z){B} �̂ {z} (ϕ3)

⋃
B∈double(s(z)){B} �̂ {s(s(z))} (ϕ4)

Both (ϕ3) and (ϕ4) proceed by rule 4 in a similar way. We fix our attention in
(ϕ4) which, using the rule for double, is reduced to:

⋃
A∈s(z)

⋃
B∈s(z)

⋃
C∈add(A,B){C} �̂ {s(s(z))}

and then, by two applications of rule 8 to:
⋃

C∈add(s(z),s(z){C} �̂ {s(s(z))}. Now,
rule 4 uses the first defining rule for add and the proof is reduced to:

⋃
A∈⋃

B∈{z}
⋃

C∈{s(z)}
⋃

D∈add(B,C){D}{s(A)} �̂ {s(s(z))}

By rule 8 it is reduced to:
⋃

B∈{z}
⋃

C∈{s(z)}
⋃

D∈add(B,C){D} �̂ {s(z)} (ϕ5) {s(s(z))} �̂ {s(s(z))} (ϕ6)

The proof (ϕ6) is done by successive applications of rule 3 and (ϕ5) is reduced
by rule 8 (twice) to

⋃
D∈add(z,s(z)){D} �̂ {s(z)}. This last proceeds by applying

the first defining rule of add by means of rule 4.

5.4 CRWLF & ̂CRWLF

We show here the strong semantic equivalence between CRWLF and ̂CRWLF.

Lemma 1 (Semantic Equivalence of CRWLF and ̂CRWLF). Let P be
an OIS-CRWLF-program and P̂ be the corresponding ̂CRWLF-program. Let e ∈
Term⊥,F and ê ∈ SasExp be the corresponding sas-expression. Then

468 F.J. López-Fraguas and J. Sánchez-Hernández

P �CRWLF e � C ⇔ P̂ �ĈRWLF ê �̂ C.
As a trivial consequence of this lemma, we arrive at our final result:

Theorem 2. Let P be a general CRWLF-program and ∆̂(P) be the correspond-
ing ̂CRWLF-program. Let e be an expression built over the signature of P and ê

be the corresponding sas-expression. Then: P �CRWLF e � C ⇔ ∆̂(P) �ĈRWLF ê �̂ C.
As a consequence, denotations of expressions are preserved in the transfor-

mation process, i.e., [[e]]CRWLF = [[ê]]ĈRWLF (referred to P and ∆̂(P), respectively).
So, the properties about consistency, monotonicity and substitutions of Prop. 1
are preserved in ̂CRWLF when considering expressions and the corresponding
sas-expressions.

6 Conclusions

We have extended and reformulated CRWLF [12], a proof-theoretic framework
designed to deduce failure information from positive functional logic programs
(i.e., programs not making use of failure inside them). To allow programs the
use of failure, we have introduced a built-in function fails(), and extended the
proof calculus to deal with it.

We have discussed the declarative meaning of functions defined in programs.
Since functions can be non-deterministic, they are in general set-valued. Each
rule in the program defines (partially, since there can be more rules) a function
as a mapping from (tuples of) constructor terms to sets of constructor terms. If
we try to re-write the defining rules of a function f to express directly which is
the value (set of constructor terms) of applying f to given arguments, we face
the problem that this set can be distributed among different overlapping rules.
To overcome this problem we have considered the class of overlapping induc-
tively sequential programs [3] in which overlapping rules are always variants. We
have defined a transformation of general programs into such kind of programs
and proved that the transformation preserves the semantics, which constitutes
itself an interesting application of the developed formal framework. Our trans-
formation behaves better than that proposed in [1], if the transformed program
is going to be used in existing systems like Curry [8] or T OY [11].

To stress the set-theoretic reading of programs, we have introduced set-
oriented syntactic constructs to be used in right hand sides of rules, like set
braces, union of sets, or union of indexed families of sets. This provides a more
intuitive reading of programs in terms of classical mathematical notions, close
to the intended semantics. As additional interesting point of this new syntax,
indexed unions are a binding construct able to express sharing at the syntactic
level, playing a role similar to local (let or where) definitions. As far as we know,
this is the first time that some kind of local definitions are incorporated to a
formal semantic framework for functional logic programming.

Our last contributions have been a transformation of overlapping inductively
sequential programs into programs with set-oriented syntax, and a specific proof

Functional Logic Programming with Failure: A Set-Oriented View 469

calculus for the latter, by means of which we prove that the transformation
preserves the semantics of programs. Apart from any other virtues, we have
strong evidence that these new set-oriented syntax and proof calculus are a
better basis for an ongoing development of an operational (narrowing based)
semantics and subsequent implementation of a functional logic language with
failure.

References

[1] S. Antoy Constructor-based Conditional Narrowing. To appear in Proc. PPDP’01,
Springer LNCS.

[2] S. Antoy Definitional Trees. In Proc. ALP’92, Springer LNCS 632, pages 143-157,
1992.

[3] S. Antoy Optimal Non-Deterministic Functional Logic Computations. In Proc.
ALP’97, Springer LNCS 1298, pages 16-30, 1997.

[4] K.R. Apt and R. Bol. Logic programming and negation: A survey. Journal of
Logic Programming, 19&20:9–71, 1994.

[5] J.C. González-Moreno, T. Hortalá-González, F.J. López-Fraguas, and M.
Rodŕıguez-Artalejo. A Rewriting Logic for Declarative Programming. In Proc.
ESOP’96, pages 156–172. Springer LNCS 1058, 1996.

[6] J.C. González-Moreno, T. Hortalá-González, F.J. López-Fraguas, and M.
Rodŕıguez-Artalejo. An approach to declarative programming based on a rewrit-
ing logic. Journal of Logic Programming, 40(1):47–87, 1999.

[7] M. Hanus. The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming, 19&20:583–628, 1994.

[8] M. Hanus (ed.). Curry: An integrated functional logic language. Available at
http://www.informatik.uni-kiel.de/˜mh/curry/report.html, June 2000.

[9] H. Hussman. Non-Determinism in Algebraic Specifications and Algebraic Pro-
grams Birkhäuser Verlag, 1993.

[10] R. Loogen, F.J. López, M. Rodŕıguez. A demand driven computation strategy for
lazy narrowing. Proc. PLILP’3, Springer LNCS 714, 184–200, 1993.

[11] F.J. López-Fraguas and J. Sánchez-Hernández. T OY: A multiparadigm declara-
tive system. In Proc. RTA’99, Springer LNCS 1631, pages 244–247, 1999.

[12] F.J. López-Fraguas and J. Sánchez-Hernández. Proving Failure in Functional
Logic Programs In Proc CL’2000, Springer LNAI 1861, pages 179–193, 2000.

[13] J.J. Moreno-Navarro. Default rules: An extension of constructive negation for
narrowing-based languages. In Proc. ICLP’95, pages 535–549. MIT Press, 1994.

[14] J.J. Moreno-Navarro. Extending constructive negation for partial functions in
lazy functional-logic languages. In Proc. ELP’96, pages 213–227. Springer LNAI
1050, 1996.

[15] S. Peyton Jones, J. Hughes (eds.) Haskell 98: A Non-strict, Purely Functional
Language. Available at http://www.haskell.org, February 1999.

[16] P.J. Stuckey. Constructive negation for constraint logic programming. In Proc.
LICS’91, pages 328–339, 1991.

	Introduction
	Preliminary Discussion
	The textit {CRWLF }Framework
	Technical Preliminaries
	The Proof Calculus textit {CRWLF}

	Overlapping Inductively Sequential Programs
	Transformation of textit {CRWLF}-Programs into textit {OIS}-textit {CRWLF}-Programs

	A Set Oriented View of textit {CRWLF}: $setbox z @ hbox {frozen @everymath @emptytoks mathsurround z @ $textstyle textit {CRWLF}$}mathaccent "0362{textit {CRWLF}}$
	Sas-Expressions
	Terms as Sas-Expressions
	Denotational Semantics for Sas-Expressions: $setbox z @ hbox {frozen @everymath @emptytoks mathsurround z @ $textstyle textit {CRWLF}$}mathaccent "0362{textit {CRWLF}}$
	textit {CRWLF }& $setbox z @ hbox {frozen @everymath @emptytoks mathsurround z @ $textstyle textit {CRWLF}$}mathaccent "0362{textit {CRWLF}}$

	Conclusions

