
Dynamic-Cut with Definitional Trees

Rafael Caballero and Francisco Javier López-Fraguas

Dpto. de Sistemas Informáticos y Programación, Universidad Complutense de Madrid
{rafa,fraguas}@sip.ucm.es

Abstract. The detection of deterministic computations at run-time can
be used to introduce dynamic cuts pruning the search space and thus in-
creasing the efficiency of Functional-Logic systems. This idea was intro-
duced in an early work of R. Loogen and S. Winkler. However the pro-
posal of these authors cannot be used in current implementations because
it did not consider non-deterministic functions and was not oriented to
the demand driven strategy. Our work adapts and extends the technique,
both showing how to deal with non-deterministic computations and how
definitional trees can be employed to locate the places where the cuts
will be introduced. An implementation based on a Prolog-translation is
proposed, making the technique easy to implement in current systems
generating Prolog code. Some experiments showing the effectiveness of
the cut are presented.

1 Introduction

Efficiency has been one of the major drawbacks associated to declarative lan-
guages. The problem becomes particularly severe in the case of Logic Program-
ming (LP for short) and Functional-Logic Programming (FLP for short), where
the introduction of non-deterministic computations often generates huge search
spaces with their associated overheads both in terms of time and space.
In their work [8], Rita Loogen and Stephan Winkler presented a technique for
the run-time detection of deterministic computations that can be used to safely
prune the search space. This technique is known as dynamic cut. Unfortunately
the programs considered in this work did not include non-deterministic functions,
which are used extensively in FLP nowadays. Also the implementation (based
on a modification of an abstract machine) did not follow the demand driven
strategy [4, 9], which in the meantime has been adopted by all the current
implementations of FLP languages.
Our proposal adapts the original idea to FLP languages with non-deterministic
functions, which introduce some subtle changes in the conditions for the cut.
These dynamic cuts can be easily introduced in a Prolog-based translation of
FLP programs that uses definitional trees. This makes our technique easily
adaptable to the current implementations of FLP languages based on trans-
lation into Prolog code. The result of implementing the dynamic cut are more
efficient executions in the case of deterministic computations and with no serious

Z. Hu and M. Rodŕıguez-Artalejo (Eds.): FLOPS 2002, LNCS 2441, pp. 245–258, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

246 Rafael Caballero and Francisco Javier López-Fraguas

overhead in the case of non-deterministic ones, as shown in the runtime table of
section 6.
The aim of this paper is eminently practical and the technique for introducing
dynamic cuts is presented in a (hopefully) precise but no formal way.
In the following section we introduce some preliminaries. section 3 discusses
several examples motivating the introduction of the dynamic cut in the imple-
mentation of FLP programs. The examples are written in the concrete syntax of
the lazy FLP language Toy [10] but can be easily adapted to other languages such
as Curry [7]. section 4 introduces more formally the key concept of deterministic
function, while section 5 discusses an implementation of the technique. section
6 presents a table with the times obtained for the execution, with and without
dynamic cut, of some examples. Finally section 7 presents some conclusions and
future work.

2 Preliminaries

All the examples are written in the concrete syntax of the lazy FLP language
T OY [10] but can be easily adapted to other FLP languages like Curry [7]. A
T OY program is composed of data type declarations, type alias, infix operators,
function type declarations and defining rules for functions symbols. Each defining
rule for a function f ∈ FSn has a left-hand side, a right-hand side and an optional
condition:

(R) f t1 . . . tn
︸ ︷︷ ︸

left-hand side

→ r
︸︷︷︸

right-hand side

⇐ e1, . . . , ek
︸ ︷︷ ︸

condition

where ei and r are expressions (that can contain new extra variables) and each tj
is a pattern, with no variable occurring more than once in different tk, tl.
Each function is assumed to have a definitional tree [2, 9] with nodes or, case and
try. However, in our setting we will not allow ’multiple tries’, i.e. try nodes with
several program rules, replacing them by nodes or with multiple try children
nodes, one for each rule included in the initial multiple try. The tree obtained
by this modification is obviously equivalent and will be more suitable for our
purposes.
We consider goals as expressions e and answers as pairs (t, σ) where t is a
pattern representing a result obtained by evaluating e, while σ is a substitution
of patterns for variables such that dom(σ) ⊆ vars(e). Notice that this notion
of goal, suitable for this work, is compatible with usual goals in T OY which
are of the form: e1 == e′1, . . . , ek == e′k, simply by assuming that an auxiliary
function: main R1 . . . Rn = true <== e1 == e′1, . . . , ek == e′k is introduced
with {R1, . . . Rn} = vars(e1) ∪ vars(e′1) ∪ . . . ∪ vars(ek) ∪ vars(e′k), and then
evaluating the goal main R1 . . . Rn. The introduction of main is also helpful since
it extends the application of dynamic cuts to goals, converted in this way to the
general case of program functions. We assume that goals are solved by means of
an operational mechanism based on needed narrowing with sharing [3, 4, 9], as

Dynamic-Cut with Definitional Trees 247

well as a Prolog-based implementation as described in [9]. A main component of
the operational mechanism is the computation of head normal forms (hnf) for
expressions.

3 Motivating Examples

In this section we present examples showing informally the two situations where
dynamic cut can be useful: the first one is associated to or nodes in the def-
initional trees of semantically deterministic functions, while the second one is
associated to existential conditions in program rules. These examples as well as
additional ones can be found at http://babel.dacya.ucm.es/cut.
Example 1: Parallel and
Figure 1 shows a correct way of defining the and connective in FLP programming,
known as parallel and, together with its definitional tree.
A goal like false && false returns false as expected, but unnecessarily repeats
the answer twice:

>false && false
false
more solutions? y
false
more solutions? y
no

Obviously the computation resulting in the second false was not needed and in
this case could have been avoided. The definitional tree shows why: the or branch
at the top of the tree means that the computations must try both alternatives.
In spite of this or branch the function will be recognized in our proposal (as
well as it was in [8]) as semantically deterministic, which means that if the first
alternative of the or succeeds the other branch either fails or provides a repeated
result. The dynamic cut will skip the second branch (under certain conditions) if

(R1) false && = false
(R2) && false = false
(R3) true && true = true

or

X && Y

case X
X/true

 case Y

 Y/true

try R3

true

X/false
case Y

Y/false

 try R2

falsefalse

 try R1

Fig. 1. The parallel and with its definitional tree

248 Rafael Caballero and Francisco Javier López-Fraguas

the first branch is successful, thus avoiding the waste of space and time required
by the second computation.
However, as noticed in [8], the cut cannot be performed in all computations. For
example, a goal like X && Y will return three different answers:

X==false ⇒ false
more solutions? y
Y==false ⇒ false
more solutions? y
X==true, Y==true ⇒ true
more solutions? y
no

That is, the result is true if both X and Y are true and false if either X==false or
Y==false. Here the second branch of the or node contributes to the answer by
instantiating variable Y and hence should not be avoided. Therefore the dynamic
cut must not be performed if the first successful computation binds any variable;
in this case the second computation can eventually instantiate the variables in
a different way, thus providing a different answer.
The situation complicates in a setting with non-deterministic functions. Consider
for instance the function definition:

maybe = true
maybe = false

and the goal true && maybe. In this case no variable is bound during the first
computation (the goal is ground) but the second computation is still necessary
due to the second value returned by maybe

true
more solutions? y
false
more solutions? y
no

Thus we shall extend the conditions for performing dynamic cuts, requiring not
only that no variable has been bound but also that no non-deterministic function
has been evaluated. As we will see, this introduces no serious overload in the
implementation.

Example 2
The second example shows the second type of dynamic cut. The program in
Figure 2 can be used to execute simple queries for finding substrings in a given
text. A goal of the form matches (single S) Text succeeds if the string S is part of
Text, failing otherwise. A goal matches (and S S’) Text succeeds whenever both S
and S′ are part of Text, while matches (or S S’) Text indicates that either S or S′

(or both) are part of Text. Function matches relies on function part which checks
ifX is a substring of Y by looking for two existential variables U and V such that
Y results of the concatenation of U ,X and V . Function part is again semantically
deterministic but will produce as many repeated results true as occurrences of X
can be found. The dynamic cut can be introduced after the conditional part of
the rule, since its re-evaluation cannot contribute to new results. Notice that in

Dynamic-Cut with Definitional Trees 249

infixr 50 ++
[] ++ Ys = Ys
[X|Xs] ++ Ys = [X|Xs ++ Ys]

part X Y = true <==U ++ X ++ V == Y

data query = single [char] | and query query | or query query

matches (single S) Text = true <== part S Text
matches (and S S’) Text = true <== matches S Text, matches S’ Text
matches (or S S’) Text = true <== matches S Text
matches (or S S’) Text = true <== matches S’ Text

Fig. 2. Simple Queries

this case the binding of U and V should not prevent the cut because they cannot
contribute to the final substitution σ. In contrast a binding of X or Y will take
part of the answer, avoiding the cut.
The effectiveness of the dynamic cut in part is still more noticeable because its
effect over the function matches. Assume that there is no dynamic cut, and that
we try a goal like

matches (or (and (single ”cut”) (single ”love”)) (single ”dynamic”))
”Efficiency has been one of the ...”

where the text used as second argument is actually the whole introduction of
this paper. Since the query is an or query, matches first tries the first alternative,
(and (single ”cut”) (single ”love”)). Although ”cut” is readily found there is no
”love” in our introduction and part fails in a first attempt, after examining the
whole text. Because of backtracking, a new occurrence of ”cut” is sought and
found (there are many occurrences of ”cut” in the text), and then again part
looks unsuccessfully for ”love”. The process repeats the examination of all the
text looking for any occurrence of ”love” as many times as occurrences of ”cut”
exist, therefore spending a huge amount of time before failing. Then the second
alternative of the or query succeeds since ”dynamic” appears in the text, and
the query finally returns true (many times). With dynamic cut, the computation
of the first alternative stops after the first fail of part ”love” ”...” and the query
readily returns only one true, as expected.

Example 3
This last example combines both kinds of dynamic cuts presented above. Func-
tion palindrome detects when a string X is a palindrome, word detects strings
built only from letters, and palinWord indicates if its argument W is both a
palindrome and a word. Thus palinWord ”refer” returns true, while palinWord
”!!!” returns false repeated three times. In this case both the or branch of the

250 Rafael Caballero and Francisco Javier López-Fraguas

rev [] = []
rev [X|Xs] = (rev Xs)++ [X]

palindrome X = true <== Z ++ (rev Z) == X
palindrome X = true <== Z ++ [C] ++ (rev Z) == X

word [] = true
word [X|Xs] = (isLetter X) && (word Xs)

isLetter X = (ord(X)>=ord(’a’)) && (ord(X)<=ord(’z’))

palinWord W = palindrome W && word W

Fig. 3. Palindrome Words

&& function and the (possibly) repeated existential search in palindrome con-
tribute to decrease the efficiency of the program. Observe that the use of the
parallel and (&&) in this example cannot be easily replaced by the usual sequen-
tial and:

and true Y = Y
and false Y = false

because this function requires the evaluation of the two boolean expressions, but
palindrome either returns true or fails without returning false. Therefore a goal
like palinWord ”123” would fail with the sequential and but returns false when
introducing the parallel and.

4 Detecting Deterministic Functions

As we have seen, one of the two types of dynamic cut is related to the exis-
tence of or nodes in definitional trees for semantically deterministic functions.
Moreover, the deterministic nature of functions plays an important role when
determining if a dynamic cut can be performed, as was illustrated in the exam-
ples above. We say that a function f ∈ FSn is (semantically) deterministic if
for all ground terms t1 . . . tn the goal f t1 . . . tn cannot produce different (maybe
partial) data values. The functions ++, &&, part, matches,rev, palindrome, isLet-
ter and palinWord of section 3 are all deterministic, while the function maybe is
not.
Now we introduce an adaptation of the non-ambiguity conditions in [8], which
can serve as an easy mechanism for the effective recognition of deterministic
functions. Despite their simplicity, they are enough in most practical cases, in
particular for the examples of section 3.

Dynamic-Cut with Definitional Trees 251

Definition 1 (Non-ambiguous functions) Let P be a program defining a set
of functions G. We say that F ⊆ G is a set of non-ambiguous functions if all
f ∈ F verifies:

(i) If f(t) = e ⇐ C is a defining rule for f , then var(e) ⊆ var(t) and all
function symbols in e belong to F (that is, extra variables and possibly non
deterministic functions cannot occur in bodies).

(ii) For any pair of variants of defining rules for f , f(t)= e⇐ C, f(t′)= e′⇐
C′, one of the following two possibilities holds:
(a) Heads do not overlap, that is, f(t) and f(t′) are not unifiable.
(b) Right-hand sides can be fusioned, that is, if θ is a mgu of f(t) and f(t′),

then eθ ≡ e′θ.

The second part of the definition is equivalent to say that the set of unconditional
parts of defining rules for functions f ∈ F is a weakly orthogonal TRS [5].
Claim 1 Non-ambiguous functions are semantically deterministic functions.
Although the converse is not true, this is enough to ensure that the cuts will be
safe. This claim is a well-known result about TRS, but in our case its validity
depends on a suitable definition of the operational semantics of FLP languages
which is not discussed here. A more detailed characterization of semantically de-
terministic functions will increase both the number of functions that can include
dynamic cut and the number of cuts performed during the computations. The
dynamic cut will be safe assuming the two following claims:
Claim 2 Let G be goal, f a deterministic function and e an expression of the
form e ≡ f(e1, . . . , en). If a computation of a head normal form for e succeeds
without:

(i) Binding any variable in e.
(ii) Computing a hnf for any expression g(e′1, . . . , e′m) where g is non-

deterministic.

Then any other alternative to the computation of this hnf for e can be discarded,
since it cannot contribute to produce a different answer for the original goal.

Claim 3 Let f be a function and f(t) = e⇐ C is a defining rule for f used to
compute a hnf of an expression e ≡ f(e1, . . . , en). If the condition C is success-
fully computed without:

(i) Binding any variable in e1, . . . , em, r.
(ii) Computing a hnf for any expression g(e′1, . . . , e′m) where g is non-

deterministic.

Then no alternative re-evaluation of C is needed.
Although following these claims we could safely introduce dynamic cut associated
to many evaluations of hnf, most of these cuts would be unnecessary. Instead,
we will include code for dynamic cut only in the two situations presented in the
examples of section 3 and described precisely in the code generation of the next
section.

252 Rafael Caballero and Francisco Javier López-Fraguas

5 A Prolog Implementation of Dynamic Cut

We explain in this section how to accommodate dynamic cut into a translation
scheme of the form T : Source → Prolog for the case of the FLP language
T OY , but we think that it is not difficult to extend the approach to other
translations schemes.

5.1 The Translation Scheme

The translation scheme for T OY1, which can be found in [1], is the result of
three stages:
(1) The source T OY program, which uses higher order syntax, is translated into
T OY-like programs written in first order syntax.
(2) The compiler introduces suspensions [6, 9] into first order T OY programs.
The idea of suspensions is to replace each subexpression in right-hand sides of
rules with the shape of a function call f(e1, . . . , en) by a Prolog term of the form
susp(f(e1, . . . , en), R, S) (called a suspension) where R and S are initially (i.e,
at the time of translation) new Prolog variables. During execution, parameter
passing may produce many ‘long distance’ copies of a given suspension. If at some
step of the execution the computation of a head normal form for f(e1, . . . , en)
is required, the variable R will be bound to the obtained value, and we say that
the suspension has been evaluated. The argument S in a suspension is a flag
to indicate if the suspension has been evaluated or not. Initially S is a variable
(indicating a non-evaluated suspension), which is set to a concrete value, say
hnf, once the suspension is evaluated.
(3) Finally the Prolog clauses which are the final result of the translation are gen-
erated, adding suitable code for strict equality and hnf (to compute head normal
forms). To compute a hnf for an unevaluated suspension susp(f(X1,. . . ,Xn),R,S),
a call f(X1,. . . ,Xn,H) is made to a specific predicate returning in H the desired
head normal form. The set PrologFS consists of the clauses for those predicates,
which are exactly the predicates affected by the introduction of dynamic cut.

5.2 Generating Prolog Code

Next we explain in detail the third phase (code generation), taking into account
dynamic cut. This is done regarding the definitional tree of the function, and will
be represented as prolog(f, dt(f)) where the auxiliary function prolog/2 takes
a definitional tree and a function symbol, possibly different to the function of
the definitional tree (this is to introduce new auxiliary functions), returning as
value a set of Prolog clauses.
The interesting cases for this paper are those when code for dynamic cut can be
added. For this code we will use a pair of auxiliary predicates
1 For the sake of simplicity, we consider here a simplified version of T OY not taking
into account disequality constraints.

Dynamic-Cut with Definitional Trees 253

• varlist(E,Vs), which returns in Vs the list of variables occurring in E, taking
into account the following criterion for collecting variables inside suspensions:
(1) If E contains an unevaluated suspension susp(f(e1, . . . , en), R, S) and f is
a non-deterministic function then R must be added to Vs. This is essential for
performing dynamic cut safely.
(2) If E contains an evaluated suspension susp(f(e1, . . . , en), R, S), then we pro-
ceed recursively collecting variables in R.
• checkvarlist(Vs), which checks that all elements in Vs are indeed different
variables. This ensures that no variable in Vs was bound during the evaluation
of E.
The combination of varlist and checkvarlist in a code sequence like

varlist(E,Vs), <compute something with E >, checkvarlist(Vs)

is an easy way of controlling that no variables in E have been bound during the
computation. In many practical casesVs will be empty, and then checkvarlist(Vs)
is a trivial test. The actual implementation of varlist and checkvarlist is a Prolog
exercise and can be found at http://babel.dacya.ucm.es/cut.
The Prolog code prolog(f, dt) is obtained by generating code corresponding to
the root of the tree, and then descending recursively in the branches. We then
distinguish cases according to the shape of the root of dt.

Case 1 (the root is a case node):

Assume dt ≡ f(s)→ case X of 〈c1 : dt1 . . . cm : dtm〉
In this case different branches correspond to incompatible cases in a given posi-
tion, and therefore there is nothing to prune. The generated code in this case is
the same as if dynamic cut is not taken into account.

prolog(g, dt) = { g(s,H) :- hnf(X,HX), g’(sσ,H).} ∪
prolog(g′, dt1) . . . ∪ prolog(g′, dtm)

where σ = X/HX and g’ is a new function symbol.
Case 2 (the root is an or node):

Assume dt ≡ f(s)→ or 〈dt1 | . . . | dtm〉
In this case, some of the (head of) rules in different branches might overlap,
maybe yielding to different computations with the same result. Code for dynamic
cut at the root can be useful, but is safe only in case that the function defined by
the tree is deterministic; otherwise, different branches, even overlapping, might
produce different results and none of which should be pruned. To be precise:
let R be the set of program rules in the leaves of dt. We consider two cases:

Case 2.1 If R define a non-deterministic function, then code for dynamic cut
cannot be added:

prolog(g, dt) = { g(s,H) :- g1(s,H).} ∪ . . .∪ { g(s,H) :- gm(s,H).} ∪
prolog(g1, dt1) ∪ . . . ∪ prolog(gm, dtm)

where g1, . . . , gm are new function symbols.

254 Rafael Caballero and Francisco Javier López-Fraguas

Case 2.2 If R define a deterministic function, then we add code for dynamic
cut:

prolog(g, dt) = { g(s,H) :- varlist(s,Vs),
g’(s,H),
(checkvarlist(Vs),
! % this is the dynamic cut
;
true). } ∪

{g’(s,H) :- g1(s,H).} ∪ . . . ∪ {g’(s,H) :- gm(s,H).} ∪
prolog(g1, dt1) ∪ . . . ∪ prolog(gm, dtm)

where g′, g1, . . . , gm are new function symbols. Observe that g′ is defined as g in
the case 2.1, that is, as g would be defined without dynamic cut. The behaviour
of the clause for g is then clear: we collect the relevant variables of the call,
and use g′ to do the reduction; if after succeeding no relevant variable has been
bound, we cut to prune other (useless) alternatives for g′.
Notice also that the condition required to add code for dynamic cut is local to
the tree: only the rules in the tree are taken into account. This allows a ‘fine
tuning’ of dynamic cut, which can be added to ‘deterministic parts’ of a function
definition, even if the function is non-deterministic.

Case 3 (the tree is a leaf try):

Assume dt ≡ try R, where R is a program rule f(s) = e ⇐ C. In this
case it is always possible to add code for dynamic cut between the code for
the conditions C and the code for the body e. Some care must be taken with
extra variables in C, that is, variables in C not occurring in the head f(s). If
one of such variables does not occur in the body e, then it is an existential
variable, whose only role is to witness the condition. The relevant fact is that if
the conditions in C succeed with some bindings for existential variables, there
is no need of finding alternative bindings for such variables. But if one extra
variable in C occurs also in e, it might contribute to its value, and therefore to
the value of f(s); this means that bindings for such variables must inhibit the
dynamic cut. To take this into account is quite easy: just add the variables in e
to the list of variables relevant for dynamic cut.

prolog(g, dt) ={ g0(s,H) :-
varlist((s, e),Vs), % notice the body e
solve(C), (checkvarlist(Vs),
! % this is the dynamic cut
; true),
hnf(e,H). }

We remark that this code is correct even if the body e is non-deterministic,
because the cut is placed before evaluating the body, which implies that we only
cut the re-evaluation of the conditional part of the rule.

Dynamic-Cut with Definitional Trees 255

5.3 Examples

Here we present a few examples of translations into Prolog following the ideas
commented above. The complete generated code for the examples can be found
at

http://babel.dacya.ucm.es/cut

It is worth noticing that the code found there is not exactly the code described
in the paper: apart from typical optimizations, as the real code is going to be
executed within T OY , it must take into account disequality constraints, which
are embedded in the system.
Parallel and Since the function && is deterministic and has an or node at
the root of its definitional tree, dynamic cut code is added for it. Since the rules
are unconditional, try nodes do not require dynamic cut. The Prolog code for
&& is then:

&&(X,Y,H) :- varlist((X,Y),Vs), &&’(X,Y,H), (checkvarlist(Vs), ! ; true).
.

where the auxiliary predicate &&’ is defined exactly as the predicate && would
have been defined without dynamic cut in mind.

Simple queries In this example, the functions part and matches accept dy-
namic cut, the first because its rule has a condition with existential variables,
and the second because it is deterministic and has an or node in its definitional
tree. We write only the code for part:

part(X,Y,H) :- varlist((X,Y),Vs),
equal(susp(++(U,susp(++(X,V),R,S)),R’,S’), Y),
(checkvarlist(Vs), ! % dynamic cut after the conditions
; true),
hnf(true,H).

6 Experimental Results

Figure 4 presents some experimental results obtained with the
system T OY2. The complete set of examples can be found at
http://babel.dacya.ucm.es/cut. Additionally to the examples of sec-
tion 3 we have used two examples:
- graph.toy: This program defines a graph with the shape of a grid, where each
node is connected to its nearest right and down nodes. Also, a function to check
whether two nodes are connected is defined. The natural coding of this function
includes an existential condition in a program rule that will include code for the
dynamic cut.
2 Running on a PC under O.S. Linux with processor Intel Celeron at 600 MHZ and
128 Mb RAM.

256 Rafael Caballero and Francisco Javier López-Fraguas

- composed.toy: Program to check whether a number is composed, i.e. not prime.
This is achieved by looking for two numbers whose product is the desired number,
and this, again, is naturally represented in FLP languages by an existential search
in the condition of a program rule. The dynamic cut will stop the computations
after the first decomposition is found if the number is not prime.
In the following we describe briefly each goal.
- G1 is false && (false && (.... (false && false) . . .)) == true with 100000 false
values.
- G2 is (. . . ((false && false) && false) && . . .) && false == true with 5000
false values. In this case the cut cannot avoid the search of any or branch and
the results are similar, with the code including cut slightly worse due to the
run-time checking of bindings.
- G3 is matches (or (and (single ”cut”) (single ”love”)) (single ”dynamic”)) intro
where intro represents the text of the introduction of this paper.
- G4 is matches (and (and (single ”is”) (single ”this”)) (single ”love?”)) intro.
- G5 is matches (and (and (single ”is”) (single ”a”)) (single ”love”)). In this ex-
ample notice that the goal fails due to the lack of ”love” in the introduction, but
both ”a” and ”is” occur many times in the text and therefore the search space
is really huge.
- G6 is palinWord ”11...11” with ”11..11” representing the string with 200 repe-
titions of digit 1 (which is obviously palindrome but not a word).
In the rest of the examples the goals have been forced to fail in order to check
the time required to examine the whole search space. This is not as artificial as
it could seem; on the contrary it happens whenever the goal is evaluated as part
of a subcomputation that finally fails.
- G7 looks for a path between the upper-left and the lower-right corner of a
grid of 10×10 nodes. Without dynamic cut the backtracking will try all possible
paths in the graph, but the dynamic cut stops after finding the first successful

Program Goal Without Dynamic Cut Dynamic Cut

example1.toy G1 23.4 sec 0 sec.
example1.toy G2 105.2 sec. 119.8 sec.
example2.toy G3 30.7 sec. 2.5 sec.
example2.toy G4 327.3 sec. 2.3 sec.
example2.toy G5 >5 hours 2.0 sec.
example3.toy G6 33.5 sec. 4.8 sec.
graph.toy G7 64.2 sec. 0 sec.
graph.toy G8 >5 hours 0 sec.
graph.toy G9 >5 hours 0.1 sec.
graph.toy G10 66.7 sec. 70.6 sec.
composed.toy G11 151.0 sec. 0.4 sec.
composed.toy G12 >5 hours 4.0 sec.

Fig. 4. Runtime Table

Dynamic-Cut with Definitional Trees 257

path. G8 and G9 are analogous to the previous goal but for grids of 20×20 and
100×100, respectively.
- G10 looks for paths from the upper-left corner to a generic node represented
as a variable N . In this case the cut takes no effect because variable N is bound
during the computations and cutting would not be safe, and the times with and
without dynamic cut are similar.
- G11 checks if number 1000 is not prime, while G12 is analogous but for number
10000.

7 Conclusions

This work presents a mechanism of dynamic cut for lazy FLP programs that can
be easily introduced in a Prolog-based implementation. The technique requires
a static analysis of determinism and the modification of the segment of the gen-
erated code where the cut is feasible (deterministic functions with or branches
and rules with existential conditions).
By including dynamic cuts the efficiency of several computations both in terms of
time and space is improved, often dramatically. This is done by avoiding redun-
dant non-deterministic computations related to the evaluation of semantically
deterministic functions. In contrast to Prolog cuts, the dynamic cut proposed
here is transparent to the programmer (since it is automatically introduced by
the system in the generated code) and safe.
The second consequence of the cut is that many repeated answers can be avoided.
Also non-terminating computations become, in some cases, terminating. How-
ever, dynamic cut does not change the set of computed answers.
Because of these two benefits, functions that are usually avoided in FLP, like
the parallel and presented in Figure 1, can be used now without decreasing the
efficiency of the computations.
Compared to a previous work ([8]) on this subject our proposal present three
major improvements:
• Non-deterministic functions are considered.
• The introduction of the dynamic cut is related to definitional trees allowing
the integration of the technique into current systems based on demand driven
strategies.
• We show how to incorporate the technique in systems that generate code by
transforming FLP programs into Prolog-code. This, together with the two previ-
ous points, makes the technique fully applicable to several FLP implementations.

As future work we plan to fully integrate the optimization in the system
T OY and to improve the implementation of the mechanism used to detect
whether a relevant variable has been bound. In a different line, a deeper theo-
retical work would be desirable both extending the class of functions qualified
as deterministic and providing an operational framework suitable to prove the
properties of the technique.

258 Rafael Caballero and Francisco Javier López-Fraguas

References

[1] M. Abengózar-Carneros, P. Arenas-Sánchez, R. Caballero-Roldán, A. Gil-Luezas,
J. C. González-Moreno, J. Leach-Albert, F. J. López-Fraguas, M. Rodŕıguez-
Artalejo, J. J. Ruz-Ortiz and J. Sánchez-Hernández. T OY : A Multiparadigm
Declarative Language. Version 1.0. Departamento de Sistemas Informáticos y
Programación, Universidad Complutense de Madrid, Tech. Report SIP-119/00,
February 2002. 252

[2] S. Antoy. Definitional Trees. Int. Conf. on Algebraic Logic Programming
(ALP’92), LNCS 632, Springer Verlag 1992, 143-157. 246

[3] S. Antoy. Constructed-based Conditional Narrowing. PPDP’01, ACM Press 2001,
199-206. 246

[4] S. Antoy, R. Echahed, M. Hanus. A Needed Narrowing Strategy. Journal of the
ACM Vol. 47, no. 4, pages 776-822, July 2000. 245, 246

[5] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998. 251

[6] P.H. Cheong and L. Fribourg. Implementation of narrowing: The Prolog-based ap-
proach. In K.R. Apt, J.W. de Bakker, and J. J.M.M. Rutten, editors, Logic pro-
gramming languages: constraints, functions, and objects, pages 1–20. MIT Press,
1993. 252

[7] M.Hanus. Curry: An Integrated Functional Logic Language. Version 0.7.1, June
2000. Available at http://www.informatik.uni-kiel.de/curry/report.html. 246

[8] R. Loogen, St. Winkler. Dynamic Detection of Determinism in Functional-Logic
Languages. Int. Symp. on Programming Language Implementation and Logic Pro-
gramming (PLILP’91), LNCS 528, Springer Verlag 1991, 335-346. 245, 247, 248,
250, 257

[9] R. Loogen, F. J. López-Fraguas, and M. Rodŕıguez-Artalejo. A Demand Driven
Computation Strategy for Lazy Narrowing. Int. Symp. on Programming Language
Implementation and Logic Programming (PLILP’93), LNCS 714, Springer Verlag
1993, 184-200. 245, 246, 247, 252

[10] F. J. López-Fraguas, and J. Sánchez-Hernández. T OY a Multiparadigm Declara-
tive System, In Proc. RTA’99, LNCS 1631, Springer Verlag, 244-247, 1999. 246

	Dynamic-Cut with Definitional Trees
	Introduction
	Preliminaries
	Motivating Examples
	Detecting Deterministic Functions
	A Prolog Implementation of Dynamic Cut
	The Translation Scheme
	Generating Prolog Code
	Examples

	Experimental Results
	Conclusions

