Abstract

Narrowing is the usual computation mechanism in functional-logic programming (FLP), where bindings for free variables are found at the same time that expressions are reduced. These free variables may be already present in the goal expression, but they can also be introduced during computations by the use of program rules with extra variables. However, it is known that narrowing in FLP generates problems from the point of view of types, problems that can only be avoided using type information at run-time. Nevertheless, most FLP systems use static typing based on Damas-Milner type system and they do not carry any type information in execution, most FLP systems use static typing based on Damas-Milner type system and they do not carry any type information in execution, identifying some problems encountered in a restricted class of programs for which no binding of HO variables are not performed and most general unifiers are used in unifications, for programs with transparent patterns. Then we characterize a restricted class of programs for which no binding of HO variables happens in reductions, identifying some problems encountered in the definition of this class. To conclude, we use the previous results to show that a simulation of needed narrowing via program transformation also preserves types.

Categories and Subject Descriptors F.3.3 [Logics and meanings of programs]: Studies of Program Constructs—Type Structure; D.3.2 [Programming Languages]: Language Classifications—Multiparadigm languages; D.3.1 [Programming Languages]: Formal Definitions and Theory

General Terms Theory, Languages, Design

Keywords Functional-logic programming, narrowing, extra variables, type systems

1. Introduction

Functional-logic programming (FLP). Functional logic languages [3,15,30] like Toy [24] or Curry [16] can be described as an extension of a lazy purely-functional language similar to Haskell [18], that has been enhanced with logical features, in particular logical variables and non-deterministic functions. Disregarding some syntactic conventions, the following program defining standard list concatenation is valid in all the three mentioned languages:

\[
\text{\texttt{[X] + + Y} = \texttt{X} \quad \text{\texttt{\textit{cond}} \quad \texttt{\textit{true} + + X} = \texttt{X} \quad \text{\textit{cond}} \quad \texttt{\textit{false} + + Y} = \texttt{Y}]}\]

Logical variables are just free variables that get bound during the computation in a way similar to what it is done in logic programming languages like Prolog [11]. This way FLP shares with logic programming the ability of computing with partially unknown data. For instance, assuming a suitable definition and implementation of equality \(=\), the following is a natural FLP definition of a predicate (a \text{\textit{true}-valued} function) \text{\textit{sublist}} stating that a given list \(Xs\) is a sublist of \(Ys\):

\[
\text{\texttt{sublist X} \ \texttt{Y} = \texttt{\textit{cond}} \ (\texttt{\textit{Us} + + X} + + \texttt{Vs} \ \texttt{== Y}) \ \texttt{true \ \textit{cond}} \ \texttt{\textit{true} X = X}}
\]

Notice that the rule for \text{\textit{sublist}} is not valid in a functional language due to the presence of the variables \(Us\) and \(Vs\), which do not occur in the left hand side of the program rule. They are called extra variables. Using \text{\textit{cond}} and extra variables makes easy translating pure logic programs into functional logic one\footnote{As a secondary question here, notice that using \text{\textit{cond}} is needed if \(==\), as usual, is a two-valued function returning \text{\textit{true}} or \text{\textit{false}}. Defining directly \text{\textit{sublist X} \ \texttt{Y} = \texttt{\textit{Us} + + X} + + \texttt{Vs} \ \texttt{== Y}) would compute wrong answers: evaluating \text{\textit{sublist} \ \texttt{[1]} \ \texttt{[2]} produces true but also the wrong value \text{\textit{false}}, because there are values of the extra variables \(Us\) and \(Vs\) such that \(Us + + [1] + + Vs \ \texttt{== [1]} \ \texttt{evaluates to false.}\)} For instance, the logic program using Peano’s natural numbers \(z\) (zero) and \(s\) (successor)

\begin{align*}
\text{\texttt{add}}(z, X, X). \\
\text{\texttt{add}}(s(X), Y, s(Z)) := \text{\texttt{add}}(X, Y, Z). \\
\text{\texttt{even}}(X) := \text{\texttt{add}}(Y, Y, X).
\end{align*}

\begin{align*}
\text{\texttt{add}}(z, X, Y) &= \text{\texttt{cond}} (X == Y) \ \texttt{true} \\
\text{\texttt{add}}(s(X), Y, s(Z)) &= \text{\texttt{add}}(X, Y, Z) \\
\text{\texttt{even}}(X) &= \text{\texttt{add}}(Y, Y, X)
\end{align*}

\text{\texttt{add}}(z, X, X)

\text{\texttt{add}}(s(X), Y, s(Z)) := \text{\texttt{add}}(X, Y, Z).

\text{\texttt{even}}(X) := \text{\texttt{add}}(Y, Y, X).

can be transformed into the following functional logic one:

\begin{align*}
\text{\texttt{add}}(z, X, Y) &= \text{\texttt{cond}} (X == Y) \ \texttt{true} \\
\text{\texttt{add}}(s(X), Y, s(Z)) &= \text{\texttt{add}}(X, Y, Z) \\
\text{\texttt{even}}(X) &= \text{\texttt{add}}(Y, Y, X)
\end{align*}

Notice that the rule for \text{\texttt{even}} is another example of FLP rule with an extra variable \(Y\). The previous examples show that, contrary to the usual practice in functional programming, free variables may appear freely during the computation, even when starting from an expression without free variables. Despite these connections with logic programming, owing to the functional characteristics of FLP languages—like the nesting of function applications instead of SLD resolution—several variants and formulations of narrowing [19] have been adopted as the computation mechanism in FLP. There are several operational semantics for computing with logical
and extra variables [15, 25, 30], and this kind of variables are supported in every modern FLP system.

As FLP languages were already non-deterministic due to the different possible instantiations of logical variables—these are handled by means of a backtracking mechanism similar to that of Prolog—it was natural that these languages eventually evolved to include so-called non-deterministic functions, which are functions that may return more than one result for the same input. These functions are expressed by means of program rules whose left hand sides overlap, and that are tried in order by backtracking during the computation, instead of taking a first fit or best fit approach like in pure functional languages. The combination of lazy evaluation and non-deterministic functions gives rise to several semantic options, being call-time choice semantics [13] the option adopted by the majority of modern FLP implementations. This point can be easily understood by means of the following program example:

\[
\text{coin} \rightarrow z \quad \text{coin} \rightarrow s z \quad \text{dup X} \rightarrow (X, X)
\]

In this example coin is a non-deterministic expression, as it can be reduced both to the values z and s z. But the point is that, according to call-time choice the expression \(\text{dup coin}\) evaluates to \((z, z)\) and \((s z, s z)\) but not to \((z, s z)\) nor \((s z, z)\). Operationally, call-time choice means that all copies of a non-deterministic subexpression, like coin in the example created during the computation reduction share the same value. In Section 4 we will see a simple formulation of narrowing for programs with extra variables, that also respects call-time choice, which will be used as the operational procedure for this paper.

Apart from these features, in the Toy system left hand sides of program rules can use not only first order patterns like those available in Haskell programs, but also higher order patterns (HO-patterns), which essentially are partial applications of function or constructor symbols to other patterns. This corresponds to an intensional view of functions, i.e., different descriptions of the same ‘extensional’ function can be distinguished by the semantics, and it is formalized and semantically characterized with detail in the HO-CRWL [13] logic for FLP [12]. This is not an exoticism: it is known [25] that extensionality is not a valid principle within the combination of higher order functions, non-determinism and call-time choice. HO-patterns are a great expressive feature [30], however they may have some bad interferences with types, as we will see later in the paper.

Because of all the presented features, FLP languages can be employed to write concise and expressive programs, typically for search problems, as it was explored in [31, 35, 39].

FLP and types. Current FLP languages are strongly typed. Apart from programming purposes, types play a key role in some program analysis or transformations for FLP, as detecting deterministic computations [17], translation of higher order into first order programs [4], or transformation into Haskell [8]. From the point of view of types FLP has not evolved much from Damas-Milner type system [4], or transformation into Haskell [8]. From the point of view of types FLP has not evolved much from Damas-Milner type system [4]. However, that approach lacks type preservation during evaluation, even for the restricted case where we drop logical and extra variables. It is known from afar [14] that, even in that simplified scenario, HO-patterns break the type preservation property. In particular, they allows us to create polymorphic casting functions [7]—functions with type \(\forall \alpha, \beta. \alpha \rightarrow \beta\), but that behave like the identity wrt. the reduction of expressions. This has motivated the development of some recent works dealing with opaque HO-patterns [22], or liberal type systems for FLP [21]. There are also some preliminary works concerning the incorporation of type classes to FLP languages [26, 29], but this feature is still in an experimental phase in current systems.

Regardless of the expressiveness of extra variables, these are usually out the scope of the works dealing with types and FLP, in particular in all the aforementioned. But these variables are a distinctive feature of FLP systems, hence in this work our main goal is to investigate the properties of a variation of the Damas-Milner type system that is able to handle extra variables, giving an abstract characterization of the problematic issues—most of them were already identified in the seminal work [14]—and then determining sufficient conditions under which type preservation is recovered for programs with extra variables evaluated with narrowing. In particular, we are interested in preserving types without having to use type information at run-time, in contrast to what is done in previous proposals [14].

The rest of the paper is organized as follows. Section 2 contains some technical preliminaries and notations about programs and expressions, and the formulation of the let-narrowing relation \(~/-\), which will be used as the operational mechanism for this paper. In Section 3 we present our type system and study those interactions with let-narrowing that lead to the loss of type preservation. Then we define the well-typed let-narrowing relation \(~/-\)_w, a restriction of \(~/-\) that preserves types relying on the abstract notion of well-typed substitution. To conclude that section we present \(~/-\)_w, another restriction of \(~/-\) that is able to preserve types without using type information—in contrast to \(~/-\)_w, which uses types at each step to determine that the narrowing substitution is well-typed—at the price of losing some completeness. To cope with this lack of completeness, in Section 4 we look for sufficient conditions under which the narrowing relation \(~/-\)_w is complete wrt. the computation of well-typed solutions, thus identifying a class of programs for which completeness is recovered, and whose expressiveness is then investigated. In Section 5 we propose a simulation of needed narrowing with \(~/-\)_w via two well-known program transformations, and show that it also preserves types. The class of programs supported in that section is specially relevant, as it corresponds to a simplified version of the Curry language. Finally Section 6 summarizes some conclusions and future work. Fully detailed proofs, including some auxiliary results, can be found in the extended version of this paper [23].

2. Preliminaries

2.1 Expressions and programs

We consider a set of functions symbols \(f, g, \ldots \in FS\) and constructor symbols \(c, d, \ldots \in CS\), each \(h \in FS \cup CS\) with an associated arity \(ar(h)\). We also consider a denumerable set of data variables \(X, Y, \ldots \in V\). The notation \(\omega\) stands for a sequence \(a_1, \ldots, a_n\) of \(n\) syntactic elements \(a\), being \(a\) the \(i\)th element. Figure 1 shows the syntax of patterns \(t \in Pat\) and expressions \(e \in Exp\). We split the set of patterns into two: first order patterns \(FOPat \supseteq \{f \mapsto X \mid c\}\) where \(ar(c) = n\), and higher-order patterns \(HOPat = Pat \setminus FOPat\), i.e., patterns containing some partial application of a symbol of the signature. Expressions \(\pi\) are called variable application when \(n > 0\), and expressions with the form \(h \pi\) are called junk if \(h \in CS\) and \(n > ar(h)\) or active if \(h \in FS\) and \(n \geq ar(h)\). The set of free and bound variables of an expression \(e\) are \(fv(e)\) and \(bv(e)\) resp.—are defined in the usual way. Notice that let-expressions are not recursive, so \(fv(let\ X = e_1 in e_2) = fv(e_1) \cup \{fv(e_2) \setminus \{X\}\}\). The set \(var(e)\) is the set containing all the variables in \(e\), both free and bound.

Notice that for patterns \(var(t) = fv(t)\).

Contexts \(C \in Ctxt\) are expressions with one hole, and the application of \(C\) to \(e\) written \(C[e]\) is the standard. The notion of free and bound variables are extended in the natural way to

2 CRWL [13] stands for Constructor Based Rewriting Logic; HO-CRWL is a higher order extension of it.
In this section we first present the type system we will use in this work, which is a simple variation of Damas-Milner typing enhanced with support for extra variables. Then we show some examples of \(\approx \)-reductions not preserving types (Section 3.3). Based on the ideas that emerge from these examples, in Section 3.3 we develop a new let-narrowing relation \(\approx^\text{let} \) that preserves types. This new relation uses only well-typed substitutions in each step, which gives an abstract and general characterization of the requirements a narrowing relation must fulfill in order to preserve types, but it still needs to perform type checks at run-time. To solve this problem, in Section 3.4 we present a restricted let-narrowing \(\approx^\text{limp} \) which only uses mgus’s as unifiers and drops the problematic rules (VAct) and (VBind). The main advantage of this relation is that if the patterns that can appear in program rules are limited then mgus’s are always well-typed, thus obtaining type preservation without using type information at run-time. Sadly this comes at a price, as \(\approx^\text{limp} \) loses some completeness wrt. HO-CRWL.

3. Type Preservation

3.1 Type system for extra variables

In Figure 1 we can find the usual syntax for simple types \(\tau \) and type-schemes \(\sigma \). For a simple type \(\tau \), the set of free type variables—denoted \(\text{ftv}(\tau) \)—is \(\text{var}(\tau) \), and for type-schemes \(\text{ftv}(\forall \alpha \rightarrow \tau) = \text{var}(\tau) \setminus \{\alpha\} \). A type-scheme is closed if \(\text{ftv}(\sigma) = \emptyset \). We say that a type-scheme is \(k \)-transparent if it can be written as \(\forall \alpha \rightarrow \tau_1 \rightarrow \tau \) such that \(\text{var}(\tau_1) \subseteq \text{var}(\tau) \).

A set of assumptions \(A \) is a set of the form \(\{\alpha_n : \tau_n\} \) such that the assumption for variable \(\alpha_n \) is simple types \(\tau_n \). Notice that an empty set of assumptions \(\emptyset \) is a set of the form \(\{\}\) and \(\emptyset \) is \(\emptyset \).

Application of type substitutions to simple types and \(\forall \alpha \rightarrow \tau \) are defined similarly to data substitutions. Application of type substitutions to simple types is defined in the natural way, and for type-schemes consists in applying the substitution only to their free variables. This notion is extended to set of assumptions \(\{\alpha_n : \tau_n\} \) as \(\forall \alpha \rightarrow \tau \).

2.2 Let-narrowing

Let-narrowing is a narrowing relation devised to effectively deal with logical and extra variables, that is also sound and complete wrt. HO-CRWL, a standard logic for higher order FLP with call-time choice. Figure 2 contains the rules of the let-narrowing relation \(\approx^\text{let} \). The first five rules (LetIn)–(LetAp) do not use the program and just change the textual representation of the term graph implied by the let-bindings in order to enable the application of program rules, but keeping the implied term graph untouched. The (Nan) rule performs function application, finding the bindings for the free variables needed to be able to apply the rule, and possibly introducing new variables if the program rule contains some extra variables. Notice that it does not require the use of a most general unifier (mgu) so any unifier can be used. As we will see in Section 3 this later point should be refined in order to ensure type preservation. Rules (VAct) and (VBind) produce HO bindings for variable applications, and are needed for let-narrowing to be complete. These rules are particularly problematic because they have to generate speculative bindings that may involve any function of the program, contrary to (Narr) where the computation of bindings is directed by the program rules for \(f \). Later on we will see how this “wild” nature of the bindings generated by these rules poses especially hard problems to type preservation. Finally, (Contx) allows to apply a narrowing rule in any part of the expression, protecting bound variables from narrowing and avoiding variable capture.
(LetIn) $e_1 \sim e_2 \sim^I X \in e_3 \in X \lambda$, if e_2 is an active expression, variable application, junk or let-rooted expression, for X fresh.

(Bind) let $X = t \in e \sim^I e[X \mapsto t]$, if $t \in \text{Pat}$

(Elim) let $X = e_1 \in e \sim^I e_2$, if $X \not\in \text{fv}(e_2)$

(Flat) let $X = (let Y = e_1 \in e_2) \in e_3 \sim^I$ let $Y = e_1 \in (let X = e_2 \in e_3)$, if $Y \not\in \text{fv}(e_3)$

(LetAp) let $X = e_1 \in e_2 \sim^I e_3$, if $X \not\in \text{fv}(e_3)$

(Narr) $f e_n \sim^I r \theta$, for any fresh variable $(f \mapsto r) \in P$ and θ such that $f e_n \theta \equiv \equiv f \mapsto r \theta$.

(VAct) $X e_n \sim^I r \theta$, if $\delta > 0$, for any fresh variable $(f \mapsto r) \in P$ and θ such that $(X e_n) \theta \equiv \equiv f \mapsto r \theta$

(VBind) let $X = e_1 \in e_2 \sim^I e_3 \theta[X \mapsto e_1 \theta]$, if $e_1 \not\in \text{Pat}$, for any θ that makes $e_1 \theta \in \text{Pat}$, provided that $X \not\in \text{fv}((\text{dom}(\theta) \cap \text{var}(e_1 \theta)))$

(Contx) $C[e] \sim^I C[\theta(e)]$, for $C \not\in [\circ], e \sim^I e'$ using any of the previous rules, and:

- if the step is (Narr) or (VAct) using $(f \mapsto r) \in P$ then $\text{var}(\theta) \cap \text{var}(C) = \emptyset$.

- if the step is (VBind) then $\text{var}(\theta) \cap \text{var}(C) = \emptyset$.

Figure 2. Let-narrowing relation \sim^I

Assume λ and thus they cannot appear in the expressions to reduce, we use them as the basis for the notions of well-typed rule and program. Essentially, for each program rule we construct an associated λ-abstraction so the rule is well-typed iff the corresponding λ-abstraction is well-typed. This is reflected in the following definition of program well-typedness, an important property assuring that assumptions over functions are related to their rules:

Definition 3.1 (Well-typed program wrt. A). A program rule $f \mapsto e$ is well-typed wrt. A iff $A \oplus \{X_n : \tau_n\} \vdash e : \tau$ where $A(f) \vdash \text{var}(\tau), \{X_n\} = \text{fv}(e)$ and τ_n are some simple types. A program rule $(f \mapsto e)$ (with $n > 0$) is well-typed wrt. A iff $A \vdash \lambda \text{p}_1 \ldots \lambda \text{p}_n : \tau \vdash A(f) \vdash \text{var}(\tau)$.

An expression e is well-typed wrt. A iff $A \vdash e : \tau$ for some type τ, written as $\text{wt}(A)(e)$. We will use the metavariable D to denote particular type derivations $A \vdash e : \tau$. If P is well-typed wrt. A, we write $\text{wt}(A)(P)$.

3.2 Let-narrowing does not preserve types

Now we will see how let-narrowing interacts with types. It is easy to see that let-narrowing steps do not generate bindings for the logical variables—i.e., those using the rules (LetIn), (Bind), (Elim), (Flat) and (LetAp)—preserve types trivially. This is not very surprising because, as we showed in Section 2, those steps just change the textual representation of the implied term graph. However, steps generating non trivial bindings can break type preservation easily:

Example 3.2. Consider the function and defined by the rules (and true $X \mapsto X$, and false $X \mapsto false$) with type $(\text{bool} \mapsto \text{bool} \mapsto \text{bool})$ and the constructor symbols for Peano’s natural numbers z and s, with types (nat) and $(\text{nat} \mapsto \text{nat})$ respectively. Starting from the expression and true Y—which has type bool—we can perform the let-narrowing step:

\[
\text{true} \sim_{X \mapsto X, Y \mapsto z} z
\]

This (Narr) step uses the fresh program rule (and true $X \mapsto X$), but the resulting expression z does not have type bool.

The cause of the loss of type preservation is that the unifier $\theta_1 = \{X_1 \mapsto z, Y \mapsto X\}$ used in the (Narr) step is ill-typed, because it replaces the boolean variables X and Y by the natural z. The problem with θ_1 is that it instantiates the variables too much, and without using any criterion that ensures that the types of the expressions in its range are adequate.

We have just seen that using the (Narr) rule with an ill-typed unifier may lead to breaking type preservation because of the instantiation of logical variables, like the variable Y above. We may reproduce the same problem easily with extra variables, just consider the function f with type bool defined by the rule $(f \mapsto \text{true} X)$ for which we can perform the following let-narrowing step:

\[
f \sim_{X \mapsto z} \text{true} z
\]

using (Narr) with the fresh rule $(f \mapsto \text{true} X)$). The resulting expression is obviously ill-typed, and so type preservation is broken again because the substitution used in (Narr) instantiates variables too much and without assuring that the expression in its range have the correct types. The interested reader may easily check that this is also a valid let-rewriting step (25), thus showing that extra variables break type preservation even in the restricted scenario where we drop logical variables. Hence, the type systems in the

3As there is no general consensus about the semantics of λ-abstractions in the FLF community, due to their interactions with non-determinism and logical variables, we have decided to leave λ-abstractions out of programs and evaluating expressions, thus following the usual applicative programming style of the HO-CRWL logic.
papers mentioned at the end of Section 3.2 lose type preservation if we allow extra variables in the programs.

However, the (Narr) rule is not the only one which can break type preservation. The rules (VAct) and (VBind) also lead to problematic situations:

Example 3.3. Consider the functions and symbols from Example 3.2. Using the rule (VAct) it is possible to perform the step

$$s \left(F \left(z \right) \right) \rightsquigarrow \left(F \left(z \right) \right) \text{false}$$

with the fresh rule (and false), F has type nat and F has type (nat → nat), but the resulting expression is ill-typed. As before, the reason is an ill-typed binding for F, which binds F with a pattern of type (bool → bool).

On the other hand, we can perform the step

$$let \ X = F \ z \ where \ s \ X \rightsquigarrow \left(F \left(z \right) \right) \text{false}$$

using the rule (VBind). The expression let X = F z in s X has type nat when F has type (nat → nat), but the resulting expression is ill-typed. The cause of the loss of type preservation is again an ill-typed substitution binding, in this case the one for F which assigns a pattern of type (bool → bool) to a variable of type (nat → nat).

Notice that ill-typed substitutions do not break type preservation necessarily. For example the step and false X \rightsquigarrow \text{false} using (Narr) with the fresh rule (and false) preserves types, although it can use the ill-typed unifier \(\equiv \ X \mapsto z, X \mapsto z \). However, avoiding ill-typed substitutions is a sufficient condition which guarantees type preservation, as we will see soon. Besides, it is important to remark that the bindings for the free variables of the starting expression that are computed in a narrowing derivation are as important as the final value reached at the end of the derivation, because these bindings constitute a solution for the starting expression as well as a goal to be solved, just like the goal expressions used in logic programming. That allows us to use predicate functions like the function sublists in Section 3.2 with some variables as their arguments, i.e., using some arguments in Prolog-like output mode. Therefore, well-typedness of the substitutions computed in narrowing reductions is also important and the restriction to well-typed substitutions is not only reasonable but also desirable, as it ensures that the solutions computed by narrowing respect types.

3.3 Well-typed let-narrowing \(~\rightsquigarrow_{\text{bot}}\)

In this section we present a narrowing relation \(~\rightsquigarrow_{\text{bot}}\) which is smaller than \(~\rightsquigarrow\) in Figure 2 but that preserves types. The idea behind \(~\rightsquigarrow_{\text{bot}}\) is that it only considers steps \(e \rightsquigarrow_{\text{bot}} e'\) using well-typed programs where the substitution \(\theta\) is also well-typed. We say a substitution is well-typed when it replaces data variables by patterns of the same type.

Definition 3.4 (Well-typed substitution). A data substitution \(\theta\) is well-typed wrt. \(\mathcal{A}\), written \(ut_{\mathcal{A}}(\theta)\), if \(\mathcal{A} \vdash X : \mathcal{A}(X)\) for every \(X \in \text{dom}(\theta)\).

Notice that according to the definition of set of assumptions, \(\mathcal{A}(X)\) is always a simple type.

As it is usual in narrowing relations, let-narrowing steps can introduce new variables that do not occur in the original expression. Moreover, this new variables do not come only from extra variables but from fresh variant of program rules—using (Narr) and (VAct)—or from invented patterns—using (VBind). Therefore, we need to consider some suitable assumptions over these new variables. However, that set of assumptions over the new variables is not arbitrary but it is closely related to the step used:

Example 3.5 (\(A\) associated to a (Narr) step). Consider the function \(f\) with type \(\forall x. \alpha \rightarrow [\alpha]\) defined with the rule \(f \ X \rightarrow [X, Y]\).

We can perform the narrowing step \(f \text{true} \rightsquigarrow_{\text{bot}} \text{true}\) using (Narr) with the fresh variant \(f \ X_1 \rightarrow [X_1, Y_1]\) and \(\equiv \equiv \equiv [X_1 \rightarrow \text{true}]\). Since the original expression is \(f\) true, it is clear that \(X_1\) must have type bool in the new set of assumptions. Moreover, \(Y_1\) must have the same type since it appears in a list with \(X_1\).

Therefore in this concrete step the associated set of assumptions is \(\{X_1 : \text{bool}, Y_1 : \text{bool}\}\).

The following definition establishes when a set of assumptions is associated to a step. Notice that due to the particularities of the rules (VAct) and (VBind), in some cases there is not such set or there are several associated sets.

Definition 3.6 (\(A\) associated to \(~\rightsquigarrow\) steps). Given a type derivation \(\mathcal{D}\) for \(A \vdash e : \tau\) and \(ut_{\mathcal{A}}(\mathcal{P})\), a set of assumptions \(A\) is associated to the step \(e \rightsquigarrow_{\text{bot}} e'\) iff:

- \(A' \equiv \emptyset\) and the step is (Letn), (Bind), (Elim), (Flat) or (LetAp).
- If the step is (Narr) then \(f \overline{\tau} \rightarrow_{\text{bot}} \theta\) using a fresh variant \(f \overline{\tau} \rightarrow \theta\) as \(\overline{\tau}\) is a variant of \(\mathcal{A}(f)\). Therefore \(f \overline{\tau} \rightarrow \tau'\) \(\pi \equiv \overline{\tau} \rightarrow \tau\) for some type substitution \(\pi\) whose domain are fresh type variables from the variant. In this case \(A'\) is associated to the (Narr) step if \(A' \equiv \{A_1 \oplus \ldots \oplus A_n\}\).r.
- If the step is (VAct) then we have \(X \overline{\tau} \rightarrow_{\text{bot}} \theta\) for a fresh variant \(f \overline{\tau} \rightarrow \tau\) \(\pi \equiv \overline{\tau} \rightarrow \tau\) such that \(X \overline{\tau} \theta\). Since \(D\) is a type derivation for \(A \vdash f \overline{\tau}\), it will contain a derivation \(A \vdash f : \overline{\tau} \rightarrow \tau\). The rule \(f \overline{\tau} \rightarrow \tau\) is well-typed by \(ut_{\mathcal{A}}(\mathcal{P})\), so we also have (when the rule is \(f \rightarrow e\) it is similar):

\[
\begin{align*}
A \oplus A_1 & \ldots \oplus A_n \vdash p_n : \tau'_n\r \quad (A) \quad A \oplus A_1 \ldots \oplus A_n \vdash r : \tau' \\
A \vdash \lambda p_1 \ldots \lambda p_n : \overline{\tau}_n & \rightarrow \tau''r \quad (A) \\
\end{align*}
\]

where \(\overline{\tau}_n\) are the set of assumptions over variables introduced by \(A\) and \(\overline{\tau}_n \rightarrow \tau''\) is a variant of \(\mathcal{A}(f)\). Therefore \(\overline{\tau}_n \rightarrow \tau''\) \(\pi \equiv \overline{\tau} \rightarrow \tau\) for some type substitution \(\pi\) whose domain are fresh type variables from the variant. In this case \(A'\) is associated to the (Narr) step if \(A' \equiv \{A_1 \oplus \ldots \oplus A_n\}\).r.
- Any \(A' \equiv \{X_n : \tau_n\}r\) is associated to a (VBind) step, if \(X_n\) are those data variables introduced by vran(\(\theta\))—they do not appear in \(A\) and \(\overline{\tau}_n\) are simple types.
- \(A'\) is associated to a (Contx) step if it is associated to its inner step.

A set of assumptions \(A'\) is associated to n \(~\rightsquigarrow\) steps \((e_1 \rightsquigarrow_{\text{bot}} \ldots e_n)\) if \(A' \equiv A_1 \oplus A_2 \oplus \ldots \oplus A_n\), where \(A_i\) is associated to the step \(e_i \rightsquigarrow_{\text{bot}} e_{i+1}t\) and the type derivation \(D_i\), for \(e_i\), using \(A \oplus A_1 \oplus \ldots \oplus A_{i-1}\) (\(A' \equiv \emptyset\) if \(n = 0\)).

Based on the previously introduced notions we can define a restriction of let-narrowing that only employs well-typed substitutions, that we will denote by \(~\rightsquigarrow_{\text{bot}}\):

Definition 3.7 (\(~\rightsquigarrow_{\text{bot}}\) let-narrowing). Consider an expression \(e\) a program \(\mathcal{P}\) and set of assumptions \(\mathcal{A}\) such that \(ut_{\mathcal{A}}(e)\) with a derivation \(D\) and \(ut_{\mathcal{A}}(\mathcal{P})\). Then \(e \rightsquigarrow_{\text{bot}} e'\) if \(e \rightsquigarrow_{\text{bot}} e'\) and \(ut_{\mathcal{A}(\theta)}(\mathcal{A})\), where \(\mathcal{A}\) is a set of assumptions associated to \(e \rightsquigarrow_{\text{bot}} e', D\).
The premises \(\nu \cdot A(e) \) and \(\nu \cdot A(\mathcal{P}) \) are essential, since the associated set of assumptions wrt. \(e \sim_{\nu}^* \) is only well defined in those cases. Note that the step \(\sim_{\nu}^{\text{let}} \) cannot be performed if no set of associated assumptions \(\mathcal{A} \) exists. Although \(\sim_{\nu}^{\text{let}} \) is strictly smaller than \(\sim_{\nu}^{\text{impu}} \)—the steps in Examples 3.2 and 3.3 are not valid \(\sim_{\nu}^{\text{let}} \)—it enjoys the intended type preservation property:

Theorem 3.8 (Type preservation of \(\sim_{\nu}^{\text{let}} \)). If \(\nu \cdot A(\mathcal{P}), e \sim_{\nu}^{\text{let}} \ e' \) and \(A \vdash e : \tau \) then \(A \oplus \mathcal{A} \vdash e' : \tau \) and \(\nu \cdot A(\mathcal{A}(\theta)) \), where \(\mathcal{A} \) is a set of assumptions associated to the reduction.

The previous result is the main contribution of this paper. It states clearly that, provided that the substitutions used are well-typed, let-narrowing steps preserve types. Moreover, type preservation is guaranteed for general programs, i.e., programs containing extra variables, non-transparent constructor symbols, opaque HO-patterns... This result is very relevant because it clearly isolates a sufficient and reasonable property that, once imposed to the unifiers, ensures type preservation. Besides, this condition is based upon the abstract notion of well-typed substitution, which is parameterized by the type system and independent of the concrete narrowing or reduction notion employed. Thus the problem of type preservation in let-narrowing reductions is clarified. New let-narrowing subrelations can be proposed for restricted classes of programs or using particular unifiers and, provided the generated substitutions are well-typed, they will preserve types. We will see an example of that in Section 3.4.

This is an important advance wrt. previous proposals like [13], where the computation of the mgu was interleaved with and inseparable from the rest of the evaluation process in the narrowing derivations. Besides, although the identification of three kinds of problematic situations for the type preservation made in that work was very valuable—especially taking into account it was one of the first studies of the subject in FLP with HO-patterns—having a more general and abstract result is also valuable for the reasons stated above.

3.4 Restricted narrowing using mgu’s \(\sim_{\nu}^{\text{impu}} \)

The \(\sim_{\nu}^{\text{impu}} \) relation has the good property of preserving types, however it presents a drawback if used as the reduction mechanism of a FLP system: it requires the substitutions generated in each \(\sim_{\nu}^{\text{impu}} \) step to be well-typed. Since these substitutions are generated just by using the syntactic criteria expressed in the rules of the let-narrowing relation \(\sim_1 \), the only way to guarantee this is to perform type checks at run-time, discarding ill-typed substitutions. But, as we mentioned in Section 3.2, we are interested in preserving types without having to use type information at run-time. Hence, in this section we propose a new let-narrowing relation \(\sim_{\nu}^{\text{impu}} \) which preserves types without need of type checks at run-time. The let-narrowing relation \(\sim_{\nu}^{\text{impu}} \) is defined as:

Definition 3.9 (Restricted narrowing \(\sim_{\nu}^{\text{impu}} \)). \(e \sim_{\nu}^{\text{impu}} e' \) iff \(e \sim_{\nu}^* e' \) using any rule from Figure 2 except (VAct) and (VBind), and if the step is \(\mathcal{T}_n \sim_{\nu}^* \) \(\varnothing \) \(\rightarrow \mathcal{V} \) using (Narr) with the fresh variant \(f \mathcal{T}_n \rightarrow \mathcal{V} \) then \(\Theta = \text{mgu}(f \mathcal{T}_n, f \mathcal{V}) \).

As explained in Section 3.2, the rules that break type preservation are (Narr), (VAct) and (VBind). The rules (VAct) and (VBind) present harder problems to preserve types since they replace HO variables by patterns. These patterns are searched in the entire space of possible patterns, producing possible ill-typed substitutions. Since we want to avoid type checks at run-time, and we have not found any syntactic criterion to forbid the generation of ill-typed substitutions by those rules, (VAct) and (VBind) have been omitted from \(\sim_{\nu}^{\text{impu}} \). Although this makes \(\sim_{\nu}^{\text{impu}} \) a relation strictly smaller than \(\sim_{\nu}^{\text{let}} \), it is still meaningful: expressions needing (VAct) or (VBind) to proceed can be considered as frozen until other let-narrowing step instantiates the HO variable. This is somehow similar to the operational principle of resolution used in some FLP languages such as Curry [15][16]. Regarding the rule (Narr), Example 3.2 shows the cause of the break of type preservation. In that example, the unifier of \(\text{and} \ Y \) and \(\text{true} \ X_1 \) is \(\Theta = [X_1 \rightarrow z, Y \rightarrow z] \). Although \(\Theta \) is a valid unifier, it instantiates variables unnecessarily in an ill-typed way. In other words, it does not use just the information from the program and the expression, which are well-typed, but it “invents” the pattern \(z \). We can solve this situation easily using the mgu \(\Theta \), which is well-typed, so by Theorem 3.8 we can conclude that the step preserves types.

Moreover, this solution applies to any (Narr) step (under certain conditions that will be specified later): if we choose mgu’s in the (Narr) rule and both the rule and the original expression are well-typed, then the mgu’s will also be well-typed. This fact is based in the following result:

Lemma 3.10 (Mgu well-typedness). Let \(\mathcal{T}_n \) be fresh linear transparent patterns wrt. \(A \) and let \(\Theta \) be any patterns such that \(A \vdash p_1 : \tau_1 \) and \(A \vdash t_1 : \tau_1 \) for some type \(\tau_1 \). If \(\Theta \equiv \text{mgu}(f \mathcal{T}_n, f \mathcal{V}) \) then \(\nu \cdot A(\Theta) \).

The restriction to fresh linear transparent patterns \(\mathcal{T}_n \) is essential, otherwise the mgu may not be well-typed. Consider for example the constructor \(\text{cont} : \forall \alpha. \alpha \rightarrow \text{container} \) and a set of assumptions \(A \) containing \(X : \text{nat} \). It is clear that \(\mathcal{P} = \text{cont} X \) is linear but non-transparent, because \(\text{cont} \) is not 1-transparent. Therefore, the mgu’s will also be well-typed. This fact is based in the following result:

Theorem 3.11 (Type preservation of \(\sim_{\nu}^{\text{impu}} \)). Let \(\mathcal{P} \) be a program such that left-hand sides of rules contain only transparent patterns. If \(\nu \cdot A(\mathcal{P}), A \vdash e : \tau \) and \(e \sim_{\nu}^{\text{impu}} e' \) then \(A \oplus A' \vdash e' : \tau \) and \(\nu \cdot A(\mathcal{A}(\theta)) \), where \(A' \) is a set of assumptions associated to the reduction.

So finally, with \(\sim_{\nu}^{\text{impu}} \) we have obtained a narrowing relation that is able to ensure type preservation without using any type information at run-time. However, as we mentioned before, this comes at the price of losing completeness wrt. HO-CRWL, not only because we are restricted to using mgu’s—which is not a severe restriction, as we will see later—but mainly because we are not able to use the rules (VAct) and (VBind) any more, which are essential for generating binding for variable applications like those in Example 3.3. We will try to mitigate that problem in Section 4.

4. Reductions without Variable Applications

In this section we want to identify a class of programs in which \(\sim_{\nu}^{\text{impu}} \) is sufficiently complete so it can perform well-typed narrowing derivations without losing well-typed solutions. As can be
seen in the Lifting Lemma from \cite{25}, the restriction of the let-narrowing relation \(\leadsto\) that only uses mgu’s in each step is complete wrt. HO-CRWL. Therefore, we strongly believe that the restriction of \(\leadsto_{\text{bot}}\) using only mgu’s is complete wrt. to the computation of well-typed solutions, although proving it is an interesting matter of future work. For this reason, in this section we are only concerned about determining under which conditions \(\leadsto_{\text{bots}}\) is complete wrt. the restriction of \(\leadsto_{\text{bot}}\) to mgu’s.

Our experience shows that although we only have to assure that neither (VAct) nor (VBind) are used in a narrowing step. However, the absence of unsafe variables is not preserved after \(\leadsto_{\text{bot}}\) steps even if the rules do not contain unsafe extra variables:

\textbf{Example 4.4.} Consider the symbols in Example 4.2 and a new function \(g\) defined as \(\{g \to X\}\) with type \(g : \forall \alpha.\alpha\). The extra variable \(X\) has the polymorphic type \(\alpha\) in the rule for \(g\), so it is safe. The expression \(f\ g\) does not contain any unsafe variable, however we can make the reduction:

\[
f\ g \leadsto_{\text{bot}} f\ X_1 \leadsto_{\text{bots}} [X_1 \mapsto \text{true}]\ F_1 \text{ true}
\]

The new variable \(X_1\) introduced has type \(\text{BoolFunctContainer}\), which is unsafe.

\textbf{Example 4.4} shows that not only unsafe free variables must be avoided, but any expression of unsafe type which can be reduced to a free variable. In this case the problematic expression is \(g\), which has type \(\text{BoolFunctContainer}\) and produces a free variable. Example 4.4 also shows that polymorphic extra variables are a source of problems, since they can take unsafe types depending on each particular use.

4.2 Restricted programs

Based on the problems detected in the previous section, we characterize a restricted class of programs and expressions to evaluate in which \(\leadsto_{\text{bot}}\) steps do not apply (VAct) and (VBind). First, we need that the expression to evaluate does not contain unsafe variables. Second, we forbid rules whose extra variables have unsafe types. Finally, we must also avoid polymorphic extra variables, since they can take different types, in particular unsafe ones. The restriction over programs is somehow tight: any program with functions using polymorphic extra variables are out of this family of programs, in particular the function \(\text{sublist}\) in Section \[\text{4}\] and other common functions using extra variables—see Section \[\text{4}\.3\] for a detailed discussion.

In order to define formally this family of programs, we propose a restricted notion of well-typed programs. This notion is very similar to that in Definition \[\text{4.4}\].\] but using the restricted typing rule (\(\Lambda'\)) for \(\lambda\)-abstractions in Figure 4 which avoids extra variables with polymorphic or unsafe types.

\textbf{Definition 4.5} (Well-typed restricted program). A program rule \(f \to e\) is well-typed restricted wrt. \(A\) if \(A\) is well-typed restricted wrt. \(\Lambda'\). The new variable \(\text{true}\) is a ground and safe wrt. \(A\).

Clearly, if an expression does not contain free unsafe variables it does not contain free HO variables either, so by Lemma 4.1 neither (VAct) nor (VBind) could be used in a narrowing step. However, the absence of unsafe variables is not preserved after \(\leadsto_{\text{bot}}\) steps even if the rules do not contain unsafe extra variables:

\textbf{Example 4.4.} Consider the symbols in Example 4.2 and a new function \(g\) defined as \(\{g \to X\}\) with type \(g : \forall \alpha.\alpha\). The extra variable \(X\) has the polymorphic type \(\alpha\) in the rule for \(g\), so it is safe. The expression \(f\ g\) does not contain any unsafe variable, however we can make the reduction:

\[
f\ g \leadsto_{\text{bot}} f\ X_1 \leadsto_{\text{bots}} [X_1 \mapsto \text{true}]\ F_1 \text{ true}
\]

The new variable \(X_1\) introduced has type \(\text{BoolFunctContainer}\), which is unsafe.

Example 4.4 shows that not only unsafe free variables must be avoided, but any expression of unsafe type which can be reduced to a free variable. In this case the problematic expression is \(g\), which has type \(\text{BoolFunctContainer}\) and produces a free variable. Example 4.4 also shows that polymorphic extra variables are a source of problems, since they can take unsafe types depending on each particular use.

4.2 Restricted programs

Based on the problems detected in the previous section, we characterize a restricted class of programs and expressions to evaluate in which \(\leadsto_{\text{bot}}\) steps do not apply (VAct) and (VBind). First, we need that the expression to evaluate does not contain unsafe variables. Second, we forbid rules whose extra variables have unsafe types. Finally, we must also avoid polymorphic extra variables, since they can take different types, in particular unsafe ones. The restriction over programs is somehow tight: any program with functions using polymorphic extra variables are out of this family of programs, in particular the function \(\text{sublist}\) in Section \[\text{4}\] and other common functions using extra variables—see Section \[\text{4}\.3\] for a detailed discussion.

In order to define formally this family of programs, we propose a restricted notion of well-typed programs. This notion is very similar to that in Definition \[\text{4.4}\].\] but using the restricted typing rule (\(\Lambda'\)) for \(\lambda\)-abstractions in Figure 4 which avoids extra variables with polymorphic or unsafe types.

\textbf{Definition 4.5} (Well-typed restricted program). A program rule \(f \to e\) is well-typed restricted wrt. \(A\) if \(A\) is well-typed restricted wrt. \(\Lambda'\). The new variable \(\text{true}\) is a ground and safe wrt. \(A\).

Clearly, if an expression does not contain free unsafe variables it does not contain free HO variables either, so by Lemma 4.1 neither (VAct) nor (VBind) could be used in a narrowing step. However, the absence of unsafe variables is not preserved after \(\leadsto_{\text{bot}}\) steps even if the rules do not contain unsafe extra variables:

\textbf{Example 4.4.} Consider the symbols in Example 4.2 and a new function \(g\) defined as \(\{g \to X\}\) with type \(g : \forall \alpha.\alpha\). The extra variable \(X\) has the polymorphic type \(\alpha\) in the rule for \(g\), so it is safe. The expression \(f\ g\) does not contain any unsafe variable, however we can make the reduction:

\[
f\ g \leadsto_{\text{bot}} f\ X_1 \leadsto_{\text{bots}} [X_1 \mapsto \text{true}]\ F_1 \text{ true}
\]

The new variable \(X_1\) introduced has type \(\text{BoolFunctContainer}\), which is unsafe.

Example 4.4 shows that not only unsafe free variables must be avoided, but any expression of unsafe type which can be reduced to a free variable. In this case the problematic expression is \(g\), which has type \(\text{BoolFunctContainer}\) and produces a free variable. Example 4.4 also shows that polymorphic extra variables are a source of problems, since they can take unsafe types depending on each particular use.

4.2 Restricted programs

Based on the problems detected in the previous section, we characterize a restricted class of programs and expressions to evaluate in which \(\leadsto_{\text{bot}}\) steps do not apply (VAct) and (VBind). First, we need that the expression to evaluate does not contain unsafe variables. Second, we forbid rules whose extra variables have unsafe types. Finally, we must also avoid polymorphic extra variables, since they can take different types, in particular unsafe ones. The restriction over programs is somehow tight: any program with functions using polymorphic extra variables are out of this family of programs, in particular the function \(\text{sublist}\) in Section \[\text{4}\] and other common functions using extra variables—see Section \[\text{4}\.3\] for a detailed discussion.

In order to define formally this family of programs, we propose a restricted notion of well-typed programs. This notion is very similar to that in Definition \[\text{4.4}\].\] but using the restricted typing rule (\(\Lambda'\)) for \(\lambda\)-abstractions in Figure 4 which avoids extra variables with polymorphic or unsafe types.

\textbf{Definition 4.5} (Well-typed restricted program). A program rule \(f \to e\) is well-typed restricted wrt. \(A\) if \(A\) is well-typed restricted wrt. \(\Lambda'\). The new variable \(\text{true}\) is a ground and safe wrt. \(A\).
step, is parameterized by the type system, then further mentions to \(\leadsto_{\text{bot}} \) in this section will refer to a relation slightly smaller than the one presented in Section 4.3. It is easy to see that this variant also preserves types in derivations. Therefore, although the following results are limited to this variant, they are still relevant.

The key property of well-typed restricted programs is that, starting from an expression without unsafe variables, the resulting expression of a \(\leadsto_{\text{bot}} \) reduction do not contain such variables either:

Lemma 4.6 (Absence of unsafe variables). Let \(e \) be an expression not containing unsafe variables wrt. \(A \) and \(P \) be a program such that \(wt(A)(P) \). If \(e \leadsto_{\text{bot}}^* e' \) then \(e' \) does not contain unsafe variables wrt. \(A \oplus A' \), where \(A' \) is a set of assumptions associated to the reduction.

Notice that the use of mgus’s in the \(\leadsto_{\text{bot}} \) steps is not necessary in the previous lemma, as the absence of unsafe variables is guaranteed by the well-typed substitution implicit in the definition of the \(\leadsto_{\text{bot}} \). Based on Lemma 4.6, it is easy to prove that \(\leadsto_{\text{longw}} \) is complete to the restriction of \(\leadsto_{\text{bot}} \) to mgus’s:

Theorem 4.7 (Completeness of \(\leadsto_{\text{longw}} \) wrt. \(\leadsto_{\text{bot}} \)). Let \(e \) be an expression not containing unsafe variables wrt. \(A \) and \(P \) be a program such that \(wt(A)(P) \). If \(e \leadsto_{\text{bot}}^* e' \) using mgus’s in each step then \(e \leadsto_{\text{longw}}^* e' \).

Notice that completeness is assured even for programs having non transparent left-hand sides, as well-typedness of substitutions is guaranteed by \(\leadsto_{\text{bot}} \).

4.3 Expressiveness of the restricted programs

The previous section states the completeness of \(\leadsto_{\text{longw}} \) wrt. \(\leadsto_{\text{bot}} \) for the class of well-typed restricted programs, when only mgus’s are used in (Narr) steps. However this class leaves outside a number of interesting functions containing extra variables. For example, the sublist function in Section 1 is discarded. The reason is that extra variables of the rule—Us and Vs—must have type \([\alpha]\), which is not ground. A similar situation happens with other well-known polymorphic functions using extra variables, as the last function to compute the last element of a list—last Xs \(\rightarrow \text{cond} (Ys + \{E\} \Rightarrow Xs) \ E \) [13]—or the function to compute the inverse of a function at some point—inv F X \(\rightarrow \text{cond} (F Y == X) Y \). A consequence is that the class of well-typed restricted programs excludes many polymorphic functions using extra variables, since they usually have extra variables with polymorphic types.

However, not all functions using extra variables are excluded from the family of well-typed restricted programs. An example is the even function from Section 1 that checks whether a natural number is even or not. The whole rule has type \(\text{nat} \to \text{nat} \) and it contains the extra variable \(Y \) of type \(\text{nat} \), which is ground and safe, making the rule valid. Other functions handling natural numbers and using extra variables as compound \(X \to \text{cond} \text{ (times M N} \Rightarrow X) \text{true} \)—where times computes the product of natural numbers—are also valid, since both \(M \) and \(N \) have type \(\text{nat} \). Moreover, versions of the rejected polymorphic functions adapted to concrete ground types are also in the family of well-typed restricted programs. For example, functions as subListNat or lastBool with types \(\text{nat} \to [\text{nat}] \to \text{bool} \) and \(\text{bool} \to \text{bool} \) and the same rules as their polymorphic versions are accepted. However, this is not a satisfactory solution: the generation of versions for the different types used implies duplication of code, which is clearly contrary to the degree of code reuse and generality offered by declarative languages—specially by means of polymorphic functions and the different input/output modes of function arguments.

The class of well-typed restricted programs is tighter than desired, and leaves out several interesting functions. Furthermore, for some of those functions—as subList or last—we have not discovered any example where unsafe variables were introduced during reduction. Therefore, we plan to further investigate the characterization of such a family in order to widen the number of programs accepted, while leaving out the problematic ones.

5. Type Preservation for Needed Narrowing

In this section we consider the type preservation problem for a simplified version of the Curry language, where features irrelevant to the scope of this paper are ignored, like constraints, encapsulated search, if/then, etc. Therefore we restrict ourselves to simple Curry programs, i.e., programs using only first-order patterns and transparent constructor symbols—which implies that all the patterns in left-hand sides are transparent. Besides, programs will be evaluated using the needed narrowing strategy [16] and performing reduction for variable applications—which is simulated by dropping the rules (VAct) and (VBind). We have decided to focus on needed narrowing because it is the most popular on-demand evaluation strategy, and it is at the core of the majority of modern FLP systems.

We use a transformational approach to employ \(\leadsto_{\text{longw}} \) to simulate an adaptation of the needed narrowing strategy for let-narrowing. We rely on two program transformations well-known in the literature. In the first one, we start with an arbitrary simple Curry program and transform it into an overlapping inductively sequential (OIS) program [11]. For programs in this class, an overlapping definitional tree is available for every function, that encodes the demand structure implied by the left-hand sides of its rules. Then we proceed with the second transformation, which takes an OIS program and transforms it into uniform format [12] programs in which the left-hand sides of the rules for every function \(f \) have either the shape \(f X \) or \(f (X \rightarrow Y) Z \).

There are other well-known transformations from general programs to OIS programs—for example [10]—but we have chosen the transformation in Definition 5.1—which is similar to the transformation in [2], but now extended to generate type assumptions—because of its simplicity. The transformation processes each function independently: it takes the set of rules \(P_f \) for each function \(f \) and returns a pair composed by the transformed rules and a set of assumptions for the auxiliary fresh functions introduced by the transformation.

Definition 5.1 (Transformation to OIS). Let \(P_f \equiv \{ f \, \prod_{n} \to e_1, \ldots, f \, \prod_{m} \to e_m \} \) be a set of \(n \) program rules for the function \(f \) such that \(wt(A)(P_f) \). If \(f \) is an OIS function, \(\text{OIS}(P_f) = (P_f, \emptyset) \). Otherwise \(\text{OIS}(P_f) = (f_1 \, \prod_{n_1} \to e_1, \ldots, f_m \, \prod_{n_m} \to e_m, f \, \prod_{n} \to f_1 \, \prod_{n_1} \ldots f_m \, \prod_{n_m}, \{f_m : A(f)\}) \), where ? is the non-deterministic choice function defined with the rules \(X\,Y \to X, X\,Y \to Y \).

The following result states that the transformation OIS preserves types. Notice that any other transformation to OIS format that also preserves types could be used instead.

Theorem 5.2 (OIS(\(P_f \)) well-typedness). Let \(P_f \) be a set of program rules for the same function \(f \) such that \(wt(A)(P_f) \). If \(\text{OIS}(P_f) = (P', A') \) then \(wt(A \oplus A')(P') \).

After the transformation the assumption for \(f \) remains the same and the new assumptions refer to fresh function symbols. There-

\(^1\)The function inv can introduce HO variables when combined with a constant function as \(\text{zero} \to z \) with type \(\forall \alpha. \alpha \to \text{nat} \): \(\text{inv zero} z \) true \(\leadsto_{\text{bot}}^* Y_1 \) true, where \(Y_1 \) is clearly unsafe.
fore, it is easy to see that the previous result is also valid for programs with several functions.

Now, to transform the program from OIS into uniform format we use the following transformation, which is a slightly variant of the transformation in [42]. Like in the previous transformation, we treat each function independently, returning the translated rules together with the extra assumptions for the auxiliary functions.

Definition 5.3 (Transformation to uniform format). Let $P_f \equiv \{ f \overset{i_1}{\rightarrow} e^1, \ldots, f \overset{i_n}{\rightarrow} e^n \}$ be an OIS program of m program rules for a function f such that $\text{wt}_A(P_f)$. If P_f is already in uniform format, then $\text{U}(P_f) = (P', \emptyset)$. Otherwise, we take the uniformly demanded position o and split P_f into τ sets P_{τ} containing the rules in P_f with the same constructor symbol in position o. Then $\text{U}(P_f) = (\bigcup_{\tau=1}^{m} P_{\tau} \cup P', \bigcup_{\tau=1}^{m} A_{\tau} \cup A')$ where:

- $U(P_{\tau}) = (P', A')$
- c_i is the constructor symbol in position o in the rules of P_{τ}, with $ar(c_i) = k_i$
- P'_{τ} is the result of replacing the function symbol f in P_{τ} by $f(c_i(o))$ and flattening the patterns in position o in the rules, i.e., $f \tau'(c_i(o), Y_k_i) \overset{\tau'}{\rightarrow} e$ is replaced by $f(c_i(o)) Y_k_i \overset{\tau'}{\rightarrow} e$
- $P'_{\tau} \equiv \{ f \overset{i_1}{\rightarrow} e^1, \ldots, f \overset{i_n}{\rightarrow} e^n \}$
- $f \overset{i_1}{\rightarrow} e^1, \ldots, f \overset{i_n}{\rightarrow} e^n$
- P'_{τ} is pairwise distinct fresh variables such that $j + l + 1 = n$
- $A_{\tau} \equiv \{ f(c_i(o)) : \forall \sigma. \tau \in \tau_k_1 \rightarrow \pi \rightarrow \tau, \ldots, f(c_i(o)) : \forall \sigma. \tau \in \tau_k_n \rightarrow \pi \rightarrow \tau \}$
- Notice that since constructor symbols c_i are transparent, these τ_k_i do exist and are univocally fixed.

This transformation also preserves types. For the same reasons as before, the following result is also valid for programs with several functions.

Theorem 5.4 ($\text{U}(P_f)$ well-typedness). Let P_f be a set of program rules for the same overlapping inductive sequential function f such that $\text{wt}_A(P_f)$. If $U(P_f) = (P', A')$ then $\text{wt}_{A \oplus A'}(P')$.

We have just seen that we can transform an arbitrary program into uniform format while preserving types. The preservation of the semantics is also stated in [42][43]. Although these results have been proved in the context of term rewriting, we strongly believe that they remain valid for the call-time choice semantics of the HO-CRWL framework. Similarly, we are strongly confident that the completeness of narrowing with mgu’s over a uniform program wrt. needed narrowing over the original program [42] is also valid in the framework of let-narrowing. Combining those results with the type preservation results for let-normalization and the program transformations—Theorems 3.11, 5.2, and 5.4—we can conclude that a simulation of the evaluation of simple Curry programs using let-normalization based on the transformations above, is safe wrt. types.

6. Conclusions and Future Work

In this paper we have tackled the problem of type preservation for FLP programs with extra variables. As extra variables lead to the introduction of fresh free variables during the computations, we have decided to use the let-narrowing relation—which is sound and complete wrt. HO-CRWL, a standard semantics for FLP—as the operational mechanism for this paper. This is also a natural choice because let-narrowing reflects the behaviour of current FLP systems like Toy or Curry, that provide support for extra and logical variables instead of reducing expressions by rewriting only.

The other main technical ingredient of the paper is a novel variation of Damas-Milner type system that has been enhanced with support for extra variables. Based on this type system we have defined the well-typed let-narrowing relation $\llbracket \text{let} \rrbracket$, which is a restriction of let-narrowing that preserves types. To the best of our knowledge, this is the first paper proposing a polymorphic type system for FLP programs with logical and extra variables such that type preservation is formally proved. As we have seen in Example 3.2 from Section 3, the type systems from [21][22] lose type preservation when extra variables are introduced. In [14], another remarkable previous work, the proposed type system only supports monomorphic functions and extra variables are not allowed. In [14] only programs with transparent patterns and without extra variables are considered, and functional arguments in data constructors are forbidden. Nevertheless, any of those programs is supported by our $\llbracket \text{let} \rrbracket$ relation, which has to carry type information at run-time, but just like the extension of the Constructor-based Lazy Narrowing Calculus proposed in [14].

The relevance of Theorem 3.8, which states that $\llbracket \text{let} \rrbracket$ preserves types, lies in the clarification it makes of the problem of type preservation on narrowing reductions with programs with extra variables. Relying on the abstract notion of well-typed substitution, which is parametrized by the type system and independent of any concrete operational mechanism, we have isolated a sufficient condition that ensures type preservation when imposed to the unifiers used in narrowing derivations. This contrasts with previous works like [14]—the closest to the present paper—in which a most general unifier was implicitly computed. Moreover, $\llbracket \text{let} \rrbracket$ preserves types for arbitrary programs, something novel in the field of type systems in FLP—to the best of our knowledge. Hence, $\llbracket \text{let} \rrbracket$ is an intended ideal narrowing relation that always preserves types, but that can only be directly realized by using type checks at run-time. Therefore, $\llbracket \text{let} \rrbracket$ is most useful when used as a reference to define some imperfect but more practical materializations of it—subrelations of $\llbracket \text{let} \rrbracket$—that only work for certain program classes but also preserve types while avoiding run-time type checks. An example of this is the relation $\llbracket \text{tconv} \rrbracket$, whose applicability is restricted to programs with transparent patterns, and that also lacks some completeness. This relation is based on two conditions imposed over $\llbracket \text{let} \rrbracket$ steps: mgu’s are used in every (Nam) step; and the rules (VAct) and (VBind) are avoided. While the former is not a severe restriction—as $\llbracket \text{let} \rrbracket$ is complete wrt. HO-CRWL even if only mgu’s are allowed as unifiers [23]—the latter is more problematic, because then $\llbracket \text{tconv} \rrbracket$ is not able to generate bindings for variable applications. To mitigate this weakness we have investigated how to prevent the use of (VAct) and (VBind) in $\llbracket \text{let} \rrbracket$ derivations. After some preliminary attempts that witness the difficulty of the task, and also give valuable insights about the problem, we have finally characterized a class of programs in which these bindings for variable applications are not needed, and studied their expressiveness.

Then we have applied the results obtained so far for proving the type preservation for a simplified version of the Curry language. HO-patterns are not supported in Curry, which treats functions as black boxes [4]. Therefore Curry programs do not intend to generate solutions that include bindings for variable applications, and so the rules (VAct) and (VBind) will not be used to evaluate these programs. Besides, in Curry all the constructors are transparent, and the needed narrowing on-demand strategy is employed in most implementations of Curry. We have used two well-known program transformations to simulate the evaluation of Curry programs with an adaptation of needed narrowing for let-narrowing. Then we have proved that both transformations preserve types which, combined
with the type preservation of \(\sim_{\text{lmgu}} \), implies that our proposed simulation of needed narrowing also preserves types.

Regarding future work, we would like to look for new program classes more general than the one presented in Section 4, because, as we pointed out at the end of that section, the proposed class is quite restrictive and it forbids several functions that we think are not dangerous for the types.

Another interesting line of future work would deal with the problems generated by opaque patterns, as we did in [22] for the restricted case where we drop logical and extra variables. We think that an approach in the line of existential types [20] that, contrary to [22], forbids pattern matching over existential arguments, is promising. This has to do with the parametricity property of types systems [31], which is broken in [22] as we allowed matching on existential arguments, and which is completely abandoned from the very beginning in [21]. In fact it was already detected in [14] that the loss of parametricity leads to the loss of type preservation in narrowing derivations—in that paper instead of parametricity the more restrictive property of type generality is considered. All that suggests that our first task regarding this subject should be modifying our type system from [22] to recover parametricity by following an approach to opacity closer to standard existential types.

References

