
Rewriting and Call-Time Choice: The HO Case�

Francisco Javier López-Fraguas, Juan Rodŕıguez-Hortalá,
and Jaime Sánchez-Hernández

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid, Spain

fraguas@sip.ucm.es, jrodrigu@fdi.ucm.es, jaime@sip.ucm.es

Abstract. It is known that the behavior of non-deterministic functions
with call-time choice semantics, present in current functional logic lan-
guages, is not well described by usual approaches to reduction like ordi-
nary term rewriting systems or λ-calculus. The presence of HO features
makes things more difficult, since reasoning principles that are essential in
a standard (i.e., deterministic) functional setting, like extensionality, be-
come wrong. In this paper we propose HOlet-rewriting, a notion of rewrit-
ing with local bindings that turns out to be adequate for programs with
HO non-deterministic functions, as it is shown by strong equivalence re-
sults with respect to HOCRWL, a previously existing semantic framework
for such programs. In addition, we give a sound and complete notion of HO-
let-narrowing, we show by a case study the usefulness of the achieved com-
bination of semantic and reduction notions, and finally we prove within our
framework that a standard approach to the implementation ofHO features,
namely translation to FO, is still valid for HO nondeterministic functions.

1 Introduction

Functional logic programming (FLP, for short; see [12,14] for surveys) inte-
grates features of logic programming and functional programming. Typically
FLP adopts mostly a (lazy) functional style, thus making intensive use of higher
order (HO) functions. However, most of the work about FLP focuses on first
order (FO) aspects of programs, thus limiting the applicability of results.

This is not a satisfactory situation, especially taking into account that the
presence of functions that are at the same time HO and non-deterministic leads
to somehow surprising behaviors, as shown by the example we sent recently to
the Curry mailing list [13]:

Example 1. Consider the following program computing with natural numbers
represented by the constructors 0 and s/1, and where + is defined as usual.

g X -> 0 f -> g f’ X -> f X
h X -> s 0 f -> h

fadd F G X -> (F X) + (G X) fdouble F -> fadd F F

� This work has been partially supported by the Spanish projects Merit-Forms-UCM
(TIN2005-09207-C03-03) and Promesas-CAM (S-0505/TIC/0407).

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 147–162, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

148 F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández

Notice that f and f ′ are non-deterministic functions that are (by definition
of f ′) extensionally equivalent; from the point of view of standard functional
programming they should be seen as ‘the same function’. However, consider the
expressions (fdouble f 0) and (fdouble f ’ 0). In modern FLP languages like Curry
[16] or Toy [21], the possible values for (fdouble f 0) are 0, s (s 0), while (fdouble
f ’ 0) can be in addition reduced to s 0.

This behavior corresponds to call-time choice [17,11], the semantics for non-
determinism adopted by those systems. Operationally call-time choice is very
close to the sharing mechanism used in functional languages to implement lazy
evaluation.

The example was sent1 to point out that η-expansion and η-reduction are
not valid for such systems, because extensionally equivalent functions (e.g., f
and f ’) can be semantically distinguishable when put in the same context (e.g.,
double [] 0), a fact that does not happen neither in standard (i.e, deterministic)
functional programs2, nor in FO FLP. We remark also that with run-time choice
[17,11], f and f ′ will be indistinguishable (double f 0 and double f ’ 0 would both
produce 0, s 0, s (s 0) as possible results). Therefore, it is the combination HO
+ Non-determinism + call-time choice which makes things different.

That combination was addressed in HOCRWL [7,8], an extension to HO of
CRWL3 [11], a semantic framework specifically devised for FLP with call-time
choice semantics for non-determinism (see [28] for a survey of CRWL and its ex-
tensions). HOCRWL provides logic and model-theoretic semantics, based on an
intensional view of functions, where different descriptions –in the form of HO-
patterns– of the same extensional function are distinguished as different data.
This allows expressive programs and is simpler than λ-calculus-based HO unifica-
tion, which is an alternative approach followed in the logic programming setting
[23]. Previous work on the intensional view of HO-FLP [10] did not consider non-
determinism. Other works covering HO in FLP, [24,15], consider orthogonal or
inductively sequential (henceforth deterministic) systems; if extended directly to
the non-deterministic case, they would realize run-time choice, as happens also
with [4], where a type-based translation to FO in the spirit of [29,9] is proposed.
We remark also that [15] is close to the theory of HO rewriting [27], and there-
fore has η-expansion as a valid procedure, against the expected properties of the
languages considered by ours. Finally, [1] copes with call-time choice but their
approach to HO is again based on a FO-translation, in contrast to ours.

A weak point of the original (HO)CRWL-way to FLP is that it does not come
with a clear, simple notion of one-step reduction similar to one-step rewriting.
In [19] we proposed let-rewriting, a notion of rewriting with local bindings ade-
quate to FO CRWL semantics, and at the same time simpler and more abstract
than other reduction notions based on term graph rewriting [26,6] or natural
operational semantics [1]. Let -rewriting was generalized to let -narrowing in [18].

1 As far as we know, it was the first time that this behavior was noticed.
2 Although the addition of primitive functions not definable in the language like seq

in Haskell [25] can also destroy extensionality.
3 CRWL stands for Constructor Based Rewriting Logic.

Rewriting and Call-Time Choice: The HO Case 149

Our aim in this work is to extend the notion of let -rewriting/narrowing to the
HO case. We address various foundational aspects –definition of HOlet -rewriting
and equivalence wrt the declarative semantics given by HOCRWL (Sect. 3),
HOlet -narrowing and its soundness and completeness wrt HOlet -rewriting
(Sect. 4)– and also more applied aspects, as are the use of our framework to
language development (Sect. 5) or the proof of correctness within our frame-
work of a scheme of translation to FO, the basis of a standard approach [29,9,4]
to the implementation of HO stuff in FO settings.

There are still some other important issues –evaluation strategies (including
concurrency), types, constraints– that have been left out of the scope of the
paper. Finally, we are not inventing HO FLP, but only contributing to some
aspects of its foundation. Therefore it is not our aim in this paper convincing
of the practical interest of HO FLP: other documents [16,28,7,4] contain enough
evidences of that. Omitted proofs can be found in [20].

2 Preliminaries: HOCRWL

We present here some basic notions and new results about HOCRWL [7].

2.1 Expressions, Patterns and Programs

We consider function symbols f, g, . . . ∈ FS, constructor symbols c, d, . . . ∈ CS,
and variables X, Y, . . . ∈ V ; each h ∈ FS∪CS has an associated arity, ar(h) ∈ N;
FSn (resp. CSn) is the set of function (resp. constructor) symbols with arity
n. The notation o stands for tuples of any kind of syntactic objects o. The
set of applicative expressions is defined by Exp � e ::= X | h | (e1 e2) . As
usual, application is left associative and outer parentheses can be omitted, so
that e1 e2 . . . en stands for ((. . . (e1 e2) . . .) en). The set of variables occurring
in e is written by var(e). A distinguished set of expressions is that of patterns
t, s ∈ Pat, defined by: t ::= X | c t1 . . . tn | f t1 . . . tm, where 0 ≤ n ≤ ar(c), 0 ≤
m < ar(f). Patterns are irreducible expressions playing the role of values. FO-
patterns, defined by FOPat � t ::= X | c t1 . . . tn (n = ar(c)), correspond to
FO constructor terms, representing ordinary non-functional data-values. Partial
applications of symbols h ∈ FS∪CS to other patterns are HO-patterns and can
be seen as truly data-values representing functions from an intensional point of
view. Examples of patterns with the signature of Ex. 1 are: 0, s X, s, f ’, fadd f’
f ’. The last three are HO-patterns. Notice that f, fadd f f are not patterns since
f is not a pattern (ar(f) = 0).

Expressions X e1 . . . em (m ≥ 0) are called flexible (variable application when
m > 0). Rigid expressions have the form h e1 . . . em; moreover, they are junk if
h ∈ CSn and m > n, active if h ∈ FSn and m ≥ n, and passive otherwise.

Contexts are expressions with a hole defined as Cntxt � C ::= [] | C e | e C.
Application of C to e (written C[e]) is defined by [][e] = e ; (C e′)[e] =
C[e] e′ ; (e′ C)[e] = e′ C[e]. Substitutions θ ∈ Subst are finite mappings from
variables to expressions; [Xi/ei, . . . , Xn/en] is the substitution which assigns
ei ∈ Exp to the corresponding Xi ∈ V . We will mostly use pattern-substitutions

150 F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández

PSubst = {θ ∈ Subst | θ(X) ∈ Pat, ∀X ∈ V}. We write ε for the identity
substitution, dom(θ) for the domain of θ, and vRan(θ) =

⋃
X∈dom(θ) var(Xθ).

As usual while describing semantics of non-strict languages, we enlarge the
signature with a new 0-ary constructor symbol ⊥, which can be used to build the
sets Expr⊥, Pat⊥, PSubst⊥ of partial expressions, patterns and p-substitutions
resp. Partial expressions are ordered by the approximation ordering 	 defined
as the least partial ordering satisfying ⊥	 e and e 	 e′ ⇒ C[e] 	 C[e′] for all
e, e′ ∈ Exp⊥, C ∈ Cntxt . This partial ordering can be extended to substitutions:
given θ, σ ∈ Subst⊥ we say θ 	 σ if Xθ 	 Xσ for all X ∈ V .

A HOCRWL-program (or simply a program) consists of one or more program
rules for each f ∈ FSn, having the form f t1 . . . tn → r where (t1, . . . , tn) is
a linear (i.e. variables occur only once) tuple of (maybe HO) patterns and r is
any expression. Notice that confluence or termination is not required, and that
r may have variables not occurring in f t1 . . . tn (we write vExtra(R) for such
variables in a rule R). The original HOCRWL logic considered also joinability
conditions in rules to achieve a better treatment of strict equality as built-in,
which is a subject orthogonal to the aims of this paper. Therefore, we consider
only unconditional rules.

Some related languages, like Curry, do not allow HO-patterns in left-hand
sides of function definitions. We remark that all the notions and results in the
paper are applicable to programs with this restriction and we stress the fact that
Example 1 is one of them.

Given a program P , the set of its rule instances is [P] = {(l → r)θ | (l → r) ∈
P , θ ∈ PSubst}. The set [P]⊥ is defined similarly replacing PSubst by PSubst⊥.
To require θ ∈ PSubst(⊥) instead of θ ∈ Subst(⊥) is essential to achieve call-time
choice in the next sections.

2.2 The HOCRWL Proof Calculus [7]

The semantics of a program P is determined in HOCRWL by means of a proof
calculus able to derive reduction statements of the form e � t, with e ∈ Exp⊥
and t ∈ Pat⊥, meaning informally that t is (or approximates to) a possible value
of e, obtained by evaluation of e using P under call-time choice. Besides this log-
ical semantics, HOCRWL programs come in [7] with a model-theoretic semantics
based on applicative algebras, with existence of a least Herbrand model. We will
not use this aspect of the semantics here.

The HOCRWL-proof calculus is presented in Fig. 1. We write P �HOCRWL

e � t to express that e � t is derivable in that calculus using the program P .
The HOCRWL-denotation of an expression e ∈ Exp⊥ is defined as [[e]]PHOCRWL =
{t ∈ Pat⊥ | P �HOCRWL e � t}. P and HOCRWL are frequently omitted in
those notations.

In Example 1 we have [[fdouble f 0]] = {0, s (s 0),⊥, s ⊥, s (s ⊥)} and
[[fdouble f ′ 0]] = {0, s 0, s (s 0),⊥, s ⊥, s (s ⊥)}.

We will use the following (new) result stating an important compositionality
property of the semantics of HOCRWL-expressions: the semantics of a whole ex-
pression depends only on the semantics of its constituents, in a particular form

Rewriting and Call-Time Choice: The HO Case 151

(B)
e � ⊥ (RR)

x � x
x ∈ V

(DC)
e1 � t1 . . . en � tm

h e1 . . . em � h t1 . . . tm
h ∈ Σ, if h t1 . . . tm is a partial pattern, m ≥ 0

(OR)
e1 � t1 . . . en � tn r a1 . . . am � t

f e1 . . . en a1 . . . am � t
if m ≥ 0, (f t1 . . . tn → r) ∈ [P]⊥

Fig. 1. (HOCRWL-calculus)

reflecting the idea of call-time choice. The second part of the theorem is a technical
result, needed in some proofs, concerning the size of the involved derivations.

Theorem 1 (Compositionality of HOCRWL semantics)

(i) [[C[e]]] =
⋃

t∈[[e]][[C[t]]], for any program P and expression e ∈ Exp⊥.
In other terms, C[e] � t ⇔ ∃s.(e � s ∧ C[s] � t).

(ii) In the (⇒) part of (i), if t �=⊥, C �= [] and the derivation of C[e] � t has
size K, then the derivations of e � s and C[s] � t can be chosen with sizes
< K and ≤ K respectively.

3 Higher Order let-rewriting

To express sharing, as is required for call-time choice, we enhance the syntax of
expressions (and contexts) with a let construct for local bindings, in the spirit
of [5,22,19]: LExp � e ::= X | h | e1 e2 | let X = e1 in e2

Cntxt � C ::= [] | C e | e C | let X = C in e | let X = e in C
We consider expressions let X = e1 in e2 as passive and rigid. The sets FV (e)
and BV (e) of free and bound variables resp. of a let -expression e are defined as:

FV (X) = {X}; FV (h e) =
⋃

ei∈e FV (ei);
FV (let X = e1 in e2) = FV (e1) ∪ (FV (e2)\{X});
BV (X) = ∅; BV (h(e)) =

⋃
ei∈e BV (ei);

BV (let X = e1 in e2) = BV (e1) ∪ BV (e2) ∪ {X}
Notice that with the given definition of FV (let X = e1 in e2) recursive let-
bindings are not allowed since the possible occurrences of X in e1 are not con-
sidered as bound and therefore refer to a ‘different’ X . We assume appropriate
renamings of bound variables ensuring that bound and free variables are kept dis-
tinct, and that whenever θ is applied to e ∈ LExp, BV (e)∩(dom(θ)∪vRan(θ)) =
∅, so that (let X = e1 in e2)θ = let X = e1θ in e2θ and (C[e])θ = Cθ[eθ].

The shell of an expression, written as |e|, is a pattern containing the ‘stable’
outer information of e, not to be destroyed by reduction:

|X e1 . . . em| =
{

X if m = 0
⊥ if m > 0

152 F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández

|h e1 . . . em| =
{

h |e1| . . . |em| if (h ∈ CSn, m ≤ n) or (h ∈ FSn, m < n)
⊥ otherwise (junk or active expression)

|(let X = e1 in e2) a1 . . . am| = |(e2[X/e1]) a1 . . . am|
Notice that in FO [19] we defined |(let X = e1 in e2)| = |e2|[X/|e1|]. This

would lose information in the HO case: for instance, |let X = s in X 0| would
be ⊥, instead of the more accurate s 0 given by the definition above.

The HOCRWLlet proof calculus for proving statements e � t (e ∈ LExp⊥, t ∈
Pat⊥) results from adding to Fig. 1 the rule:

(Let)
e1 � t1 (e2[X/t1]) a1 . . . am � t
(let X = e1 in e2) a1 . . . am � t

(m ≥ 0)

It is easy to see that for programs and expressions without lets both calculi
coincide, giving [[e]]HOCRWL = [[e]]HOCRWLlet

, and then we write simply [[e]].
Theorem 1 does not hold as it is for let -expressions (assume, for instance, the

program rule f 0 = 1 and take e ≡ f X, C ≡ let X=0 in []). However, a more
limited form of compositionality will suffice to our needs:

Theorem 2 (Weak compositionality of HOCRWLlet semantics)
For any P and e, e′ ∈ LExp⊥: [[C [e]]] =

⋃
t∈[[e]][[C [t]]], if BV (C) ∩ FV (e) = ∅.

As a consequence, (i) [[e e′]] =
⋃

t∈[[e]][[t e′]] (ii) [[e e′]] =
⋃

t∈[[e′]][[e t]]

(iii) [[let X = e in e′]] =
⋃

t∈[[e]][[e
′[X/t]]]

3.1 Rewriting with Local Bindings

Figure 2 defines the HOlet -rewriting relation →l. Rule (Fapp) uses a program
rule to reduce a function application, but only when the arguments are already
patterns, otherwise call-time choice would be violated. Non-pattern arguments
of applications are moved to local bindings by (LetIn). Local bindings of pat-
terns to variables are applied in (Bind), since in this case copying is harmless.
(Elim) erases useless bindings. (Flat) and (LetAp) manage local bindings; they
are needed to avoid some reductions to get stuck. Notice that with the vari-
able convention, the condition Y �∈ FV (e3) in (Flat) and (LetAp) would not be
needed; we have written it in order to keep the rules independent of the conven-
tion. Finally, any of these rules can be applied to any subexpression by (Contx).
It includes an additional technical condition to avoid undesired variable captures
when (Fapp) was applied inside a surrounding context and the used program rule
has extra variables. If, for instance, a program rule is f → Y, the rule (Contxt)
avoids the step let X=0 in f →l let X=0 in X and also the step let X=f in X
→l let X=X in X.

The following derivation corresponds to Example 1:

fdouble f 0 →l{LetIn,Cntx} (let F=f in fdouble F) 0
→l

LetAp let F=f in fdouble F 0 →l{Fapp,Cntx} let F=f in fadd F F 0
→l{Fapp,Cntx} let F=f in F 0 + F 0
→l{Fapp,Cntx} let F=g in F 0 + F 0 →l

Bind g 0 + g 0 →l∗ 0

Rewriting and Call-Time Choice: The HO Case 153

(Fapp) f t1 . . . tn →l r, if (f t1 . . . tn → r) ∈ [P]

(LetIn) e1 e2→llet X = e2 in e1 X (X fresh), if e2 is an active expression,
variable application, junk or let rooted expression.

(Bind) let X = t in e →l e[X/t], if t ∈ Pat

(Elim) let X = e1 in e2→le2, if X �∈ FV (e2)

(Flat) let X = (let Y = e1 in e2) in e3 →l let Y = e1 in (let X = e2 in e3)
if Y �∈ FV (e3)

(LetAp) (let X = e1 in e2) e3→llet X = e1 in e2 e3, if X �∈ FV (e3)

(Contx) C[e]→lC[e′], if C �= [], e→le′ using any of the previous rules, and in case
e→le′ is a (Fapp) step using (f p → r)θ ∈ [P] then vRan(θ|\var(p))∩BV (C) = ∅.

Fig. 2. Higher order let-rewriting relation →l

Notice that the fist step is justified because f is active. In contrast, since f ′ is a
pattern, a derivation for fdouble f ’ 0 could proceed as follows:

fdouble f ’ 0→l fadd f’ f ’ 0→l f ’ 0 + f’ 0 →l∗ f 0 + f 0 →l∗ g 0 + h 0 →l∗ s 0

The rules of →l have been carefully tuned up to ensure that program rules are
the only possible source of non-termination, as ensured by the following result.

Proposition 1. The relation →l\Fapp defined by the rules of Fig. 2 except
(Fapp) is terminating.

This is a natural requirement. However, at some point we will find useful to
consider the more liberal relation →L obtained replacing (LetIn) by:

(LetIn’) e1 e2 →L let X = e2 in e1 X (X fresh)

which is less restrictive (then →l ⊆ →L). However →L\Fapp becomes non-
terminating, as shown by: s 0 →l

LetIn′ let X = 0 in s X →l
Bind s 0 →l . . .

3.2 Adequacy of HOlet-rewriting to HOCRWL

We compare here →l to HOCRWL-derivability �, proving that essentially →l

gives no more (soundness) and no less (completeness) results than �.
As in [19], the following notion is useful to establish soundness:

Definition 1 (Hypersemantics)

(i) The hypersemantics of an expression e ∈ LExp⊥, written as [[[e]]], is a map-
ping [[[e]]] : PSubst⊥ −→ P(Pat⊥) defined by [[[e]]](θ) = [[eθ]].

(ii) Hypersemantics of expressions are ordered as follows:

[[[e1]]] � [[[e2]]] iff [[e1θ]] ⊆ [[e2θ]], ∀θ ∈ PSubst⊥

The main reason for introducing hypersemantics is that it enjoys the following
nice monotonicity-under-contexts property, while [[]] does not:

154 F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández

Lemma 1 (Monotonicity of hypersemantics)
[[[e]]] � [[[e′]]] implies [[[C[e]]]] � [[[C[e′]]]], for any e, e′ ∈ LExp⊥, C ∈ Cntxt.

Monotonicity under contexts is the key for our next result, stating that hyper-
semantics does not grow under HOlet -rewriting steps:

Lemma 2 (One-Step Hyper-Soundness of HOlet-rewriting)
e→le′ implies [[[e′]]] � [[[e]]], for any e, e′ ∈ LExp.

Notice that � cannot be replaced here by =, due to non-determinism.
Lemma 2, together with the easy observation that [[[e1]]] � [[[e2]]] implies [[e1]] ⊆

[[e2]] (just take θ = ε) and an obvious induction over derivation lengths, leads to
our main correctness result for →l:

Theorem 3 (Soundness of HOlet-rewriting). Let P be a program, e, e′ ∈
LExp. Then: (i) e→l∗e′ implies [[e′]] ⊆ [[e]], and therefore e � |e′|

(ii) e→l∗t implies e � t, for any t ∈ Pat.

The proof of this result can be easily extended to the larger relation →L (the
one which uses (LetIn’) instead of (LetIn)).

Regarding completeness of let-rewriting, a key in the FO case was the peeling
lemma ([19], Lemma 7), a technical result giving a kind of standard form in
which the implicit or explicit sharing information contained in e ∈ Exp can be
expressed. It is not obvious how to proceed in the HO case, since straightforward
generalizations of the FO peeling lemma turn out to be false. However, we have
found that the following weak HO version is enough for our purposes:

Lemma 3 (Weak peeling lemma). Let h e1 . . . em ∈ Exp with h ∈ Σn (n
and m can be different). Then h e1 . . . em→l∗let X = a in h t1 . . . tm, for some
t1, . . . , tm ∈ Pat, a ⊆ Exp such that |a| = ⊥, ti ≡ ei for every ei ∈ Pat. Besides,
in this derivation the rule (Fapp) is not applied.

With this result and some monotonicity properties of HOCRWL-derivability, we
can prove a very technical but strong completeness result for →l wrt �:

Lemma 4 (Completeness lemma for HOlet-rewriting). For any program
P, e ∈ Exp and t ∈ Pat⊥ with t �=⊥, the following holds: P �HOCRWL e � t
implies e→l∗let X = a in t′, for some t′ ∈ Pat and a ⊆ Exp in such a way that
t 	 |let X = a in t′| and |ai| =⊥ for all ai ∈ a. As a consequence, t 	 t′[X/ ⊥].

The condition t �=⊥ is needed, as can be seen just taking P = {f → f}, e ≡ f
and t ≡⊥.

From Lemma 4 we can obtain our main completeness result for →l:

Theorem 4 (Completeness of HOlet-rewriting). Let P be a program, e ∈
Exp, and t ∈ Pat⊥. Then:

(i) P �HOCRWL e � t implies e→l∗e′, for some e′ ∈ LExp such that t 	 |e′|.
(ii) If in addition t ∈ Pat, then e→l∗t.

Joining together the last parts of Theorems 3 and 4, we obtain a strong equiva-
lence result for →l and �:

Rewriting and Call-Time Choice: The HO Case 155

Theorem 5 (Equivalence of HOlet-rewriting and HOCRWL)
P �HOCRWL e � t iff e→l∗t, for any P, e ∈ Exp, and t ∈ Pat.

This justifies our claim that →l is truly the reduction face of HOCRWL-
semantics.

4 Higher Order let-narrowing

For some FLP computations rewriting is not enough, and must be lifted to some
kind of narrowing; this happens when the expression being reduced contains
variables for which different bindings might produce different evaluation results.
Narrowing is an old subject in the fields of theorem proving and declarative
programming. Since classical rewriting is not correct for call-time choice, classical
narrowing cannot be either (because rewriting is a particular case of narrowing).
In [18] we proposed a notion of narrowing adequate to FO let -rewriting, and now
we extend it to HO. As happens in [7,4], HOlet -narrowing may bind variables
to HO-patterns.

Figure 3 contains the rules for the one-step HOlet -narrowing relation e�l
θ e′,

expressing that e is narrowed to e′ producing the substitution θ ∈ PSubst. In
(X) we collect those cases of HOlet -rewriting corresponding also to narrowing
steps with empty substitution. (Narr) is the proper rule of narrowing for func-
tion application; it may produce HO bindings if the used program rule has HO
patterns. Notice that, for the sake of generality, we do not require that θ is a
mgu. (VAct) and (VBind) are rules producing HO bindings for flexible expres-
sions (or subexpressions, in the case of (VBind)). We have preferred this pair of
rules instead of the rule

(VNarr) X e�L
[X/t]t (e[X/t]), for any t ∈ Pat

which is simpler, but also ‘wilder’ because it creates a larger search space. Finally,
(Contxt) is a contextual rule where, as in [18], it is crucial to protect bound
variables from narrowing (condition (i)) and to avoid variable capture (condition
(ii), automatically fulfilled if mgu’s are used in (Narr) and (VAct), and fresh
shallow patterns –i.e., of the form h X1 . . . Xn– in (VBind)).

Taking Example 1, a narrowing derivation for fdouble F 0 would start with
some (X) ‘rewriting’ steps:

fdouble F 0 �l
ε fadd F F 0 �l

ε F 0 + F 0 �l
ε let X=F 0 in X + F 0

At this point, notice first that we cannot narrow on X , because it is a bound
variable. Instead, we can apply (VAct+Contx):

let X=F 0 in X + F 0 �l{F/g} let X=0 in X + g 0 �l∗
ε 0

Other similar derivations using (VAct+Contx) would bind F to h (with final
result s (s 0)), or to f ′ (with possible results 0, s 0, s (s 0)). Notice that the
binding X/f is not legal, since f is not a pattern.

156 F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández

(X) e�l
εe

′ if e →le′ using X∈ {Elim, Bind, F lat, LetIn,LetAp} in Figure 2.

(Narr) f t �l
θ rθ, for any fresh variant (f p → r) ∈ P and θ ∈ PSubst such

that f tθ ≡ f pθ.

(VAct) X t1 . . . tk �l
θ rθ, if k > 0, for any fresh variant (f p → r) ∈ P and

θ ∈ PSubst such that (X t1 . . . tk)θ ≡ f pθ.

(VBind) let X = e1 in e2�l
θ e2θ[X/e1θ], if e1 �∈ Pat, for any θ ∈ PSubst that

makes e1θ ∈ Pat, provided that X �∈ (dom(θ) ∪ vRan(θ)).

(Contx) C[e]�l
θCθ[e′] for C �= [], if e�l

θe
′ by any of the previous rules, and the

following conditions hold:
i) dom(θ) ∩ BV (C) = ∅
ii) • If the step is (Narr) or (VAct) using (f p → r) ∈ P , then

vRan(θ|\var(p)) ∩ BV (C) = ∅
• If the step is (VBind) then vRan(θ) ∩ BV (C) = ∅

Fig. 3. Higher order let-narrowing calculus �l

Alternatively we could have applied (VBind), obtaining:

let X=F 0 in X + F 0 �l{F/s} s 0 + s 0 �l∗
ε s (s 0)

We remark that, in our untyped framework, other ‘ill-typed’ bindings could be
tried, like F/fadd 0 or F/fdouble. This is a symptom of known problems [4,8]
of the interaction with types of the intensional view of HO, that are partially
alleviated in [4] by a typed version of a FO translation (see Sect. 6), but in
general require (see [8]) bringing types to computations, a problem yet not well
solved in practice. All these type-related issues are out of the scope of the paper.

A basic fact about completeness of let -narrowing in the FO case was that
e�l∗

θ e′ implied eθ→l∗e′, ∀θ ∈ CSubst, which is closely related to the fact that
FO let -rewriting is closed under c-substitutions. None of both facts hold with
HO �l, →l and θ ∈ PSubst: consider for instance e ≡ s (Y 0)→l let X =
Y 0 in s X ≡ e′ and θ = [Y/s], for which eθ ≡ s (s 0) �

l let X = s 0 in s X ≡
e′θ. Similarly, we have e ≡ s (Y 0)�L

ε let X = Y 0 in s X�L
[Y/s] let X =

s 0 in s X ≡ e′, but eθ ≡ s (s 0) �
l e′.

At this point the relation →L of Sect. 3 becomes useful, because we have:

Lemma 5 (Closedness of →L under PSubst). For every e, e′ ∈ LExp, θ ∈
PSubst, e→L∗

e′ implies eθ→L∗
e′θ.

Now we can prove soundness of HO let-narrowing wrt. →L:

Theorem 6 (Soundness or �l wrt →L). For any e, e′ ∈ LExp, e�l∗
θ e′

implies eθ→L∗
e′.

And now, taking into account Th. 3 (which holds also for →L), we get:

Theorem 7 (Soundness of let-narrowing). For any e, e′ ∈ LExp, t ∈ Pat:

a) If e�l∗
θ e′ then [[e′]] ⊆ [[eθ]] b) If e�l∗

θ t then eθ→l∗t

Rewriting and Call-Time Choice: The HO Case 157

Regarding completeness, the following lemma shows how we can lift any →l

derivation to a �l derivation. This is surely the most involved result in the
paper.

Lemma 6 (Lifting lemma for HOlet-rewriting). Let e, e′ ∈ LExp such that
eθ→l∗e′ for some θ ∈ PSubst, and let W ,B ⊆ V with dom(θ) ∪ FV (e) ⊆ W,
BV (e) ⊆ B and (dom(θ)∪vRan(θ))∩B = ∅, and for each instance of a program
rule Rγ ∈ [P] used in an (Fapp) step of eθ→l∗e′ then vRan(γ|vExtra(R))∩B = ∅.
Then there exist a derivation e�l∗

σe′′ and θ′ ∈ PSubst such that:

(i) e′′θ′ = e′ (ii) σθ′ = θ[W] (iii) (dom(θ′) ∪ vRan(θ′)) ∩ B = ∅
Besides, the HOlet-narrowing derivation can be chosen to usemgu’s at each (Narr)
or (VAct) step, and fresh shallow patterns in the range for each (VBind) step.
Graphically:

With the aid of this lemma we can reach our completeness result for �l:

Theorem 8 (Completeness of HOlet-narrowing wrt. HOlet-rewriting).
Let e, e′ ∈ LExp and θ ∈ PSubst. If eθ→l∗e′, then there exist a HOlet-narrowing
derivation e�l∗

σe′′ and θ′ ∈ PSubst such that e′′θ′ ≡ e′ and σθ′ = θ[FV (e)].

5 A Case of Study: Correctness of Bubbling

Having equivalent notions of semantics and reduction allows to reason inter-
changeably at the rewriting and the semantic levels. We demonstrate the power
of such technique by a case study where let-rewriting provides a good level of
abstraction to formulate a new operational rule (bubbling), while the semantic
point of view is appropriate for proving its correctness.

Bubbling, proposed in [3], is an operational rule devised to improve the effi-
ciency of functional logic computations. Its correctness was formally studied in
[2] in the framework of a variant [6] of term graph rewriting.

The idea of bubbling is to concentrate all non-determinism of a system into a
choice operation ? defined by the rules X ? Y → X and X ? Y → Y, and to
lift applications of ? out of a surrounding context, as illustrated by the following
graph transformation taken from [2]:

158 F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández

As it is shown in [3], bubbling can be implemented in such a way that many
functional logic programs become more efficient, but we will not deal with these
issues here.

Due to the technical particularities of term graph rewriting, not only the
proof of correctness, but even the definition of bubbling in [3,2] are involved
and need subtle care concerning the appropriate contexts over which choices
can be bubbled. In contrast, bubbling can be expressed within our framework
(moreover, generalized to HO) in a remarkably easy and abstract way as a new
rewriting rule: (Bub) C[e1?e2] →bub C[e1]?C[e2], for e1, e2 ∈ LExp

With this rule, the bubbling step corresponding to the graph transformation
of the example above is: let X = true ? false in c (not X) (not X) →bub

let X = true in c (not X) (not X) ? let X = false in c (not X) (not X)
Notice that the effect of this bubbling step is not a shortening of any existing

HOlet -rewriting derivation; bubbling is indeed a genuine new rule, the correct-
ness of which must be therefore subject of proof. Call-time choice is essential,
since bubbling is not correct with respect to run-time choice: in Example 1,
fdouble (g?h) 0 can be reduced with run-time choice to 0, 1 or 2, while fdouble
g 0 ? fdouble h 0 leads only to 0 and 2.

The fact that bubbling preserves HOCRWLlet-semantics has a simple formu-
lation:

Theorem 9 (Correctness of bubbling). If e →bub e′, then [[C[e]]] = [[C[e′]]].
In other terms, [[C[e1?e2]]] = [[C[e1]?C[e2]]] (= [[C[e1]]] ∪ [[C[e2]]]), for any e1, e2 ∈
LExp and context C.

From this and the equivalence results of Sect. 3 we obtain as immediate corollary
the correctness of bubbling in terms of rewriting:

Corollary 1. e →∗
l t ⇔ e (→l ∪ →bub)∗ t

It is interesting to observe that most of the proof of Th. 9 consists of direct
calculations with denotation of expressions, in the form of chains of equalities of
denotations, justified by general properties of the semantics like Th. 1. We find
this methodology quite appealing and for this reason we include (a part of) the
proof.

Proof (For Theorem 9, Correctness of bubbling). The proof uses the following
easy (not proved here) lemma about semantics of ?, which justifies also the
equation [[C[e1]?C[e2]]] = [[C[e1]]] ∪ [[C[e2]]] stated in the Theor. 9.

Lemma 7. [[e1?e2]] = [[e1]] ∪ [[e2]], for any e1, e2 ∈ LExp⊥.

Now, we reason by induction on the number k of let ’s occurring in C[e1?e2].
• k = 0: Since there is no let in e1?e2, we can apply Theor. 1 to obtain:

[[C[e1?e2]]] = (by Theor. 1)⋃
t∈[[e1?e2]][[C[t]]] = (by Lemma 7)

⋃
t∈([[C[e1]]] ∪ [[C[e2]]])

[[C[t]]] = (set operations)
⋃

t∈[[C[e1]]]
[[C[t]]] ∪ ⋃

t∈[[C[e2]]]
[[C[t]]] = (by Theor. 1)

[[C[e1]]] ∪ [[C[e2]]] = (by Lemma 7)
[[C[e1] ? C[e2]]]

Rewriting and Call-Time Choice: The HO Case 159

• k > 0: We reason by induction on the structure of C. The most interesting
case is that of let bindings:
– C ≡ let x = e in C′: then

[[C[e1?e2]]] =
[[let x=e in C′[e1?e2]]] = (by Theor. 2,σ ≡ {x/t})⋃

t∈[[e]][[C′[e1?e2]σ]] =
⋃

t∈[[e]][[C′σ[e1σ?e2σ]]] = (by IH on k, that decreases)
⋃

t∈[[e]][[C′σ[e1σ]?C′σ[e2σ]]] = (by Lemma 7)
⋃

t∈[[e]]([[C′σ[e1σ]]] ∪ [[C′σ[e2σ]]]) = (set operations)
⋃

t∈[[e]][[C′σ[e1σ]]] ∪ ⋃
t∈[[e]][[C′σ[e2σ]]] = (by Theor. 2)

[[let x=e in C′[e1]]] ∪ [[let x=e in C′[e2]]] =
[[C[e1]]] ∪ [[C[e2]]] = (by Lemma 7)
[[C[e1] ? C[e2]]]

6 Translation to First Order

Since [29], a common technique to implement HO features in FO settings consists
in a HO-to-FO translation introducing data constructors to represent partial
applications and a special function @ (read apply) for reducing application of
such constructors. This has been used within the context of FLP in [9,4]. Here we
adapt such a transformation to our context and provide a correctness proof with
respect to the semantics of the source and object programs, given by HOCRWL
and CRWL [11,19] respectively.

Definition 2 (First order translation). Given a HOCRWL-program P =
{f p1 → e1, . . . , f pm → em} built up over the signature Σ = FS ∪ CS, its
first order translation Pfo will be defined over the extended signature Σfo =
FSfo ∪ CSfo where:

FSfo =FS∪{@}; CSfo =
⋃

c∈CSn,n∈N
{c0, . . . , cn} ∪

⋃
f∈FSn,n∈N

{f0, . . . , fn−1}

being @ a new function symbol of arity 2 and c0, . . . , cn, f0, . . . , fn−1 new symbols
(with arities indicated by the sub-index). The set P@ of @−rules is defined as:

@(ck(X1, . . . , Xk), Y) = ck+1(X1, . . . , Xk, Y), for each c ∈ DCn, k < n
@(fk(X1, . . . , Xk), Y) = fk+1(X1, . . . , Xk, Y), for each f ∈FSn, k + 1<n
@(fn−1(X1, . . . , Xn−1), Y) = f(X1, . . . , Xn−1, Y), for each f ∈ FSn

The transforming function fo : ExpΣ,⊥ → ExpΣfo ,⊥ is defined as:

fo(⊥) = ⊥ fo(X) = X fo(h) = h0, if h ∈ CS or h ∈ FSn, n > 0
fo(f) = f, if f ∈ FS0 fo(e1 e2) = @(fo(e1), fo(e2))

The transformed program is defined as Pfo = {f(fo(p1)↓@) → fo(e1) ↓@,

. . . , f(fo(pm)↓@) → fo(em)↓@}∪P@, where e↓@ stands for a normal form for
e with respect to @−rules defined above.

160 F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández

The program rules obtained by the transformation are well defined: it is easy to
prove that if p is a pattern then fo(p)↓@ is a FO constructor term.

For the program of Example 1 we have FSfo = {+, f , g, h, f ′, fadd , fdouble, @}
and CSfo = {0, s0, s, +0, +1, g0, h0, f ′0, fadd0, fadd1, fadd 2, fdouble0}. The trans-
lated rules are:

g(X) → 0 f → g0 f → h0 f ′(X) → @(f, X) h(X) → s(0)
fadd(F, G, X) → @(F, X) + @(G, X) fdouble(F) → fadd2(F, F)

And the rules for @ are:

@(+0, X) → +1(X) @(s0, X) → s(X) @(h0, X) → h(X)
@(+1(X), Y) → X + Y @(g0, X) → g(X) @(f ′

0, X) → f ′(X)
@(fadd0, F) → fadd1(F) @(fadd2(F, G), X) → fadd(F, G, X)
@(fadd1(F), G) → fadd 2(F, G) @(fdouble0, F) → fdouble(F)

The translation of the expressions to reduce in that example are:
fo(fdouble f 0)↓@= @(fdouble(f), 0) fo(fdouble f ′ 0)↓@= @(fdouble(f ′

0), 0)
In general we cannot expect to prove a statement of the form fo(e) � fo(t)

because fo(t) can contain calls to the function @, i.e. fo(t) might not be a FO
constructor term. But the same statement makes sense in the form fo(e) �

fo(t)↓@ because fo(t)↓@ is a FO constructor term.

Proposition 2. [[fo(e)↓@]]PCRWL =[[fo(e)]]PCRWL. Moreover [[fo(e)]]= [[e′]] where
e′ is any expression obtained from e by reducing some calls of @.

According to this, when proving a statement fo(e) � t we can use any equiv-
alent expression e′ (in the sense of previous lemma) in the left hand side and
prove e′�t.

The correctness of the transformation can be stated then as follows:

Theorem 10 (Adequacy of HO-to-FO translation). Let P be a program,
e ∈ Exp⊥, t ∈ Pat⊥. Then: P �HOCRWL e � t ⇔ Pfo �CRWL fo(e) � fo(t)↓@

Or, in terms of HOlet-rewriting: e→l∗t ⇔ fo(e)→l∗fo(t)↓@.

7 Conclusions

Our paper addresses the broad question: what means ‘reduction’ for functional
logic programming?, which had no previous satisfactory answer for the combina-
tion HO + non-deterministic functions + call-time choice supported by current
systems in the mainstream of the field (Curry [16], Toy [21]). This leads to subtle
behaviors well characterized from the point of view of a declarative semantics
[7], but with no corresponding basic notion of one-step reduction. We have made
a number of identifiable contributions in this sense:

• We propose a notion of rewriting with local bindings (HOlet-rewriting)
suitable for a large class of HO systems (possibly non-confluent and
non-terminating, allowing extra variables in right-hand sides and HO-
patterns in left-hand sides).

Rewriting and Call-Time Choice: The HO Case 161

• We have proved equivalence of HOlet -rewriting wrt to HOCRWL [7] declar-
ative semantics. Along the way we have extended HOCRWL to cope with
lets, and established new compositional properties of HOCRWL semantics.

• We have lifted HOlet -rewriting to a notion of HOlet-narrowing which is
able to bind variables to patterns, even HO ones representing intensional
descriptions of functions. We prove soundness and completeness of HOlet -
narrowing wrt. HOlet -rewriting.

• We have recast within our framework the definition and proof of correctness
of bubbling, an operational rule investigated in [3,2] using term graph rewrit-
ing techniques. Apart from extending it to HO, this case study illustrates
quite well the power of using indistinctly rewriting and/or semantic-based
reasoning.

• To close the panorama, we have formally proved that translation from HO
to FO, a technique actually used in the implementations of FLP systems,
still works properly when let -bindings with call-time choice are considered,
while previous works [9,4] consider only deterministic functions.

The first three points have been conceived as an extension to HO of our
previous work on the FO case [19,18]. However, adapting it has not been routine;
on the contrary, some results have been indeed a technical challenge.

Our wish with this work, jointly with [19,18], is to have provided founda-
tional pieces useful to understand how a FLP computation proceeds, serving
also as suitable technical basis to address in the call-time choice context other
operational issues (rewriting and narrowing strategies, residuation, program op-
timization, types in computations,. . .), all of which are lines of future work.

References

1. Albert, E., Hanus, M., Huch, F., Oliver, J., Vidal, G.: Operational semantics for
declarative multi-paradigm languages. J. of Symb. Comp. 40(1), 795–829 (2005)

2. Antoy, S., Brown, D., Chiang, S.: On the correctness of bubbling. In: Pfenning, F.
(ed.) RTA 2006. LNCS, vol. 4098, pp. 35–49. Springer, Heidelberg (2006)

3. Antoy, S., Brown, D., Chiang, S.: Lazy context cloning for non-deterministic graph
rewriting. In: Proc. Termgraph 2006. ENTCS, vol. 176(1), pp. 61–70 (2007)

4. Antoy, S., Tolmach, A.P.: Typed higher-order narrowing without higher-order
strategies. In: Middeldorp, A. (ed.) FLOPS 1999. LNCS, vol. 1722, pp. 335–353.
Springer, Heidelberg (1999)

5. Ariola, Z.M., Felleisen, M., Maraist, J., Odersky, M., Wadler, P.: The call-by-need
lambda calculus. In: Proc. POPL 1995, pp. 233–246 (1995)

6. Echahed, R., Janodet, J.-C.: Admissible graph rewriting and narrowing. In: Proc.
JICSLP 1998, pp. 325–340. MIT Press, Cambridge (1998)

7. González-Moreno, J., Hortalá-González, M., Rodŕıguez-Artalejo, M.: A higher or-
der rewriting logic for functional logic programming. In: Proc. ICLP 1997, pp.
153–167. MIT Press, Cambridge (1997)

8. González-Moreno, J., Hortalá-González, T., Rodŕıguez-Artalejo, M.: Polymorphic
types in functional logic programming. J. of Functional and Logic Program-
ming 2001/S01, 1–71 (2001)

162 F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández

9. González-Moreno, J.C.: A correctness proof for warren’s ho into fo translation. In:
Proc. GULP 1993, pp. 569–584 (1993)

10. González-Moreno, J.C., Hortalá-González, M.T., Rodŕıguez-Artalejo, M.: On the
completeness of narrowing as the operational semantics of functional logic pro-
gramming. In: Martini, S., Börger, E., Kleine Büning, H., Jäger, G., Richter, M.M.
(eds.) CSL 1992. LNCS, vol. 702, pp. 216–230. Springer, Heidelberg (1993)

11. González-Moreno, J.C., Hortalá-González, T., López-Fraguas, F., Rodŕıguez-
Artalejo, M.: An approach to declarative programming based on a rewriting logic.
J. of Logic Programming 40(1), 47–87 (1999)

12. Hanus, M.: The integration of functions into logic programming: From theory to
practice. J. of Logic Programming 19&20, 583–628 (1994)

13. Hanus, M.: Curry mailing list (March, 2007),
http://www.informatik.uni-kiel.de/∼curry/listarchive/0497.html

14. Hanus, M.: Multi-paradigm declarative languages. In: Dahl, V., Niemelä, I. (eds.)
ICLP 2007. LNCS, vol. 4670, pp. 45–75. Springer, Heidelberg (2007)

15. Hanus, M., Prehofer, C.: Higher-order narrowing with definitional trees. J. of Func-
tional Programming 9(1), 33–75 (1999)

16. Hanus, M. (ed.): Curry: An integrated functional logic language (version 0.8.2)
(March, 2006), http://www.informatik.uni-kiel.de/∼curry/report.html

17. Hussmann, H.: Non-Determinism in Algebraic Specifications and Algebraic Pro-
grams. Birkhäuser, Basel (1993)

18. López-Fraguas, F., Rodŕıguez-Hortalá, J., Sánchez-Hernández, J.: Narrowing for
non-determinism with call-time choice semantics. In: Proc. WLP 2007 (2007)

19. López-Fraguas, F., Rodŕıguez-Hortalá, J., Sánchez-Hernández, J.: A simple rewrite
notion for call-time choice semantics. In: Proc. PPDP 2007, pp. 197–208. ACM
Press, New York (2007)

20. López-Fraguas, F., Rodŕıguez-Hortalá, J., Sánchez-Hernández, J.: Rewriting and
call-time choice: the HO case (extended version). Tech. Rep. SIC-3-08 (2008),
http://gpd.sip.ucm.es/fraguas/papers/flops08long.pdf

21. López-Fraguas, F., Sánchez-Hernández, J.: T OY : A multiparadigm declarative sys-
tem. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp.
244–247. Springer, Heidelberg (1999)

22. Maraist, J., Odersky, M., Wadler, P.: The call-by-need lambda calculus. J. Funct.
Program. 8(3), 275–317 (1998)

23. Miller, D.: A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. J. Log. Comput. 1(4), 497–536 (1991)

24. Nakahara, K., Middeldorp, A., Ida, T.: A complete narrowing calculus for higher-
order functional logic programming. In: Leopold, H., Coulson, G., Danthine, A.,
Hutchison, D. (eds.) COST-237 1994. LNCS, vol. 882, pp. 97–114. Springer, Hei-
delberg (1994)

25. Peyton Jones, S.L. (ed.): Haskell 98 Language and Libraries. The Revised Report.
Cambridge University Press, Cambridge (2003)

26. Plump, D.: Essentials of term graph rewriting. ENTCS 51 (2001)
27. van Raamsdonk, F.: Higher-order rewriting. In: Term Rewriting Systems, Cam-

bridge University Press, Cambridge (2003)
28. Rodŕıguez-Artalejo, M.: Functional and constraint logic programming. In: Comon,

H., Marché, C., Treinen, R. (eds.) CCL 1999. LNCS, vol. 2002, pp. 202–270.
Springer, Heidelberg (2001)

29. Warren, D.H.: Higher-order extensions to prolog: Are they needed? Machine Intel-
ligence 10, 441–454 (1982)

http://www.informatik.uni-kiel.de/~curry/listarchive/0497.html
http://www.informatik.uni-kiel.de/~curry/report.html
http://gpd.sip.ucm.es/fraguas/papers/flops08long.pdf

	Introduction
	Preliminaries: HOCRWL
	Expressions, Patterns and Programs
	The HOCRWL Proof Calculus GHR97

	Higher Order let-rewriting
	Rewriting with Local Bindings
	Adequacy of HOlet-rewriting to HOCRWL

	Higher Order let-narrowing
	A Case of Study: Correctness of Bubbling
	Translation to First Order
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

