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AIM: extend the tools, the framework and the apparatus of fuzzy 
logic

Meta-logic programming 
for a synonymy logic

Connections 
between bilattices 
theory and fuzzy 

logic

Fuzzy model theory
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Bilattices theory and 
fuzzy logic

AIM: investigate the potentialities of bilattice theory for 
the graded approach to fuzzy logic

Manage positive and 
negative information

Treat incomplete and 
inconsistent information
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Bilattices as tool



A bilattice  (Ginsberg) is a structure with two bounded 
lattice orders

B=(B, ≤t, ≤k, False, True, ⊥ , T)

The order ≤t  is interpreted as degree of truth, the 
order ≤k is related with the amount of information or 
knowledge.

x ≤t y ;   x ≤k y
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A valuation structure is  a complete lattice V  = (V, ≤, 0, 1) 
with 0≠ 1. 

IDEA: interpret  the elements of a bilattice 
B  as pieces of information on the elements 
in V.



It is possible to define a negation with some related 
axioms

B=(B, ≤t, ≤k, ~, False, True, ⊥ , T)
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1.  x ≤t y ⇒  ~y ≤t ~x  

2.  x ≤k y ⇒  ~x ≤k ~y 

3.  ~~x = x

The negation ~ is order-reversing with 
respect to ≤t and order-preserving with 

respect to ≤k



Examples

B(L) = (L× L, ≤t, ≤k, ~, (0,1), (1,0), (0,0), (1,1))

I(L)=(I(L), ≤t, ≤k, {0}, {1}, [0,1], ∅ )

Where (x, x′ ) ≤t (y, y′ ) ⇔  x ≤ y and y′  ≤ x′
 (x, x′ ) ≤k (y, y′ ) ⇔  x ≤ y and x′  ≤ y′

~(x, x′ ) = (x′ , x). 

Where ≤k is the dual of inclusion
∀ [a,b], [c,d] ∈  I(L)-{∅ }, [a,b] ≤t [c,d] ⇔  a ≤ c and b ≤ d,
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Interval bilattice

Product bilattice 



Semantics

To connect a bilattice B  with a valuation structure V  we need to define a 
relation ╞  * from V to B.
The meaning of λ╞  *b is that b is a correct piece of information on λ.

We call bt-system  a structure (V, B,╞ *) where V  is a 
valuation structure, B is a complete bilattice and ╞ * is a 
relation in  V×B such that:

i)     λ╞ * x and x’ ≤k x ⇒  λ╞ * x’
ii)   ∀ λ ∈  V the set {x ∈  B: λ╞ * x} admits a 
       k-sup 
iii)  0╞ * False ; 1╞ * True.

For example, if B is a interval bilattice a possible definition is 
  

λ╞ * [a1,a2] ⇔  λ ∈  [a1,a2] 
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Semantics

We call B-subset of formulas or valuation any map v : F → B.  

A multi-valued semantics is a class M  of maps m  : F  →V that are truth 
functional; the elements in M are called models.

We say that m ∈  M is a model of v, in brief m╞ v, if m(α)╞ * v(α) for every 
formula α.

Extend some semantics notions of fuzzy logic to bilattice

We define two different semantics, one of these is able to manage 
incomplete and inconsistent information.
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Syntax

We define a notion of deduction apparatus for bilattice by 
extending the notion of fuzzy inference rule in a suitable way 
(in particular in the case of Kripke worlds-based bilattice)
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where
α → t β  is the formula ¬ α ∨  β ;

 α → f  β  is the formula ¬ α ∧  β ; 

(A+ , A-) ◊ + (I+ , I- ) = (A+ ∩  I+, ∅ );

(A+, A-) ◊  - (I+, I- ) = (∅ , A- ∩  I- )
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D. Genito, G. Gerla, “An attempt to connect bilattice theory 
with fuzzy logic”, submitted to Archive for mathematical logic 

Completeness theorem for both semantics

Estension of Pavelka’s approach to bilattice logic

Equivalence between K-closed valuation 
an W-closed valuation

Theorem:  v is a K-closed valuation ⇔  v is a W-closed valuation 
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FUTURE WORKS

• Bilattice logic programming

• Extend our logical system to any bilattice

• Bilattice logic with similarity
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• Bilattice logic with T-norm

• Extend fuzzy control by bilattice theory

• Bilattice and Qualified Logic programming
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