On Data-Structure Rewriting

Rachid Echahed
LIG Lab, Grenoble
France

June, 2010
A rewrite relation R is a binary relation

$$R \subseteq A \times A$$

$(u, v) \in R$ is read “u rewrites into v” and written

$$u \rightarrow v$$
Rewriting (reminder)

\[R \subseteq A \times A \]

- \(A = \) set of strings over a vocabulary \((V^*)\)
- \(A = \) set of states of the form \((\text{variables, valuation})\)
- \(A = \) set of Turing Machine configurations
- \(A = \) set of lambda-terms
- \(A = \) set of trees (or terms)
- \(A = \) set of clauses
- \(A = \) set of process terms
- \(A = \ldots \)
Rewriting

\[R \subseteq A \times A \]

▶ How to define a rewrite relation \(R \)?
▶ How to define a run or the execution of a program?
 ▶ A rewrite derivation: \(u_0 \) is the initial “call”
 \[u_0 \rightarrow u_1 \rightarrow \ldots \rightarrow u_n \]
 ▶ A narrowing derivation:
 \(w_0 \) is the initial goal (to solve):
 \[w_0 \rightsquigarrow_{\sigma_1} w_1 \ldots \rightsquigarrow_{\sigma_n} w_n \]

Where

\[w_i \rightsquigarrow_{\sigma} w_{i+1} \text{ iff } \sigma(w_i) \rightarrow w_{i+1} \]

\(w_i \) is an element of \(A \) with partial information
\(\sigma \) instantiates \(w_i \)
Motivation: Extension of Term Rewriting; sharing subterms

Function definitions by means of term rewrite rules

\[
0 + x \rightarrow x \\
succ(x) + y \rightarrow succ(x + y) \\
double(x) \rightarrow x + x
\]

Very well established domain with several results: Confluence, Termination, Strategies, Proof methods (equational reasoning, induction) etc.
Consider the following rules:

\[
\begin{align*}
 f(a, b) & \rightarrow c \\
 a & \rightarrow b
\end{align*}
\]

Sharing does not preserve properties of tree (term) rewriting!

\[
\begin{align*}
 f(a, a) & \rightarrow f(a, b) \rightarrow c
\end{align*}
\]

[Plump 99] survey on rewriting with “dags”.

Sharing Subterms (information) and Term Rewriting
Motivation (continued)

- Data-structure rewriting including **cyclic** data-structures with pointers such as circular lists, doubly-linked lists, etc.
- Data-structures are more complex than terms (*Cycles, Sharing*)
- Difficult to encode efficiently using terms
- Usually described by pointers (⇒ **pointer rewriting**)
- Formally described as **term-graphs**
 term-graphs = terms with cycles and sharing
Term-graphs

[Barendregt et al. 87]
[Plump 99, survey on *acyclic* term-graphs]

Let \(\Omega \) be a set of operation symbols. A *term-graph* \(t \) over \(\Omega \) is defined by:

- a set of nodes \(N_t \),
- a subset of labeled nodes \(N^\Omega_t \subseteq N_t \),
- a labeling function \(L_t : N^\Omega_t \rightarrow \Omega \),
- a successor function \(S_t : N^\Omega_t \rightarrow N_t^* \),
Term-graphs

[Barendregt et al. 87]
[Plump 99, survey on acyclic term-graphs]

Let Ω be a set of operation symbols and \mathcal{F} a set of feature symbols.

A term-graph t over Ω and \mathcal{F} is defined by:

- a set of nodes N_t,
- a set of edges E_t,
- a subset of labeled nodes $N^\Omega_t \subseteq N_t$,
- a node labeling function $L^n_t : N^\Omega_t \to \Omega$,
- an edge labeling function $L^e_t : E_t \to \mathcal{F}$,
- a source function $S_t : E_t \to N_t$,
- a target function $T_t : E_t \to N_t$.

(Term-)Graph Rewriting

- Which graphs? (Term-Graphs)
- Which rules?
- Which rewrite relation?

Two main approaches
- Algorithmic approaches
- Algebraic approaches (DPO, SPO, ...)

Graph Transformation

- Handbook of Graph Grammars and Computing by Graph Transformation (World Scientific)
 - Vol 2: Applications, Languages and Tools
 - Vol 3: Concurrency, Parallelism and Distribution
- A Monograph in Theoretical Computer Science (An EATCS series)
Outline

Introduction

Motivations

Termgraph Rewrite Systems

Confluence and Rewrite Strategies

Narrowing

A Modal Logic for Graph Transformation

Conclusion
Algorithmic approach

[Barendregt et al. 87]
Shape of a rule:

\[L \rightarrow R \]

where \(L \) and \(R \) are rooted term-graphs.
A rule can be defined as one graph together with two roots

\[(L + R, r_1, r_2)\]

where \(r_1 \) and \(r_2 \) are the roots of \(L \) and \(R \) respectively
Let \(\rho \) be the rule \((L + R, r_1, r_2)\)
We say that \(G \) rewrites to \(H \) using the rule \(\rho \) if

- **L matches** a subgraph of \(G \) \((h : L \rightarrow G \mid_n)\)
- (build phase) Construct graph \(G_1 = G + h(R) \)
- (redirection phase) \(G_2 = [h(r_1) \gg h(r_2)]G_1 \)
- (garbage collection phase) \(H = G_2 \mid_{\text{root}} \)

A cumbersome definition, hard to deal with in practice!
Rewrite Rules with actions

Shape of a rewrite rule:

\[[L \mid C] \rightarrow R \]

- \(L \) is a term-graph pattern
- \(C \) is a node constraint, \(\bigwedge_{i=1}^{n} (\alpha_i \not\sim \beta_i) \).
- \(R \) is a sequence of actions \(a_1; a_2; \ldots; a_n \)
We consider three kinds of actions:

- **Node definition** $\alpha : f(\alpha_1, \ldots, \alpha_n)$
- **Edge redirection** $\alpha \gg_i \beta$
- **Global redirection** $\alpha \gg \beta$
Application of actions

\(a[t] \) denotes the application of action(s) \(a \) on the term-graph \(t \)

- Let \(t = n \cdot f(p, q : a) \)

- Let \(t_1 = p \cdot h(p)[t] = n \cdot f(p \cdot h(p), q : a) \)
Application of actions

\[a[t] \] denotes the application of action(s) \(a \) on the term-graph \(t \)

- Let \(t_1 = p : h(p)[t] = n : f(p : h(p), q : a) \)

- Let \(t_2 = n \gg_2 p[t_1] = n : f(p : h(p), p); q : a \)
Application of actions

\(a[t] \) denotes the application of action(s) \(a \) on the term-graph \(t \)

- Let \(t_2 = n \gg_2 p[t_1] = n : f(p : h(p), p); q : a \)

- Let \(t_3 = p \gg q[t_2] = n : f(q, q); p : h(q) \)
Rewrite Step

Let t be a term-graph

Let ρ be a rewrite rule $[L \mid C] \rightarrow R$

t rewrite to s at node α, $t \rightarrow_\alpha s$ iff:

- $\exists m : L \rightarrow t$ a homomorphism (ρ-matcher)
- $m(\text{root}_L) = \alpha$
- α is reachable from root_t
- $m(C)$ holds
- $s = m(R)[t]$
Term-Graph Rewrite Systems (tGRS)

–Example–

Length of a circular list:

\[r : \text{length}(p) \rightarrow r : \text{length}'(p, p) \]

\[r : \text{length}'(p_1 : \text{cons}(n, p_2), p_2) \rightarrow r : s(0) \]

\[[r : \text{length}'(p_1 : \text{cons}(n, p_2), p_3) \mid p_2 \not\approx p_3] \rightarrow r : s(q); q : \text{length}'(p_2, p_3) \]

Remark: term rewrite systems are tGRS’s.
In-situ list reversal:

\[o : reverse(p) \rightarrow o : \text{rev}(p, nil) \]

\[o : \text{rev}(p_1 : \text{cons}(n, nil), p_2) \rightarrow p_1 \gg 2 p_2; o \gg p_1 \]

\[o : \text{rev}(p_1 : \text{cons}(n, p_2 : \text{cons}(m, p_3), p_4) \rightarrow p_1 \gg 2 p_4; o \gg 1 p_2; o \gg 2 p_1 \]

Visual Programming would help!
DPO approach of rewrite rules with actions

A categorical approach can be found in [TERMGRAPH 06, ENTCS07, RTA07]

\[
\begin{array}{c}
L & \xleftarrow{l} & K & \xrightarrow{r} & R \\
\downarrow{m} & & \downarrow{d} & & \downarrow{m'} \\
G & \xleftarrow{l'} & D & \xrightarrow{r'} & H
\end{array}
\]

Figure: Double pushout: a rewrite step \((G \to H)\)

Redirections of edges (pointers) are handled by
\(K = \text{disconnection}(L, E, N)\) and the morphisms \(l\) and \(r\).

Remark: Morphisms \(l\) and \(r\) are not injective! \(D\) is not unique!
Confluence

\[f(x) \rightarrow x \]
\[g(x) \rightarrow x \]

The following term-graph

\[n:f \]
\[q:g \]

rewrites to

\[n:f \]
\[q:g \]
Confluence

\[
\alpha : f(\beta : c) \rightarrow \beta : a; \quad \alpha \gg \beta
\]

\[
\alpha : g(\beta : c) \rightarrow \beta : b; \quad \alpha \gg \beta
\]

The label of node \(q \) may end as \(q : a \) or \(q : b \)
Computing with non-confluent orthogonal Term-graph Rewrite Systems

How to evaluate the following term-graph?

- \texttt{addlast(length(n : [1, 2]), n)}
- Two normal forms
 - \([1, 2, 2]\) (evaluate \texttt{addlast} after \texttt{length})
 - \([1, 2, 3]\) (evaluate \texttt{length} after \texttt{addlast})
Term-graphs with Priority

[PPDP06][RTA07][RTA08]

- Endow Term-graphs with priorities \((G, <_G)\) to express which node should be evaluated first
 - \(m_1 : \text{addlast}(m_2 : \text{length}(n : [1, 2]), n); m_1 < m_2\)
- Priorities should not be a total order (stay declarative)
- Which nodes should be ordered?
- Solution: Order only nodes producing a “side-effect”
Strategies and needed nodes

A strategy ϕ is a partial function which takes a rooted term-graph t and returns a node (position) n and a rule R,

$$\phi(t) = (n, R)$$

such that the term-graph t can be reduced at node n using the rule R,

$$t \rightarrow_n t'$$
Let ϕ be a rewrite strategy. Let $\phi(t) = (p, R)$. The node p is needed iff for all derivations

$$t \rightarrow_{\beta_1} t_1 \rightarrow_{\beta_2} \ldots t_{n-1} \rightarrow_{\beta_n} t_n$$

such that t_n is a value, there exists $i \in [1..n]$ s.t. $\beta_i = p$.
Inductively sequential Term Rewrite Systems

- Constitute a subclass of TRSs for which efficient rewrite strategies are available [Antoy 92]
- Are as expressive as Strongly Sequential TRSs
- Are the basis of modern functional and logic programming languages.
- Are defined by means of data-structures called Definitional trees
Definitional Trees -case of terms-

Let \mathcal{R} be the following TRS

\[
\begin{align*}
 f(k,\text{nil}) & \rightarrow R_1 \\
 f(0,\text{cons}(x, l)) & \rightarrow R_2 \\
 f(\text{succ}(n),\text{cons}(x, l)) & \rightarrow R_3
\end{align*}
\]

A definitional tree of operator f is a hierarchical structure whose leaves are the rules defining f.

\[
\begin{align*}
 f(k, l) \\
 & \rightarrow R_1 \\
 & \rightarrow R_2 \\
 & \rightarrow R_3
\end{align*}
\]
Definitional trees
-case of term-graphs-

\[r : \text{length}'(p_1 : \text{nil}, p_2 : \bullet) \rightarrow \text{rhs}_1 \]
\[r : \text{length}'(p_1 : \text{cons}(n : \bullet, p_2 : \bullet), p_2) \rightarrow \text{rhs}_2 \]
\[[r : \text{length}'(p_1 : \text{cons}(n : \bullet, p_2 : \bullet), p_3 : \bullet) \mid p_2 \neq p_3] \rightarrow \text{rhs}_3 \]

A definitional tree \(T \) of the operation \textit{length}' is given below:

\[r : \text{length}'(p_1 : \bullet, p_2 : \bullet) \]
\[r : \text{length}'(p_1 : \text{nil}, p_2 : \bullet) \rightarrow \text{rhs}_1 \]
\[r : \text{length}'(p_1 : \text{cons}(n : \bullet, p_3 : \bullet), p_2 : \bullet) \]
\[r : \text{length}'(p_1 : \text{cons}(n : \bullet, p_2 : \bullet), p_2) \rightarrow \text{rhs}_2 \]
\[[r : \text{length}'(p_1 : \text{cons}(n : \bullet, p_2 : \bullet), p_3 : \bullet) \mid p_2 \neq p_3] \rightarrow \text{rhs}_3 \]
A Rewrite strategy ϕ

Consider the following definitional tree T of the operation g:

\[r : g(p_1 : \bullet, p_2 : \bullet) \]
\[r : g(p_1 : \text{nil}, p_2 : \bullet) \rightarrow \text{rhs}_1 \]
\[r : g(p_1 : \text{cons}(n : \bullet, p_3 : \bullet), p_2 : \bullet) \]

\[r : g(p_1 : \text{cons}(n : \bullet, p_2 : \bullet), p_2) \rightarrow \text{rhs}_2 \]
\[[r : g(p_1 : \text{cons}(n : \bullet, p_2 : \bullet), p_3 : \bullet) \mid p_2 \neq p_3] \rightarrow \text{rhs}_3 \]

\[\phi(1 : g \ (2 : g(3 : g(\text{nil}, p), q), 4 : g(\text{nil}, o))) \]
\[= \phi(2 : g(3 : g(\text{nil}, p), q)) \]
\[= \phi(3 : g(\text{nil}, p)) \]
\[= (3, \text{Rule1}) \]
Contrary to term rewriting, Definitional trees are not enough to ensure the neededness of positions computed by the strategy \(\phi \), in the context of term-graph rewriting.

 Proposition: Let \(SP = \langle \Omega, R \rangle \) be tGRS such that \(\Omega \) is constructor-based and the rules of every defined operation are stored in a definitional tree. Let \(t \) be a rooted term-graph. Then,

1. if \(\phi(t) = (p, R) \), the node \(p \) is not needed in general.
2. if \(\phi(t) \) is not defined, \(g \) can still have a constructor normal form.
Counter-examples

\[r : f(p : 0) \to r \gg p \]
\[r : f(p : \text{succ}(p' : \bullet)) \to r \gg p \]
\[r : h(p : 0, q : \text{succ}(n : \bullet)) \to q \gg p \]

Let \(t = \)

\[n : \text{succ} \]
\[r : \text{succ} \]
\[p : f \]
\[q : \text{succ} \]
\[s : h \]
\[u : 0 \]

\[\phi(t) = (p, r : f(p : \text{succ}(p' : \bullet)) \to r \gg p). \]

However, the node \(p \) is not needed in \(t \).
Counter-examples

\[r : g(p : 0) \rightarrow r \gg p \]
\[r : h(p : 0, q : \text{succ}(n : \bullet)) \rightarrow q \gg p \]

Let \(t = n : \text{succ} \)

\[\phi(t) \text{ is not defined!} \]

However, the term-graph \(t \) rewrites to \(n : \text{succ}(u : 0) \).
Let $SP = \langle \Omega, \mathcal{R} \rangle$ be a tGRS. SP is called inductively sequential iff

- The rules of every defined operation can be stored in a definitional tree and
- for all rules $[L | C] \rightarrow r$ in \mathcal{R}, for all global (respectively, local) redirections of the form $p \gg q$ (respectively, $p \gg_i q$ for some i), occurring in the right-hand side r, $p = \text{Root}_L$.
Main Properties of Strategy Φ

In presence of Inductively Sequential Term-Graph Rewrite Systems

- The positions computed by Φ are needed
- Φ is c-normalizing
- Φ is c-hyper-normalizing
- Derivations computed by Φ have minimal length
Inductively sequential tGRS are not confluent!

\[f(p : \bullet, p) \rightarrow 0 \]
\[[f(p : \bullet, q : \bullet) \mid p \neq q] \rightarrow 1 \]
\[r : g(q : \bullet) \rightarrow r \gg q \]

Let \(t = n : f \) \[\begin{array}{c}
 p : g \\
 \rightarrow \\
 q : 0
\end{array} \]

There are two different derivations starting from \(t : \)

\[t \rightarrow_n 1 \]
\[t \rightarrow_p f(q : 0, q) \rightarrow_n 0 \]
Admissible term-graphs

[JICSLP98]
\(\Omega \) is constructor-based, i.e. \(\Omega = D \cup C \) and \(D \cap C = \emptyset \)
\(D \) is a set of defined operations
\(C \) is a set of constructors

A term-graph is admissible if none of its cycles includes a defined operation.

\(n : succ(n) \) is an admissible term-graph
\(n : +(n, n) \) and \(n : tail(n) \) are not admissible
Admissible term-graphs

The set of admissible term-graphs is not closed under rewriting

\[n: f(m) \rightarrow q: g(n); \ n \gg m \]

Let \(\Omega = D \cup C \) with \(C = \{0, \text{succ}\} \) and \(D = \{f, g\} \)

\[n_1 : f(m_1 : 0) \rightarrow q_1 : g(q_1) \]
Admissible Inductively sequential Term-Graph Rewrite Systems

Let $SP = \langle \Omega, \mathcal{R} \rangle$ be an inductively sequential tGRS. SP is called admissible iff for all rules $[\pi \mid C] \rightarrow r$ in \mathcal{R} the following conditions are satisfied

- for all global (respectively, local) redirections of the form $p \gg q$ (respectively, $p \gg_i q$ for some i), occurring in the right-hand side r, we have $p = \text{Root}_\pi$ and $q \neq \text{Root}_\pi$.
- for all actions of the form $\alpha : f(\beta_1, \ldots, \beta_n)$, for all $i \in 1..n$, $\beta_i \neq \text{Root}_\pi$
- the set of actions of the form $\alpha : f(\beta_1, \ldots, \beta_n)$, appearing in r, do not construct a cycle including a defined operation.
- Constraint C includes disequations of the form $p \neq q$ where p and q are labeled by constructor symbols.
Admissible Inductively sequential Term-Graph Rewrite Systems

[ICGT08][JICSLP98]
In presence of Admissible Inductively sequential Term-Graph Rewrite Systems

- The set of admissible term-graphs is closed under the rewrite relation defined by admissible rules.
- Φ computes needed positions
- Admissible term-graphs admit unique normal forms
Narrowing

\[w_i \xrightarrow{\sigma} w_{i+1} \text{ iff } \sigma(w_i) \rightarrow w_{i+1} \]

- Rewriting = Matching + Transformation
- Narrowing = Unification + Transformation
Narrowing – Motivation –

- Automated deduction [Slagle 74] [Fay 79] [Hullot 80]
- Functional and Logic Programming [Goguen and Meseguer 84, ...]
- Security verification [Meadows 89, ...]
- Reachability Analysis [Meseguer and Thati 05, ...]
- ...

...
Narrowing

Instantiate goal variables and apply a reduction step

\[
0 + X \rightarrow X \\
\text{s}(X) + Y \rightarrow \text{s}(X + Y)
\]

\[
U + \text{s}(0) = \text{s}(\text{s}(0)) \quad \leadsto \{U \mapsto \text{s}(V)\} \quad \text{s}(V + \text{s}(0)) = \text{s}(\text{s}(0)) \\
\quad \leadsto \{V \mapsto 0\}
\]

Computed answer: \(\{U \mapsto \text{s}(0)\}\)
Some Results

Needed Term narrowing [POPL04][JACM2000]
(main operational semantics of current functional logic
programming languages)
Needed Graph Narrowing [JICSLP98]
Needed Collapsing Narrowing [Gratra 2000]
Narrowing-based algorithm for data-structure rewriting
[ICGT06]

- **Goal**
 \[
 o : equal(p : length(q), s(s(0))) = true
 \]

- **Solution** : a circular list of length two
 \[
 [q : cons(n_1, r : cons(n_2, q)) \mid q \not\approx r]
 \]
Narrowing: What do we transform?

Rule

\[o : f(p : a, q, r) \rightarrow p : b; o \gg_3 q \]

Rewrite Steps

\(o_1, p_1, q_1 \) and \(r_1 \) are constants (names or addresses)

\[o_1 : f(p_1 : a, q_1 : a, r_1) \rightarrow o_1 : f(p_1 : b, q_1 : a, q_1) \]

\[o_1 : f(p_1 : a, p_1, r_1) \rightarrow o_1 : f(p_1 : b, p_1, p_1) \]
Narrowing: What do we transform?

Rule

\[o : f(p : a, q, r) \rightarrow p : b; o \gg_3 q \]

Rewrite Steps \((o_1, p_1, q_1 \text{ and } r_1 \text{ are constants})\)

\[o_1 : f(p_1 : a, q_1 : a, r_1) \rightarrow o_1 : f(p_1 : b, q_1 : a, q_1) \]
\[o_1 : f(p_1 : a, p_1, r_1) \rightarrow o_1 : f(p_1 : b, p_1, p_1) \]

Narrowing steps \((o_2, p_2, q_2 \text{ and } r_2 \text{ are variables})\)

\[o_2 : f(p_2, q_2 : a, r_2) \rightsquigarrow? \]

\(\sigma\) labels node \(p_2\) with symbol \(a\).

\[o_2 : f(p_2, q_2 : a, r_2) \rightsquigarrow\sigma o_2 : f(p_2 : b, q_2 : a, q_2) \mid p_2 \not\approx q_2 \]
\[o_2 : f(p_2, q_2 : a, r_2) \rightsquigarrow\sigma\cup\{q_2\mapsto p_2\} o_2 : f(p_2 : b, p_2, p_2) \]
Narrowing: What do we transform?

Rule

{o : f(p : a, q, r) \rightarrow p : b; o \gg 3 q}

Narrowing steps
(o_2, p_2, q_2 and r_2 are variables)

{o_2 : f(p_2, q_2 : a, r_2)}
\leadsto_o^\sigma [apply(o_2 : f(p_2 : a, q_2 : a, r_2), p_2 : b; o_2 \gg 3 q_2)]
\leadsto [apply(o_2 : f(p_2 : a, q_2 : a, r_2), p_2 : b; o_2 \gg 3 q_2) \mid p_2 \not\approx q_2]
\leadsto [apply(o_2 : f(p_2 : b, q_2 : a, r_2), o_2 \gg 3 q_2) \mid p_2 \not\approx q_2]
\leadsto [apply(o_2 : f(p_2 : a, q_2 : a, q_2), \epsilon) \mid p_2 \not\approx q_2]
\leadsto [o_2 : f(p_2 : a, q_2 : a, q_2) \mid p_2 \not\approx q_2]
Narrowing: What do we transform?

Rule

\[o : f(p : a, q, r) \rightarrow p : b; o \gg_{3} q \]

Narrowing steps

\(o_2, p_2, q_2 \) and \(r_2 \) are variables

\[o_2 : f(p_2, q_2 : a, r_2) \]

\[\leadsto_{\sigma} [\text{apply}(o_2 : f(p_2 : a, q_2 : a, r_2), p_2 : b; o_2 \gg_{3} q_2)] \]

\[\leadsto\{q_2 \rightarrow p_2\} [\text{apply}(o_2 : f(p_2 : a, p_2, r_2), p_2 : b; o_2 \gg_{3} q_2)] \]

\[\leadsto [\text{apply}(o_2 : f(p_2 : b, p_2, r_2), o_2 \gg_{3} q_2)] \]

\[\leadsto [\text{apply}(o_2 : f(p_2 : b, p_2, p_2), \epsilon)] \]

\[\leadsto o_2 : f(p_2 : b, p_2, p_2) \]
Symbolic handling of actions

G is a term-graph

ϕ is a conjunction of disequations

τ is a sequence of actions

\[
[G \mid \phi]
\]

\[
[apply(G, \tau) \mid \phi]
\]

Example:

\[
[o_2 : f(p_2 : a, q_2 : a, q_2) \mid p_2 \not\approx q_2]
\]

\[
[apply(o_2 : f(p_2 : b, q_2 : a, r_2), o_2 \gg 3 q_2) \mid p_2 \not\approx q_2]
\]
Graph Narrowing Rules

Superposition rule (SUP)

\[
[G \mid \psi]^τ \leadsto_{SUP, \rho, \theta} [H \mid \psi']^{\sigma(\tau)}
\]

If:

▷ \(G\) is a term-graph
▷ \(\rho\) is rewrite rule \([L \mid \phi] \rightarrow R\)
▷ \(\sigma\) is a most general unifier of \(L\) and \(G\) such that:
 ▷ \(\sigma(L)\) and \(\sigma(G)\) are compatible
 ▷ The root of \(L\) unifies with a labeled node in \(G\) (non-variable unification)
▷ \(H = apply(\sigma(G) \cup \sigma(L), \sigma(R))\)
▷ \(\theta = (\sigma, K)\) with \(K = \sigma(L) \setminus \sigma(G)\)
▷ \(\psi' = \sigma(\psi) \land \sigma(\phi) \land \bigwedge_{p \in \text{affected by } (\sigma(\tau)), q \in K_\Omega} p \neq q\).
Graph Narrowing Rules

Action rule: simplify (SIM)

\[
[\text{apply}(G, \epsilon) \mid \psi]^{\tau} \sim_{SIM} [G \mid \psi]^{\tau}
\]
Action rule: execute (EXE)

\[
[\text{apply}(G, \alpha.u) | \psi]^T \rightsquigarrow_{\text{EXE}} [\text{apply}(\alpha[G], u) | \psi']^T.\alpha
\]

If:

- action \(\alpha\) is not a node creation and
- \([G | \psi]\) is ready for action \(\alpha\).
Graph Narrowing Rules

Action rule: new node (NEW)

\[
[\text{apply}(G, n^+.u) \mid \psi]^\tau \rightsquigarrow_{\text{NEW}, \sigma} [\text{apply}(n^+[G], \sigma(u)) \mid \psi']^\tau.n^+
\]

If:

- \(\sigma = \{n \mapsto n'\}\) where \(n'\) is a fresh effective node
- \(\psi' = \psi \land \bigwedge_{p \in \mathcal{V} \cap N_G} (p \not\approx n')\)
Isolation rule with equality (EQU)

\[
[\text{apply}(G, \alpha.u) \mid \psi] \xrightarrow{EQU, \sigma} [\text{apply}(\sigma(G), \sigma(\alpha) \cdot \sigma(u)) \mid \sigma(\psi)]^{\sigma(\tau)}
\]

If:

- there exists a node \(n \in \text{affected by}(\alpha) \),
- \(m \) is not an \(\alpha \)-isolated node in \(G \) and
- \(\sigma \) is a substitution (compatible with \(G \)) such that \(\sigma(n) = \sigma(m) \)

\[
o_2 : f(p_2, q_2 : a, r_2) \\
\xrightarrow{\sigma} [\text{apply}(o_2 : f(p_2 : a, q_2 : a, r_2), p_2 : b; o_2 \gg 3 q_2)] \\
\xrightarrow{\{q_2 \mapsto p_2\}} [\text{apply}(o_2 : f(p_2 : a, p_2, r_2), p_2 : b; o_2 \gg 3 q_2)]
\]
Graph Narrowing Rules

Isolation rule with disequality (DIS)

$$[\text{apply}(G, \alpha.u) \mid \psi]^\top \leadsto_{\text{DIS}} [\text{apply}(G, \alpha.u) \mid \psi \land n \neq m]^\top$$

If:

- there exists a node $n \in \text{affected by}(\alpha)$,
- m is not an α-isolated node in G

$$o_2 : f(p_2, q_2 : a, r_2)$$

$$\leadsto_\sigma [\text{apply}(o_2 : f(p_2 : a, q_2 : a, r_2), p_2 : b; o_2 \gg_3 q_2)]$$

$$\leadsto [\text{apply}(o_2 : f(p_2 : a, q_2 : a, r_2), p_2 : b; o_2 \gg_3 q_2) \mid p_2 \not\approx q_2]$$
Computed Solutions

$$[G_0 \mid True] \leadsto_{\sigma_1} \cdots \leadsto_{\sigma_n} [G_n \mid \phi]$$

Computed Solution is: \((\sigma_1 \cdots \sigma_n, \phi)\)

Example:

- **Goal**

 \(o : equal(p : length(q), s(s(0))) = true\)

- **Solution**

 \([q : cons(n_1, r : cons(n_2, q)) \mid q \not\approx r]\)
Graph Narrowing: Soundness and Completeness

Proposition 1: The proposed narrowing rules are sound. If \([G \mid True] \leadsto_{\sigma} [H \mid \phi]\) then there exists a ground substitution \(\theta\) satisfying \(\phi\) such that:
\[G\sigma\theta \longrightarrow^* H\theta\]

Proposition 2: The proposed narrowing rules are complete. If \(G\sigma \longrightarrow^* H\), \(\sigma\) being irreducible. Then, there exist two substitutions \(\theta\) and \(\gamma\) and a term-graph \(G'\) such that:

- \([G \mid True] \leadsto^* \theta [G' \mid \phi]\)
- \(\gamma\) satisfies \(\phi\)
- \(\sigma = \theta\gamma\)
- \(G'\gamma = H\)
Modal Logic and Graph Transformation
– motivations–

▶ Specify graph shapes (data-structures)
 ▶ Circular list
 ▶ Balanced tree

Graph properties can be specified within several logics, such as:
 ▶ Separation Logic,
 ▶ Monadic second order logic,
 ▶ Modal logics (e.g., LTL, CTL, μ-calculus, etc).

▶ Verification of graph transformation:
 ▶ Invariant
 ▶ Reachability
 ▶ Need to define new logics able to specify rule application
 and graph transformation.
Dynamic Logic

- Agents
- Knowledge
- Actions

Evaluate a formula in a model \Rightarrow Transform the considered model
A Modal Logic for Graph Rewriting

- $G \models \phi$
- $G!_{\mathcal{R}} \models \phi$ where $G!_{\mathcal{R}}$ is the normal form of G
- $G!_{\mathcal{R}} \models \phi$ iff $G \models [\mathcal{R}^*]\phi$
A Modal Logic for Graph Rewriting: \mathcal{L}_{gr}

Language

- Formulas:
 \[\phi ::= p \mid \perp \mid \neg \phi \mid \phi \lor \phi \mid [\alpha] \phi \]

- Actions:
 \[\alpha ::= a \mid \alpha^* \mid \alpha; \alpha \mid \alpha \lor \alpha \mid \text{modifiers} \]

$[\alpha] \Phi$: “After performing” actions α, formula Φ holds.
Modifiers

- Add a new node
- Add a new label (to current node)
- remove a label from the current node
- Add the label “a” to the edges going from a Φ-node to a Ψ-node.
- ...

Graph modifiers:

- U
- n
- \vec{n}
- ϕ
- $(\omega := g \phi)$
- $(\omega := l \phi)$
- $(a + (\phi, \psi))$
- $(a - (\phi, \psi))$
Modifiers

–Example–

\[[p := g \perp] [p := l \top] (p \land [a](\neg p \land q)) \]

\[\begin{align*}
 p & \xrightarrow{a} p, q & \Rightarrow & \bullet \xrightarrow{a} q & \Rightarrow & p \xrightarrow{a} q \\
 q & \downarrow a & q & \downarrow a & q & \downarrow a
\end{align*} \]
Modal Logic: \mathcal{L}_{gr}

Semantics (informally)

- $G^r \models p$
 - iff p holds at node r

- $G^r \models [a] \varphi$
 - iff $G^n \models \varphi$ for all nodes n such that the edge $r \overset{a}{\rightarrow} n \in G$.

- $G^r \models [\omega := g \bot][\omega := l \top] \varphi$
 - iff $H^r \models \varphi$, H is obtained from G by tagging the node r by ω
 - (\(\omega\) does not hold outside node r).
Modal Logic: \mathcal{L}_{gr}

Semantics

- $G^r \models [a - (\phi, \psi)]\varphi$ iff $H^r \models \varphi$, H is obtained from G by erasing the edges $n \xrightarrow{a} m$, such that $G^n \models \phi$ and $G^m \models \psi$.

- $G^r \models [a + (\phi, \psi)]\varphi$ iff $H^r \models \varphi$, H is obtained from G by adding the edges $n \xrightarrow{a} m$, such that $G^n \models \phi$ and $G^m \models \psi$.

- $G^r \models [f?]\varphi$ iff $G^r \models \varphi$ and f holds at node r.

- $G^r \models [n\overrightarrow{w}]\varphi$ iff $H^{nw} \models \varphi$. H is obtained from G by adding a new node nw.

Examples of \mathcal{L}_{gr} Specified Properties

- Class of all a-cycle-free rooted termgraphs.
 \[[\omega := g \top][U][\omega := l \bot][a^+]\omega \]

- Class of all a-circular rooted termgraphs
 \[[\omega := g \bot][U][\omega := l \top][a^+]\omega. \]

- Class of all (a, b)-binary rooted termgraphs
 \[[\omega := g \bot][U][\omega := l \top][a][\pi := g \top][(a \cup b)^*][\pi := l \bot][U](\omega \rightarrow [b][(a \cup b)^*]_{\pi}). \]

- Let $R_G(a) = \{(n_1, n_2) : \text{the edge } n_1 \xrightarrow{a} n_2 \in G\}.$
 \[G \models [\omega := g \bot][U][\omega := l \top][a][\neg \omega \text{ iff } R_G(a) \text{ is irreflexive.}] \]

- Classes of circular lists, balanced trees, ...
Hamiltonian Graphs

The following formula expresses the existence of a Hamiltonian cycle.
α stands for $a_1 \cup \ldots \cup a_n$, where the a_i’s are the possible features used in the graph ($\mathcal{F} = \{a_1, \ldots, a_n\}$):

$$\langle \omega := g \top; \pi := g \bot; \omega := l \bot; \pi := l \top; (\alpha; \omega?; \omega := l \bot)^* \rangle$$

$$\left(\pi \land [U] \neg \omega \right).$$
Decidability

- With * and without “nw” : the problem of “model checking”
 \((G \models \Phi)\) is decidable.
Expressing pattern-matching in \mathcal{L}_{gr}

Proposition: Let G' be a term-graph with root r (a distinguished node). There exists a $*$-free action α_G and a $*$-free formula ϕ_G such that for all finite rooted term graphs G'^r, $G'^r \models \langle \alpha_G \rangle \phi_G$ iff there exists a graph homomorphism from G to G'^r.

We define the action α_G and the formula ϕ_G as follows:

- $\beta_G = (\pi_0 := g \bot); \ldots; (\pi_{N-1} := g \bot)$,
 (N being the number of nodes in G)
- for all non-negative integers i, if $i < N$ then $\gamma^i_G = (\neg \pi_0 \land \ldots \land \neg \pi_{i-1})?; (\pi_i := l \top); U$,
- $\alpha_G = \beta_G; \gamma^0_G; \ldots; \gamma^{N-1}_G$.

Modal Logic \mathcal{L}_{gr} and Graph Rewriting
We define the formula ϕ_G as follows:

- for all non-negative integers i, if $i < N$ then $\psi^i_G = \text{if } \mathcal{L}^n(i) \text{ is defined then } \langle U \rangle (\pi_i \land \mathcal{L}^n(i)) \text{ else } \top$,

- for all non-negative integers i, j, if $i, j < N$ then $\chi^{i,j}_G = \text{if there exists an edge } e \in \mathcal{E} \text{ such that } S(e) = i \text{ and } T(e) = j \text{ then } \langle U \rangle (\pi_i \land \langle \mathcal{L}^e(e) \rangle \pi_j) \text{ else } \top$,

- $\phi_G = \psi^0_G \land \ldots \land \psi^{N-1}_G \land \chi^{0,0}_G \land \ldots \land \chi^{N-1,N-1}_G$.

Modal Logic \mathcal{L}_{gr} and Graph Rewriting
Actions representing the right-hand sides can be expressed by the following elementary formulas:

- **Action** $\text{n : f(a}_1 \Rightarrow n_1, \ldots, a_k \Rightarrow n_k)$
 $U; \pi_n?; (f := l \top); (a_1 + (\pi_n, \pi_{n_1})); \ldots; (a_k + (\pi_n, \pi_{n_k}))$.

- **Action** n \gg_a m
 $(a - (\pi_n, \top)); (a + (\pi_n, \pi_m))$.

- **Action** n \gg m (for a-edges)
 $(\lambda_a := g \bot); (\lambda_a := g \langle a \rangle \pi_n); (a - (\top, \pi_n)); (a + (\lambda_a, \pi_m))$.

Modal Logic \mathcal{L}_{gr} and Graph Rewriting

- Firing a rule $\rho = L \rightarrow R$

 $\beta_\rho = \alpha_L; \alpha_R$

- Normal form of graph G' satisfies φ: Let $\mathcal{R} = (\bigvee \beta_{\rho_i})$

 $G' \models [\mathcal{R}^*](\mathcal{R} \perp \Rightarrow \varphi)$

- Rule ρ preserves the property φ:

 $\models (\varphi \Rightarrow [\beta_\rho]\varphi)$
Conclussion and perspectives

- Admissible termgraphs seem to be a good trade-off to ensure confluence and efficient strategies
- Cloning and algebraic approaches (sesqui-pushout)
- Narrowing
- Visual Programming and Termgraph Rewriting
- Proof Techniques
- Applications