
Proving the Termination of Narrowing
by Proving the Termination of Rewriting

Germán Vidal
Technical University of Valencia, Spain

(Joint work with Naoki Nishida, University of Nagoya, Japan)

Research Project FAST, TIN2008-06622

Máster en Investigación

FDI, Universidad Complutense de Madrid

April 27, 2009 – Madrid, Spain

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 1 / 45

Outline

1 introduction
narrowing

2 termination of narrowing via termination of rewriting
data generators
main result

3 automating the termination analysis
abstract terms and argument filterings
a direct approach to termination analysis
a transformational approach

4 the technique in practice
the termination tool TNT
inference of safe argument filterings
some refinements

5 related work

6 conclusions

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 2 / 45

introduction narrowing

What is narrowing?

Standard definition
of addition (TRS)

�
�

�

add(z, y) → y (R1)
add(s(x), y) → s(add(x , y)) (R2)

With rewriting: add(s(z), z)→R2 s(add(z, z))→R1 s(z)

With narrowing: add(s(z), z) ;R2 s(add(z, z)) ;R1 s(z)

but also: add(x , z)

“guess” ##GGGGGGGG
s(add(y , z))

“guess” $$IIIIIIIII
s(z)

add(s(y), z)

R2

::uuuuuuuuu
s(add(z, z))

R1

??~~~~~~~

(many other non-deterministic reductions possible. . .)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 3 / 45

introduction narrowing

What is narrowing?

Standard definition
of addition (TRS)

�
�

�

add(z, y) → y (R1)
add(s(x), y) → s(add(x , y)) (R2)

With rewriting: add(s(z), z)→R2 s(add(z, z))→R1 s(z)

With narrowing: add(s(z), z) ;R2 s(add(z, z)) ;R1 s(z)

but also: add(x , z)

“guess” ##GGGGGGGG
s(add(y , z))

“guess” $$IIIIIIIII
s(z)

add(s(y), z)

R2

::uuuuuuuuu
s(add(z, z))

R1

??~~~~~~~

(many other non-deterministic reductions possible. . .)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 3 / 45

introduction narrowing

What is narrowing?

Standard definition
of addition (TRS)

�
�

�

add(z, y) → y (R1)
add(s(x), y) → s(add(x , y)) (R2)

With rewriting: add(s(z), z)→R2 s(add(z, z))→R1 s(z)

With narrowing: add(s(z), z) ;R2 s(add(z, z)) ;R1 s(z)

but also: add(x , z)

“guess” ##GGGGGGGG
s(add(y , z))

“guess” $$IIIIIIIII
s(z)

add(s(y), z)

R2

::uuuuuuuuu
s(add(z, z))

R1

??~~~~~~~

(many other non-deterministic reductions possible. . .)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 3 / 45

introduction narrowing

What is narrowing?

Standard definition
of addition (TRS)

�
�

�

add(z, y) → y (R1)
add(s(x), y) → s(add(x , y)) (R2)

With rewriting: add(s(z), z)→R2 s(add(z, z))→R1 s(z)

With narrowing: add(s(z), z) ;R2 s(add(z, z)) ;R1 s(z)

but also: add(x , z)

“guess” $$IIIIIIIII
;R2,{x 7→s(y)} s(add(y , z))

“guess” $$IIIIIIIII
;{R1,y 7→z} s(z)

add(s(y), z)

R2

99sssssssss
s(add(z, z))

R1

??~~~~~~~

(many other non-deterministic reductions possible. . .)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 3 / 45

introduction narrowing

Formal definition

Definition (rewriting)

�� ��s →p,R s[rσ]p if there are


a position p of s

a rule R = (l → r) in R
a substitution σ such that s|p = lσ

⇓

Definition (narrowing)

�� ��s ;p,R,σ (s[r]p)σ if there are


a nonvariable position p of s

a variant R = (l → r) of a rule in R
a substitution σ such that s|pσ = lσ
[σ = mgu(s|p, l)]

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 4 / 45

introduction narrowing

Some motivation

We want to analyze the termination of narrowing

Why?

narrowing is relevant in a number of areas: functional logic languages,
partial evaluation, protocol verification, type inference, etc
no termination prover for narrowing

We want to analyze the termination of narrowing by analyzing the
termination of rewriting

Why?

many techniques and tools for rewriting!�� ��Main ideas

replace logic variables by data generators
analyze the termination of rewriting with data generators
adapt direct and transformational approaches

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 5 / 45

introduction narrowing

Some motivation

We want to analyze the termination of narrowing

Why?

narrowing is relevant in a number of areas: functional logic languages,
partial evaluation, protocol verification, type inference, etc
no termination prover for narrowing

We want to analyze the termination of narrowing by analyzing the
termination of rewriting

Why?

many techniques and tools for rewriting!�� ��Main ideas

replace logic variables by data generators
analyze the termination of rewriting with data generators
adapt direct and transformational approaches

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 5 / 45

introduction narrowing

Some motivation

We want to analyze the termination of narrowing

Why?

narrowing is relevant in a number of areas: functional logic languages,
partial evaluation, protocol verification, type inference, etc
no termination prover for narrowing

We want to analyze the termination of narrowing by analyzing the
termination of rewriting

Why?

many techniques and tools for rewriting!�� ��Main ideas

replace logic variables by data generators
analyze the termination of rewriting with data generators
adapt direct and transformational approaches

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 5 / 45

termination of narrowing via termination of rewriting

termination of narrowing
via termination of rewriting

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 6 / 45

termination of narrowing via termination of rewriting

Termination of narrowing

The termination problem

given a TRS, are all possible narrowing derivations finite?

Too strong!

add(x , y) ;R2,{x 7→s(x ′)} add(x ′, y) ;R2,{x ′ 7→s(x ′′)} . . .

�� ��In this work

given a TRS R and a set of terms T ,
are all possible narrowing derivations t1 ; t2 ; . . . for t1 ∈ T finite?

(in symbols: T is ;R-terminating)

For instance, { add(s, t) | s is ground } is ;R-terminating

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 7 / 45

termination of narrowing via termination of rewriting

Termination of narrowing

The termination problem

given a TRS, are all possible narrowing derivations finite?

Too strong!

add(x , y) ;R2,{x 7→s(x ′)} add(x ′, y) ;R2,{x ′ 7→s(x ′′)} . . .

�� ��In this work

given a TRS R and a set of terms T ,
are all possible narrowing derivations t1 ; t2 ; . . . for t1 ∈ T finite?

(in symbols: T is ;R-terminating)

For instance, { add(s, t) | s is ground } is ;R-terminating

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 7 / 45

termination of narrowing via termination of rewriting

Termination of narrowing

The termination problem

given a TRS, are all possible narrowing derivations finite?

Too strong!

add(x , y) ;R2,{x 7→s(x ′)} add(x ′, y) ;R2,{x ′ 7→s(x ′′)} . . .

�� ��In this work

given a TRS R and a set of terms T ,
are all possible narrowing derivations t1 ; t2 ; . . . for t1 ∈ T finite?

(in symbols: T is ;R-terminating)

For instance, { add(s, t) | s is ground } is ;R-terminating

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 7 / 45

termination of narrowing via termination of rewriting

Termination of narrowing via termination of rewriting

Theorem

T is ;R-terminating
if {tσ | t ∈ T and t ;∗

σ s in R} is finite and →R-terminating

Drawbacks:

very difficult to approximate

sufficient but not necessary:

f(a) → b
a → a

The set {f(x)} is ;R-terminating
however {f(a)} is finite but not →R-terminating:

f(a)→ f(a)→ f(a)→ . . .

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 8 / 45

termination of narrowing via termination of rewriting

Termination of narrowing via termination of rewriting

Theorem

T is ;R-terminating
if {tσ | t ∈ T and t ;∗

σ s in R} is finite and →R-terminating

Drawbacks:

very difficult to approximate

sufficient but not necessary:

f(a) → b
a → a

The set {f(x)} is ;R-terminating
however {f(a)} is finite but not →R-terminating:

f(a)→ f(a)→ f(a)→ . . .

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 8 / 45

termination of narrowing via termination of rewriting

Termination of narrowing via termination of rewriting

Theorem

T is ;R-terminating
if {tσ | t ∈ T and t ;∗

σ s in R} is finite and →R-terminating

Drawbacks:

very difficult to approximate

sufficient but not necessary:

f(a) → b
a → a

The set {f(x)} is ;R-terminating
however {f(a)} is finite but not →R-terminating:

f(a)→ f(a)→ f(a)→ . . .

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 8 / 45

termination of narrowing via termination of rewriting�� ��A first solution

Variables in narrowing can be seen as generators of possibly infinite terms

Therefore {tσ | t ∈ T and t ;∗
σ s in R}

⇓
{tσ | t ∈ T and σ maps variables to possibly infinite terms }�� ��Why infinite terms?

Example�
�

�

add(z, y) → y (R1)
add(s(x), y) → s(add(x , y)) (R2)

add(x , z) is →R-terminating for any σ mapping x to a finite term

however, if σ maps x to an infinite term of the form s(s(. . .)), then
the derivation for add(x , z)σ is now infinite:

add(s(s(. . .)), z)→R s(add(s(s(. . .)), z))→R . . .

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 9 / 45

termination of narrowing via termination of rewriting�� ��A first solution

Variables in narrowing can be seen as generators of possibly infinite terms

Therefore {tσ | t ∈ T and t ;∗
σ s in R}

⇓
{tσ | t ∈ T and σ maps variables to possibly infinite terms }�� ��Why infinite terms?

Example�
�

�

add(z, y) → y (R1)
add(s(x), y) → s(add(x , y)) (R2)

add(x , z) is →R-terminating for any σ mapping x to a finite term

however, if σ maps x to an infinite term of the form s(s(. . .)), then
the derivation for add(x , z)σ is now infinite:

add(s(s(. . .)), z)→R s(add(s(s(. . .)), z))→R . . .

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 9 / 45

termination of narrowing via termination of rewriting�� ��A first solution

Variables in narrowing can be seen as generators of possibly infinite terms

Therefore {tσ | t ∈ T and t ;∗
σ s in R}

⇓
{tσ | t ∈ T and σ maps variables to possibly infinite terms }�� ��Why infinite terms?

Example�
�

�

add(z, y) → y (R1)
add(s(x), y) → s(add(x , y)) (R2)

add(x , z) is →R-terminating for any σ mapping x to a finite term

however, if σ maps x to an infinite term of the form s(s(. . .)), then
the derivation for add(x , z)σ is now infinite:

add(s(s(. . .)), z)→R s(add(s(s(. . .)), z))→R . . .

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 9 / 45

termination of narrowing via termination of rewriting�� ��Problem

proving that the set

{tσ | t ∈ T and σ maps variables to possibly infinite terms }

is →R-terminating is often too strong. . .

�� ��Example Given the TRS

a → a
f(x) → x

f(x) is clearly ;R-terminating
but ∃σ such that f(x)σ is not →R-terminating (e.g., σ = {x 7→ a})

⇒ an infinite computation f(a)→R f(a)→R . . . is introduced by σ !!

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 10 / 45

termination of narrowing via termination of rewriting�� ��Problem

proving that the set

{tσ | t ∈ T and σ maps variables to possibly infinite terms }

is →R-terminating is often too strong. . .

�� ��Example Given the TRS

a → a
f(x) → x

f(x) is clearly ;R-terminating
but ∃σ such that f(x)σ is not →R-terminating (e.g., σ = {x 7→ a})

⇒ an infinite computation f(a)→R f(a)→R . . . is introduced by σ !!

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 10 / 45

termination of narrowing via termination of rewriting�� ��Problem

proving that the set

{tσ | t ∈ T and σ maps variables to possibly infinite terms }

is →R-terminating is often too strong. . .

�� ��Example Given the TRS

a → a
f(x) → x

f(x) is clearly ;R-terminating
but ∃σ such that f(x)σ is not →R-terminating (e.g., σ = {x 7→ a})

⇒ an infinite computation f(a)→R f(a)→R . . . is introduced by σ !!

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 10 / 45

termination of narrowing via termination of rewriting�� ��A second solution

⇒ forbid the reduction of redexes introduced by σ. . .

�� ��A second problem. . .

. . . this restriction makes the condition unsound!

�� ��Example Given the TRS

a → a
f(a) → c(b, b)

c(y , f(y))σ is →R-terminating if the reduction of the terms
introduced by σ is forbidden

but c(y , f(y)) is not ;R-terminating!!

(e.g., c(y , f(y)) ;{y 7→a} c(a, c(b, b)) ;id c(a, c(b, b)) ;id . . .)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 11 / 45

termination of narrowing via termination of rewriting�� ��A second solution

⇒ forbid the reduction of redexes introduced by σ. . .

�� ��A second problem. . .

. . . this restriction makes the condition unsound!

�� ��Example Given the TRS

a → a
f(a) → c(b, b)

c(y , f(y))σ is →R-terminating if the reduction of the terms
introduced by σ is forbidden

but c(y , f(y)) is not ;R-terminating!!

(e.g., c(y , f(y)) ;{y 7→a} c(a, c(b, b)) ;id c(a, c(b, b)) ;id . . .)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 11 / 45

termination of narrowing via termination of rewriting�� ��A second solution

⇒ forbid the reduction of redexes introduced by σ. . .

�� ��A second problem. . .

. . . this restriction makes the condition unsound!

�� ��Example Given the TRS

a → a
f(a) → c(b, b)

c(y , f(y))σ is →R-terminating if the reduction of the terms
introduced by σ is forbidden

but c(y , f(y)) is not ;R-terminating!!

(e.g., c(y , f(y)) ;{y 7→a} c(a, c(b, b)) ;id c(a, c(b, b)) ;id . . .)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 11 / 45

termination of narrowing via termination of rewriting�� ��A second solution

⇒ forbid the reduction of redexes introduced by σ. . .

�� ��A second problem. . .

. . . this restriction makes the condition unsound!

�� ��Example Given the TRS

a → a
f(a) → c(b, b)

c(y , f(y))σ is →R-terminating if the reduction of the terms
introduced by σ is forbidden

but c(y , f(y)) is not ;R-terminating!!

(e.g., c(y , f(y)) ;{y 7→a} c(a, c(b, b)) ;id c(a, c(b, b)) ;id . . .)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 11 / 45

termination of narrowing via termination of rewriting

�� ��Last (good) solution

⇒
{

restrict to narrowing derivations
where terms introduced by instantiation cannot be narrowed!

For instance,

(innermost) basic narrowing over arbitrary TRSs

lazy and needed narrowing over left-linear constructor TRSs

. . .

Any narrowing strategy over left-linear constructor TRSs can only
introduce constructor substitutions =⇒

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 12 / 45

termination of narrowing via termination of rewriting

Termination of narrowing via termination of rewriting

In the following, we consider left-linear constructor TRSs:

f1(t11, . . . , t1m1) → r1
. . .

fn(tn1, . . . , tnmn) → rn

with

fi (ti1, . . . , tini
) linear (no multiple occurrences of the same variable)

ti1, . . . , tini
constructor terms (no occurrence of f1, . . . , fn)�� ��Property variables are bound to (irreducible) constructor terms

⇓�� ��Our approach we replace variables by “data generators”

that only produce (ground) constructor terms

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 13 / 45

termination of narrowing via termination of rewriting data generators

Data generators
[Antoy, Hanus, 2006; de Dios-Castro, López-Fraguas 2006]

For every TRS R, we define Rgen as R augmented with�
�

�
�

gen → c(

n times︷ ︸︸ ︷
gen, . . . , gen) for all constructor c/n ∈ C, n > 0

E.g., for C = {z/0, s/1}, we have

Rgen = R∪
{

gen → z
gen → s(gen)

}

Some notation: t̂ = tσ, with σ = {x 7→ gen | x ∈ Var(t)}

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 14 / 45

termination of narrowing via termination of rewriting data generators

Data generators
[Antoy, Hanus, 2006; de Dios-Castro, López-Fraguas 2006]

For every TRS R, we define Rgen as R augmented with�
�

�
�

gen → c(

n times︷ ︸︸ ︷
gen, . . . , gen) for all constructor c/n ∈ C, n > 0

E.g., for C = {z/0, s/1}, we have

Rgen = R∪
{

gen → z
gen → s(gen)

}

Some notation: t̂ = tσ, with σ = {x 7→ gen | x ∈ Var(t)}

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 14 / 45

termination of narrowing via termination of rewriting data generators

Data generators
[Antoy, Hanus, 2006; de Dios-Castro, López-Fraguas 2006]

For every TRS R, we define Rgen as R augmented with�
�

�
�

gen → c(

n times︷ ︸︸ ︷
gen, . . . , gen) for all constructor c/n ∈ C, n > 0

E.g., for C = {z/0, s/1}, we have

Rgen = R∪
{

gen → z
gen → s(gen)

}

Some notation: t̂ = tσ, with σ = {x 7→ gen | x ∈ Var(t)}

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 14 / 45

termination of narrowing via termination of rewriting data generators

Correctness of data generators

Completeness�� ��If s ;σ t in R then ŝ →∗
gen ŝσ → t̂ in Rgen

Generally unsound

E.g., add(gen, gen)→ add(z, gen)→ gen→ s(gen)→ s(z)

but add(x , x) ;{x 7→z} z
add(x , x) ;{x 7→s(x ′)} s(add(x ′, s(x ′))) ;{x ′ 7→z} s(s(z))
. . .

Soundness is preserved for admissible derivations

a derivation is admissible iff all the occurrences of gen originating from
the replacement of the same variable are reduced to the same term

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 15 / 45

termination of narrowing via termination of rewriting data generators

Correctness of data generators

Completeness�� ��If s ;σ t in R then ŝ →∗
gen ŝσ → t̂ in Rgen

Generally unsound

E.g., add(gen, gen)→ add(z, gen)→ gen→ s(gen)→ s(z)

but add(x , x) ;{x 7→z} z
add(x , x) ;{x 7→s(x ′)} s(add(x ′, s(x ′))) ;{x ′ 7→z} s(s(z))
. . .

Soundness is preserved for admissible derivations

a derivation is admissible iff all the occurrences of gen originating from
the replacement of the same variable are reduced to the same term

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 15 / 45

termination of narrowing via termination of rewriting data generators

Correctness of data generators

Completeness�� ��If s ;σ t in R then ŝ →∗
gen ŝσ → t̂ in Rgen

Generally unsound

E.g., add(gen, gen)→ add(z, gen)→ gen→ s(gen)→ s(z)

but add(x , x) ;{x 7→z} z
add(x , x) ;{x 7→s(x ′)} s(add(x ′, s(x ′))) ;{x ′ 7→z} s(s(z))
. . .

Soundness is preserved for admissible derivations

a derivation is admissible iff all the occurrences of gen originating from
the replacement of the same variable are reduced to the same term

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 15 / 45

termination of narrowing via termination of rewriting main result

What about termination in Rgen?

Clearly, no term with occurrences of gen terminates!

Fortunately, relative termination of Rgen suffices:

T is relatively Rgen-terminating to R if every derivation t1 → t2 . . .
for t1 ∈ T contains finitely many →R steps

Theorem (termination of narrowing via termination of rewriting)

Let R be a left-linear constructor TRS
T is ;R-terminating
T̂ is relatively →Rgen-terminating to R

=⇒ sufficient condition

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 16 / 45

termination of narrowing via termination of rewriting main result

What about termination in Rgen?

Clearly, no term with occurrences of gen terminates!

Fortunately, relative termination of Rgen suffices:

T is relatively Rgen-terminating to R if every derivation t1 → t2 . . .
for t1 ∈ T contains finitely many →R steps

Theorem (termination of narrowing via termination of rewriting)

Let R be a left-linear constructor TRS
T is ;R-terminating
T̂ is relatively →Rgen-terminating to R

=⇒ sufficient condition

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 16 / 45

termination of narrowing via termination of rewriting main result

What about termination in Rgen?

Clearly, no term with occurrences of gen terminates!

Fortunately, relative termination of Rgen suffices:

T is relatively Rgen-terminating to R if every derivation t1 → t2 . . .
for t1 ∈ T contains finitely many →R steps

Theorem (termination of narrowing via termination of rewriting)

Let R be a left-linear constructor TRS
T is ;R-terminating
iff
T̂ is relatively →Rgen-terminating to R w.r.t. admissible derivations

=⇒ sufficient condition

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 16 / 45

termination of narrowing via termination of rewriting main result

What about termination in Rgen?

Clearly, no term with occurrences of gen terminates!

Fortunately, relative termination of Rgen suffices:

T is relatively Rgen-terminating to R if every derivation t1 → t2 . . .
for t1 ∈ T contains finitely many →R steps

Theorem (termination of narrowing via termination of rewriting)

Let R be a left-linear constructor TRS
T is ;R-terminating
iff— if
T̂ is relatively →Rgen-terminating to R w.r.t. admissible derivations———————————

=⇒ sufficient condition

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 16 / 45

automating the termination analysis abstract terms and argument filterings

automating
the termination analysis

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 17 / 45

automating the termination analysis abstract terms and argument filterings

Proving termination automatically

The problem�
�

�

Given R and T ,

T is ;R-terminating if T̂ is relatively →Rgen-terminating to R

Drawback

the set T is generally infinite

Solution: use abstract terms

similar to modes in logic programming

E.g., add(g , v) denotes the set of terms add(t1, t2) with

t1 (definitely) ground
t2 (possibly) variable

concretization funcion γ,

e.g., γ(add(g , v)) = {add(z, x), add(z, z), add(s(z), x), add(s(z), z), ...}
Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 18 / 45

automating the termination analysis abstract terms and argument filterings

Proving termination automatically

The problem�
�

�

Given R and T ,

T is ;R-terminating if T̂ is relatively →Rgen-terminating to R

Drawback

the set T is generally infinite

Solution: use abstract terms

similar to modes in logic programming

E.g., add(g , v) denotes the set of terms add(t1, t2) with

t1 (definitely) ground
t2 (possibly) variable

concretization funcion γ,

e.g., γ(add(g , v)) = {add(z, x), add(z, z), add(s(z), x), add(s(z), z), ...}
Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 18 / 45

automating the termination analysis abstract terms and argument filterings

Proving termination automatically

The problem�
�

�

Given R and T ,

T is ;R-terminating if T̂ is relatively →Rgen-terminating to R

Drawback

the set T is generally infinite

Solution: use abstract terms

similar to modes in logic programming

E.g., add(g , v) denotes the set of terms add(t1, t2) with

t1 (definitely) ground
t2 (possibly) variable

concretization funcion γ,

e.g., γ(add(g , v)) = {add(z, x), add(z, z), add(s(z), x), add(s(z), z), ...}
Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 18 / 45

automating the termination analysis abstract terms and argument filterings

Proving termination automatically

The problem (revised)�
�

�

Given R and tα,

γ(tα) is ;R-terminating if γ̂(tα) is relatively →Rgen-terminating to R

Drawback

checking relative termination requires non-standard techniques

Solution: use argument filterings

to filter away non-ground arguments of terms

(equivalently, to filter away occurrences of gen)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 19 / 45

automating the termination analysis abstract terms and argument filterings

Proving termination automatically

The problem (revised)�
�

�

Given R and tα,

γ(tα) is ;R-terminating if γ̂(tα) is relatively →Rgen-terminating to R

Drawback

checking relative termination requires non-standard techniques

Solution: use argument filterings

to filter away non-ground arguments of terms

(equivalently, to filter away occurrences of gen)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 19 / 45

automating the termination analysis abstract terms and argument filterings

Proving termination automatically

The problem (revised)�
�

�

Given R and tα,

γ(tα) is ;R-terminating if γ̂(tα) is relatively →Rgen-terminating to R

Drawback

checking relative termination requires non-standard techniques

Solution: use argument filterings

to filter away non-ground arguments of terms

(equivalently, to filter away occurrences of gen)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 19 / 45

automating the termination analysis abstract terms and argument filterings

Argument filterings [Kusakari, Nakamura, Toyama 1999]

�� ��π(f) ⊆ {1, . . . , n} for every defined function f/n

Argument filterings over terms & TRSs:

π(t) =


x if t = x
c(π(t1), . . . , π(tn)) if t = c(t1, . . . , tn)
f(π(ti1), . . . , π(tim)) if t = f(t1, . . . , tn) and π(f) = {i1, . . . , im}

π(l → r) = π(l)→ π(r)

�
�

�
�

From tα we infer a safe argument filtering π for tα

π(tα) = f(g , g , . . . , g)

for all s ; t, if π(s|p) are ground then π(t|q) are ground too

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 20 / 45

automating the termination analysis abstract terms and argument filterings

Argument filterings [Kusakari, Nakamura, Toyama 1999]

�� ��π(f) ⊆ {1, . . . , n} for every defined function f/n

Argument filterings over terms & TRSs:

π(t) =


x if t = x
c(π(t1), . . . , π(tn)) if t = c(t1, . . . , tn)
f(π(ti1), . . . , π(tim)) if t = f(t1, . . . , tn) and π(f) = {i1, . . . , im}

π(l → r) = π(l)→ π(r)

�
�

�
�

From tα we infer a safe argument filtering π for tα

π(tα) = f(g , g , . . . , g)

for all s ; t, if π(s|p) are ground then π(t|q) are ground too

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 20 / 45

automating the termination analysis abstract terms and argument filterings

Proving termination automatically: approaches

A direct approach

based on dependency pairs [Arts, Giesl 2000]

only a slight extension needed

A transformational approach

based on argument filtering transformation [Kusakari, Nakamura,
Toyama 1999]

we use a simplified version (except for extra-variables)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 21 / 45

automating the termination analysis a direct approach to termination analysis

Dependency pairs approach�� ��Dependency pairs DP(R) of a TRS R

DP(R) = { F (s1, . . . , sn)→ G (t1, . . . , tm) | f (s1, . . . , sn)→ r ∈ R
r |p = g(t1, . . . , tm) }

where F ,G are tuple symbols

Example

append(nil, y) → y
append(cons(x , xs), y) → cons(x , append(xs, y))

reverse(nil) → nil
reverse(cons(x , xs)) → append(reverse(xs), cons(x , nil))

APPEND(cons(x , xs), y) → APPEND(xs, y) (1)
REVERSE(cons(x , xs)) → REVERSE(xs) (2)
REVERSE(cons(x , xs)) → APPEND(reverse(xs), cons(x , nil)) (3)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 22 / 45

automating the termination analysis a direct approach to termination analysis

Dependency pairs approach�� ��Dependency pairs DP(R) of a TRS R

DP(R) = { F (s1, . . . , sn)→ G (t1, . . . , tm) | f (s1, . . . , sn)→ r ∈ R
r |p = g(t1, . . . , tm) }

where F ,G are tuple symbols

Example

append(nil, y) → y
append(cons(x , xs), y) → cons(x , append(xs, y))

reverse(nil) → nil
reverse(cons(x , xs)) → append(reverse(xs), cons(x , nil))

APPEND(cons(x , xs), y) → APPEND(xs, y) (1)
REVERSE(cons(x , xs)) → REVERSE(xs) (2)
REVERSE(cons(x , xs)) → APPEND(reverse(xs), cons(x , nil)) (3)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 22 / 45

automating the termination analysis a direct approach to termination analysis

Dependency pairs approach�� ��Dependency pairs DP(R) of a TRS R

DP(R) = { F (s1, . . . , sn)→ G (t1, . . . , tm) | f (s1, . . . , sn)→ r ∈ R
r |p = g(t1, . . . , tm) }

where F ,G are tuple symbols

Example

append(nil, y) → y
append(cons(x , xs), y) → cons(x , append(xs, y))

reverse(nil) → nil
reverse(cons(x , xs)) → append(reverse(xs), cons(x , nil))

APPEND(cons(x , xs), y) → APPEND(xs, y) (1)
REVERSE(cons(x , xs)) → REVERSE(xs) (2)
REVERSE(cons(x , xs)) → APPEND(reverse(xs), cons(x , nil)) (3)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 22 / 45

automating the termination analysis a direct approach to termination analysis

Dependency pairs approach�� ��Dependency pairs DP(R) of a TRS R

DP(R) = { F (s1, . . . , sn)→ G (t1, . . . , tm) | f (s1, . . . , sn)→ r ∈ R
r |p = g(t1, . . . , tm) }

where F ,G are tuple symbols

Example

append(nil, y) → y
append(cons(x , xs), y) → cons(x , append(xs, y))

reverse(nil) → nil
reverse(cons(x , xs)) → append(reverse(xs), cons(x , nil))

APPEND(cons(x , xs), y) → APPEND(xs, y) (1)
REVERSE(cons(x , xs)) → REVERSE(xs) (2)
REVERSE(cons(x , xs)) → APPEND(reverse(xs), cons(x , nil)) (3)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 22 / 45

automating the termination analysis a direct approach to termination analysis

Dependency pairs approach�� ��Dependency pairs DP(R) of a TRS R

DP(R) = { F (s1, . . . , sn)→ G (t1, . . . , tm) | f (s1, . . . , sn)→ r ∈ R
r |p = g(t1, . . . , tm) }

where F ,G are tuple symbols

Example

append(nil, y) → y
append(cons(x , xs), y) → cons(x , append(xs, y))

reverse(nil) → nil
reverse(cons(x , xs)) → append(reverse(xs), cons(x , nil))

APPEND(cons(x , xs), y) → APPEND(xs, y) (1)
REVERSE(cons(x , xs)) → REVERSE(xs) (2)
REVERSE(cons(x , xs)) → APPEND(reverse(xs), cons(x , nil)) (3)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 22 / 45

automating the termination analysis a direct approach to termination analysis

Dependency pairs approach: differences

Definition (chain)

A (possibly infinite) sequence of dependency pairs s1 → t1, s2 → t2, . . .
from DP(R) is a (DP(R),R, π)-chain if

∃ (constructor) substitution σ such that t̂iσ →∗
Rgen

ŝi+1σ for i > 1

π(ŝiσ), π(t̂iσ) contain no occurrences of gen

Three main extensions w.r.t. the standard notion:

it is parameterized by π

variables are replaced by gen and reductions w.r.t. Rgen

π should filter away all occurrences of gen

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 23 / 45

automating the termination analysis a direct approach to termination analysis

Dependency pairs approach: differences

Definition (chain)

A (possibly infinite) sequence of dependency pairs s1 → t1, s2 → t2, . . .
from DP(R) is a (DP(R),R, π)-chain if

∃ (constructor) substitution σ such that t̂iσ →∗
Rgen

ŝi+1σ for i > 1

π(ŝiσ), π(t̂iσ) contain no occurrences of gen

Three main extensions w.r.t. the standard notion:

it is parameterized by π

variables are replaced by gen and reductions w.r.t. Rgen

π should filter away all occurrences of gen

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 23 / 45

automating the termination analysis a direct approach to termination analysis

Example

Given the dependency pair

APPEND(cons(x , xs), y) → APPEND(xs, y) (1)

we have an infinite (DP(R),R, π)-chain, (1),(1),. . . , for

π(append) = π(APPEND) = {2}

since there exists σ = {y 7→ nil} such that

APPEND(cons(x , xs), y) → APPEND(xs, y)

ctσ��

(1)

APPEND(cons(gen, gen), nil)

ctσ OO

← APPEND(gen, nil)

where π(APPEND(gen, nil)) = π(APPEND(cons(gen, gen), nil)) ∈ T (F)

(not a chain in the standard framework of rewriting)
Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 24 / 45

automating the termination analysis a direct approach to termination analysis

Theorem

Let π be a safe argument filtering for tα in R
If there is no infinite (DP(R),R, π)-chain, then γ(tα) is ;R-terminating

Now, we could adapt the processors of the dependency pair framework. . .

Argument filtering processor�

�

�

�

E.g., we prove the soundness of transforming the DP problem

(DP(R),R, π) =⇒ (π(DP(R)), π(R), id)

where id(f) = {1, . . . , n} for all f/n occurring in π(R)

(π(DP(R)), π(R), id) is a standard DP problem, therefore,

all DP processors [GTSKF06] for proving the termination of
rewriting can be used for proving the termination of narrowing

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 25 / 45

automating the termination analysis a direct approach to termination analysis

Theorem

Let π be a safe argument filtering for tα in R
If there is no infinite (DP(R),R, π)-chain, then γ(tα) is ;R-terminating

Now, we could adapt the processors of the dependency pair framework. . .

Argument filtering processor�

�

�

�

E.g., we prove the soundness of transforming the DP problem

(DP(R),R, π) =⇒ (π(DP(R)), π(R), id)

where id(f) = {1, . . . , n} for all f/n occurring in π(R)

(π(DP(R)), π(R), id) is a standard DP problem, therefore,

all DP processors [GTSKF06] for proving the termination of
rewriting can be used for proving the termination of narrowing

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 25 / 45

automating the termination analysis a direct approach to termination analysis

Theorem

Let π be a safe argument filtering for tα in R
If there is no infinite (DP(R),R, π)-chain, then γ(tα) is ;R-terminating

Now, we could adapt the processors of the dependency pair framework. . .

Argument filtering processor�

�

�

�

E.g., we prove the soundness of transforming the DP problem

(DP(R),R, π) =⇒ (π(DP(R)), π(R), id)

where id(f) = {1, . . . , n} for all f/n occurring in π(R)

(π(DP(R)), π(R), id) is a standard DP problem, therefore,

all DP processors [GTSKF06] for proving the termination of
rewriting can be used for proving the termination of narrowing

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 25 / 45

automating the termination analysis a direct approach to termination analysis

Example

tα = append(g , v)
π = {append 7→ {1}, reverse 7→ {1}} (π is safe for tα)

The argument filtering processor returns:

Dependency pairs:


APPEND(cons(x , xs)) → APPEND(xs)
REVERSE(cons(x , xs)) → REVERSE(xs)
REVERSE(cons(x , xs)) → APPEND(reverse(xs))

Rewrite system:


append(nil) → y

append(cons(x , xs)) → cons(x , append(xs))
reverse(nil) → nil

reverse(cons(x , xs)) → append(reverse(xs))

Argument filtering: id = {append 7→ {1}, reverse 7→ {1}}

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 26 / 45

automating the termination analysis a direct approach to termination analysis

Example

tα = append(g , v)
π = {append 7→ {1}, reverse 7→ {1}} (π is safe for tα)

The argument filtering processor returns:

Dependency pairs:


APPEND(cons(x , xs)) → APPEND(xs)
REVERSE(cons(x , xs)) → REVERSE(xs)
REVERSE(cons(x , xs)) → APPEND(reverse(xs))

Rewrite system:


append(nil) → y PROBLEM!

append(cons(x , xs)) → cons(x , append(xs))
reverse(nil) → nil

reverse(cons(x , xs)) → append(reverse(xs))

Argument filtering: id = {append 7→ {1}, reverse 7→ {1}}

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 26 / 45

automating the termination analysis a direct approach to termination analysis

Removing extra-variables from filtered TRSs

Luckily, some extra-variables can be safely ignored...

If the argument filtering is safe, extra-variables may only appear
above the maximal function calls of the right-hand sides

(thus π(DP(R)) never contains extra-variables)

As for π(R), it should preserve the chains of dependency pairs:

if s1 → t1, s2 → t2, . . . is a chain in R
then π(s1)→ π(t1), π(s2)→ π(t2), . . . should be a chain in π(R)

For this purpose, it suffices to consider extra-vars in those functions
that are reachable from tα and
occur below a maximal function call of the right-hand side�� ��all other extra-variables can be safely ignored

(e.g., replaced by a fresh constructor constant ⊥)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 27 / 45

automating the termination analysis a direct approach to termination analysis

Removing extra-variables from filtered TRSs

Luckily, some extra-variables can be safely ignored...

If the argument filtering is safe, extra-variables may only appear
above the maximal function calls of the right-hand sides

(thus π(DP(R)) never contains extra-variables)

As for π(R), it should preserve the chains of dependency pairs:

if s1 → t1, s2 → t2, . . . is a chain in R
then π(s1)→ π(t1), π(s2)→ π(t2), . . . should be a chain in π(R)

For this purpose, it suffices to consider extra-vars in those functions
that are reachable from tα and
occur below a maximal function call of the right-hand side�� ��all other extra-variables can be safely ignored

(e.g., replaced by a fresh constructor constant ⊥)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 27 / 45

automating the termination analysis a direct approach to termination analysis

Removing extra-variables from filtered TRSs

Luckily, some extra-variables can be safely ignored...

If the argument filtering is safe, extra-variables may only appear
above the maximal function calls of the right-hand sides

(thus π(DP(R)) never contains extra-variables)

As for π(R), it should preserve the chains of dependency pairs:

if s1 → t1, s2 → t2, . . . is a chain in R
then π(s1)→ π(t1), π(s2)→ π(t2), . . . should be a chain in π(R)

For this purpose, it suffices to consider extra-vars in those functions
that are reachable from tα and
occur below a maximal function call of the right-hand side�� ��all other extra-variables can be safely ignored

(e.g., replaced by a fresh constructor constant ⊥)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 27 / 45

automating the termination analysis a direct approach to termination analysis

Removing extra-variables from filtered TRSs

Luckily, some extra-variables can be safely ignored...

If the argument filtering is safe, extra-variables may only appear
above the maximal function calls of the right-hand sides

(thus π(DP(R)) never contains extra-variables)

As for π(R), it should preserve the chains of dependency pairs:

if s1 → t1, s2 → t2, . . . is a chain in R
then π(s1)→ π(t1), π(s2)→ π(t2), . . . should be a chain in π(R)

For this purpose, it suffices to consider extra-vars in those functions
that are reachable from tα and
occur below a maximal function call of the right-hand side�� ��all other extra-variables can be safely ignored

(e.g., replaced by a fresh constructor constant ⊥)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 27 / 45

automating the termination analysis a direct approach to termination analysis

Example

tα = append(g , v)
π = {append 7→ {1}, reverse 7→ {1}} (π is safe for tα)

The argument filtering processor returns:

Dependency pairs:


APPEND(cons(x , xs)) → APPEND(xs)
REVERSE(cons(x , xs)) → REVERSE(xs)
REVERSE(cons(x , xs)) → APPEND(reverse(xs))

Rewrite system:


append(nil) → ⊥

append(cons(x , xs)) → cons(x , append(xs))
reverse(nil) → nil

reverse(cons(x , xs)) → append(reverse(xs))

Argument filtering: id = {append 7→ {1}, reverse 7→ {1}}

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 28 / 45

automating the termination analysis a transformational approach

A transformational approach

Our aim

transform the original TRS R into a new TRS R′

narrowing terminates in R if rewriting terminates in R′

Hence any termination technique for rewrite systems can be used
to prove the termination of narrowing

Our transformation is a simplification of the argument filtering
transformation (AFT) of [Kusakari, Nakamura, Toyama 1999]�� ��The transformation AFTπ(R)

for every rule l → r of the original rewrite system, produce

a filtered rule π(l)→ π(r) and

an additional rule π(l)→ π(t), for each subterm t of r that is filtered
away in π(r) and such that π(t) is not a constructor term.

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 29 / 45

automating the termination analysis a transformational approach

A transformational approach

Our aim

transform the original TRS R into a new TRS R′

narrowing terminates in R if rewriting terminates in R′

Hence any termination technique for rewrite systems can be used
to prove the termination of narrowing

Our transformation is a simplification of the argument filtering
transformation (AFT) of [Kusakari, Nakamura, Toyama 1999]�� ��The transformation AFTπ(R)

for every rule l → r of the original rewrite system, produce

a filtered rule π(l)→ π(r) and

an additional rule π(l)→ π(t), for each subterm t of r that is filtered
away in π(r) and such that π(t) is not a constructor term.

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 29 / 45

automating the termination analysis a transformational approach

Main result

Theorem

Let π be a safe argument filtering for tα in R
γ(tα) is ;R-terminating if AFTπ(R) is terminating

Therefore,

AFTπ(R) can be analyzed using standard techniques and tools for
proving the termination of TRSs

(no data generator is involved in the derivations of AFTπ(R))

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 30 / 45

automating the termination analysis a transformational approach

Example

append(nil, y) → y
append(cons(x , xs), y) → cons(x , append(xs, y))

reverse(nil) → nil
reverse(cons(x , xs)) → append(reverse(xs), cons(x , nil))

tα = append(g , v)
π = {append 7→ {1}, reverse 7→ {1}} (π is safe for tα)

The transformation AFTπ(R) returns

append(nil) → y (y is an extra variable)
append(cons(x , xs)) → cons(x , append(xs))

reverse(nil) → nil
reverse(cons(x , xs)) → append(reverse(xs))

which is clearly not terminating

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 31 / 45

automating the termination analysis a transformational approach

Example

append(nil, y) → y
append(cons(x , xs), y) → cons(x , append(xs, y))

reverse(nil) → nil
reverse(cons(x , xs)) → append(reverse(xs), cons(x , nil))

tα = append(g , v)
π = {append 7→ {1}, reverse 7→ {1}} (π is safe for tα)

The transformation AFTπ(R) returns

append(nil) → y− ⊥ (⊥ is a fresh constant)
append(cons(x , xs)) → cons(x , append(xs))

reverse(nil) → nil
reverse(cons(x , xs)) → append(reverse(xs))

which is clearly not terminating

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 31 / 45

the technique in practice

the technique
in practice

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 32 / 45

the technique in practice the termination tool TNT

The termination tool TNT

It takes as input

a left-linear constructor TRS

an abstract term

and proceeds as follows:

infers a safe argument filtering for the abstract term

(a binding-time analysis)

returns a transformed TRS using AFTπ�� ��Website: http://german.dsic.upv.es/filtering.html

The termination of the transformed TRS can be checked with APROVE

[DEMO]

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 33 / 45

the technique in practice inference of safe argument filterings

Inference of safe argument filterings

We have adapted a simple
�� ��binding-time analysis

binding-times: definitively ground / possibly variable

g t g = g g t v = v v t g = v v t v = v

(g , v , g) t (g , g , v) = (g , v , v)

{f 7→ (g , v), g 7→ (g , v)} t {f 7→ (g , g), g 7→ (v , g)}
= {f 7→ (g , v), g 7→ (v , v)}

binding-time environment: a substitution mapping variables to
binding-times

division: a mapping f/n 7→ (m1, . . . ,mn) for every defined function,
where each mi is a binding-time

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 34 / 45

the technique in practice inference of safe argument filterings�� ��Auxiliary functions

Bv [[x]] g/n ρ =(

n times︷ ︸︸ ︷
g , . . . , g) (if x ∈ V)

Bv [[c(t1, . . . , tn)]] g/n ρ=Bv [[t1]] g/n ρ t . . . t Bv [[tn]] g/n ρ (if c ∈ C)
Bv [[f(t1, . . . , tn)]] g/n ρ=bt t (Be [[t1]] ρ, . . . ,Be [[tn]] ρ) (if f = g, f ∈ D)

bt (if f 6= g, f ∈ D)
where bt = Bv [[t1]] g/n ρ t . . . t Bv [[tn]] g/n ρ

Be [[x]] ρ = xρ (if x ∈ V)
Be [[h(t1, . . . , tn)]] ρ = Be [[t1]] ρ t . . . t Be [[tn]] ρ (if h ∈ C ∪ D)

Roughly speaking,

(Bv [[t]] g/n ρ) returns a sequence of n binding-times that denote the
(lub of the) binding-times of the arguments of the calls to g/n that
occur in t in the context of the binding-time environment ρ

(Be [[t]] ρ) then returns g if t contains no variable which is bound to
v in ρ, and v otherwise

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 35 / 45

the technique in practice inference of safe argument filterings�� ��Auxiliary functions

Bv [[x]] g/n ρ =(

n times︷ ︸︸ ︷
g , . . . , g) (if x ∈ V)

Bv [[c(t1, . . . , tn)]] g/n ρ=Bv [[t1]] g/n ρ t . . . t Bv [[tn]] g/n ρ (if c ∈ C)
Bv [[f(t1, . . . , tn)]] g/n ρ=bt t (Be [[t1]] ρ, . . . ,Be [[tn]] ρ) (if f = g, f ∈ D)

bt (if f 6= g, f ∈ D)
where bt = Bv [[t1]] g/n ρ t . . . t Bv [[tn]] g/n ρ

Be [[x]] ρ = xρ (if x ∈ V)
Be [[h(t1, . . . , tn)]] ρ = Be [[t1]] ρ t . . . t Be [[tn]] ρ (if h ∈ C ∪ D)

Roughly speaking,

(Bv [[t]] g/n ρ) returns a sequence of n binding-times that denote the
(lub of the) binding-times of the arguments of the calls to g/n that
occur in t in the context of the binding-time environment ρ

(Be [[t]] ρ) then returns g if t contains no variable which is bound to
v in ρ, and v otherwise

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 35 / 45

the technique in practice inference of safe argument filterings�� ��Auxiliary functions

Bv [[x]] g/n ρ =(

n times︷ ︸︸ ︷
g , . . . , g) (if x ∈ V)

Bv [[c(t1, . . . , tn)]] g/n ρ=Bv [[t1]] g/n ρ t . . . t Bv [[tn]] g/n ρ (if c ∈ C)
Bv [[f(t1, . . . , tn)]] g/n ρ=bt t (Be [[t1]] ρ, . . . ,Be [[tn]] ρ) (if f = g, f ∈ D)

bt (if f 6= g, f ∈ D)
where bt = Bv [[t1]] g/n ρ t . . . t Bv [[tn]] g/n ρ

Be [[x]] ρ = xρ (if x ∈ V)
Be [[h(t1, . . . , tn)]] ρ = Be [[t1]] ρ t . . . t Be [[tn]] ρ (if h ∈ C ∪ D)

Roughly speaking,

(Bv [[t]] g/n ρ) returns a sequence of n binding-times that denote the
(lub of the) binding-times of the arguments of the calls to g/n that
occur in t in the context of the binding-time environment ρ

(Be [[t]] ρ) then returns g if t contains no variable which is bound to
v in ρ, and v otherwise

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 35 / 45

the technique in practice inference of safe argument filterings

BTA algorithm

Given an abstract term f1(m1, . . . ,mn1), the initial division is

div0 = {f1 7→ (m1, . . . ,mn1), f2 7→ (g , . . . , g), . . . , fk 7→ (g , . . . , g)}

where f1/n1, . . . , fk/nk are the defined functions of the TRS�� ��Iterative process

div i = {f1 7→ b1, . . . , fk 7→ bk}
⇓

div i+1 = { f1 7→ b1 t Bv [[r1]] f1/n1 e(b1, l1) t . . . t Bv [[rj]] f1/n1 e(bj , lj),
. . . ,
fk 7→ bk t Bv [[r1]] fk/nk e(b1, l1) t . . . t Bv [[rj]] fk/nk e(bj , lj) }

where l1 → r1, . . . , lj → rj , j ≥ k, are the rules of the TRS

e((m1, . . . ,mn), f(t1, . . . , tn)) = {x 7→ m1 | x ∈ Var(t1)}
∪ . . .
∪ {x 7→ mn | x ∈ Var(tn)}

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 36 / 45

the technique in practice inference of safe argument filterings

BTA algorithm

Given an abstract term f1(m1, . . . ,mn1), the initial division is

div0 = {f1 7→ (m1, . . . ,mn1), f2 7→ (g , . . . , g), . . . , fk 7→ (g , . . . , g)}

where f1/n1, . . . , fk/nk are the defined functions of the TRS�� ��Iterative process

div i = {f1 7→ b1, . . . , fk 7→ bk}
⇓

div i+1 = { f1 7→ b1 t Bv [[r1]] f1/n1 e(b1, l1) t . . . t Bv [[rj]] f1/n1 e(bj , lj),
. . . ,
fk 7→ bk t Bv [[r1]] fk/nk e(b1, l1) t . . . t Bv [[rj]] fk/nk e(bj , lj) }

where l1 → r1, . . . , lj → rj , j ≥ k, are the rules of the TRS

e((m1, . . . ,mn), f(t1, . . . , tn)) = {x 7→ m1 | x ∈ Var(t1)}
∪ . . .
∪ {x 7→ mn | x ∈ Var(tn)}

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 36 / 45

the technique in practice inference of safe argument filterings

When divi = divi+1 (fixpoint), the corresponding safe argument filtering π
is obtained as follows:

Given the division�� ��div = {f1 7→ (m1
1, . . . ,m

1
n1

), . . . , fk 7→ (mk
1 , . . . ,mk

nk
)}

we have �� ��π(div) = {f1 7→ {i | m1
i = g}, . . . , fk 7→ {i | mk

i = g}}

π(div) is a safe argument filtering since the computed division div is
congruent [JGS93]

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 37 / 45

the technique in practice inference of safe argument filterings

Example

mult(z, y) → z add(z, y) → y
mult(s(x), y) → add(mult(x , y), y) add(s(x), y) → s(add(x , y))

Given the abstract term mult(g , v), the associated initial division is

div0 = {mult 7→ (g , v), add 7→ (g , g)}

The next division, div1, is obtained from the following expression:

div1={mult 7→ (g , v) t Bv [[z]] mult/2 {y 7→ v}
t Bv [[add(mult(x , y), y)]] mult/2 {x 7→ g , y 7→ v}
t Bv [[y]] mult/2 {y 7→ g}
t Bv [[s(add(x , y))]] mult/2 {x 7→ g , y 7→ g},

add 7→ (g , g) t Bv [[z]] add/2 {y 7→ v}
t Bv [[add(mult(x , y), y)]] add/2 {x 7→ g , y 7→ v}
t Bv [[y]] add/2 {y 7→ g}
t Bv [[s(add(x , y))]] add/2 {x 7→ g , y 7→ g} }

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 38 / 45

the technique in practice inference of safe argument filterings

Example

mult(z, y) → z add(z, y) → y
mult(s(x), y) → add(mult(x , y), y) add(s(x), y) → s(add(x , y))

Given the abstract term mult(g , v), the associated initial division is

div0 = {mult 7→ (g , v), add 7→ (g , g)}

The next division, div1, is obtained from the following expression:

div1={mult 7→ (g , v) t Bv [[z]] mult/2 {y 7→ v}
t Bv [[add(mult(x , y), y)]] mult/2 {x 7→ g , y 7→ v}
t Bv [[y]] mult/2 {y 7→ g}
t Bv [[s(add(x , y))]] mult/2 {x 7→ g , y 7→ g},

add 7→ (g , g) t Bv [[z]] add/2 {y 7→ v}
t Bv [[add(mult(x , y), y)]] add/2 {x 7→ g , y 7→ v}
t Bv [[y]] add/2 {y 7→ g}
t Bv [[s(add(x , y))]] add/2 {x 7→ g , y 7→ g} }

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 38 / 45

the technique in practice inference of safe argument filterings

Example (cont’d)

Therefore, by evaluating the calls to Bv , we get�� ��div1 = {mult 7→ (g , v), add 7→ (v , v)}

Note that the change in the binding-times of add comes from the
evaluation of

Bv [[add(mult(x , y), y)]] add/2 {x 7→ g , y 7→ v}

where a call to add appears
(and every argument contains at least one possibly unknown value)

⇒ If we compute div2 we get div1 = div2 =⇒
�� ��div1 is a fixpoint

From this division, the associated safe argument filtering is�� ��π = { mult 7→ {1}, add 7→ { } }

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 39 / 45

the technique in practice inference of safe argument filterings

Example (cont’d)

Therefore, by evaluating the calls to Bv , we get�� ��div1 = {mult 7→ (g , v), add 7→ (v , v)}

Note that the change in the binding-times of add comes from the
evaluation of

Bv [[add(mult(x , y), y)]] add/2 {x 7→ g , y 7→ v}

where a call to add appears
(and every argument contains at least one possibly unknown value)

⇒ If we compute div2 we get div1 = div2 =⇒
�� ��div1 is a fixpoint

From this division, the associated safe argument filtering is�� ��π = { mult 7→ {1}, add 7→ { } }

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 39 / 45

the technique in practice inference of safe argument filterings

Example (cont’d)

Therefore, by evaluating the calls to Bv , we get�� ��div1 = {mult 7→ (g , v), add 7→ (v , v)}

Note that the change in the binding-times of add comes from the
evaluation of

Bv [[add(mult(x , y), y)]] add/2 {x 7→ g , y 7→ v}

where a call to add appears
(and every argument contains at least one possibly unknown value)

⇒ If we compute div2 we get div1 = div2 =⇒
�� ��div1 is a fixpoint

From this division, the associated safe argument filtering is�� ��π = { mult 7→ {1}, add 7→ { } }

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 39 / 45

the technique in practice some refinements

Some refinements�� ��Multiple abstract terms

Consider, e.g., eq(z, z) → true
eq(s(x), s(y)) → eq(x , y)

and the set
Tα = {eq(g , v), eq(v , g)}

Here, starting from

div0 = { eq 7→ (g , v) t (v , g) } = { eq 7→ (v , v) }

is not a good idea . . . �� ��Solution

Lemma

Let R be a TRS and Tα be a finite set of abstract terms. γ(Tα) is
;R-terminating iff γ(tα) is ;R-terminating for all tα ∈ Tα.

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 40 / 45

the technique in practice some refinements

Some refinements�� ��Multiple abstract terms

Consider, e.g., eq(z, z) → true
eq(s(x), s(y)) → eq(x , y)

and the set
Tα = {eq(g , v), eq(v , g)}

Here, starting from

div0 = { eq 7→ (g , v) t (v , g) } = { eq 7→ (v , v) }

is not a good idea . . . �� ��Solution

Lemma

Let R be a TRS and Tα be a finite set of abstract terms. γ(Tα) is
;R-terminating iff γ(tα) is ;R-terminating for all tα ∈ Tα.

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 40 / 45

the technique in practice some refinements

Some refinements (cont’d)�� ��Non well-moded programs

Consider, e.g., eq(z, z) → true
eq(s(x), s(y)) → eq(y , x)

If we start with
eq(g , v)

the only safe argument filtering is

π = {eq 7→ { }}�� ��Solution

eqgg (z, z) → true eqgv (z, z) → true
eqgg (s(x), s(y)) → eqgg (y , x) eqgv (s(x), s(y)) → eqvg (y , x)

eqvg (z, z) → true eqvv (z, z) → true
eqvg (s(x), s(y)) → eqgv (y , x) eqvv (s(x), s(y)) → eqvv (y , x)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 41 / 45

the technique in practice some refinements

Some refinements (cont’d)�� ��Non well-moded programs

Consider, e.g., eq(z, z) → true
eq(s(x), s(y)) → eq(y , x)

If we start with
eq(g , v)

the only safe argument filtering is

π = {eq 7→ { }}�� ��Solution

eqgg (z, z) → true eqgv (z, z) → true
eqgg (s(x), s(y)) → eqgg (y , x) eqgv (s(x), s(y)) → eqvg (y , x)

eqvg (z, z) → true eqvv (z, z) → true
eqvg (s(x), s(y)) → eqgv (y , x) eqvv (s(x), s(y)) → eqvv (y , x)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 41 / 45

the technique in practice some refinements

Some refinements (cont’d)

�� ��Removing non-reachable functions

Consider, e.g., a → a
b → c
c → d

Although narrowing terminates for the abstract term b
we get the argument filtering

π = {a 7→ { }, b 7→ { }, c 7→ { }}

and then we fail to prove its termination. . .�� ��Solution

Remove function definitions not reachable from b (i.e., a → a)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 42 / 45

the technique in practice some refinements

Some refinements (cont’d)

�� ��Removing non-reachable functions

Consider, e.g., a → a
b → c
c → d

Although narrowing terminates for the abstract term b
we get the argument filtering

π = {a 7→ { }, b 7→ { }, c 7→ { }}

and then we fail to prove its termination. . .�� ��Solution

Remove function definitions not reachable from b (i.e., a → a)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 42 / 45

related work

related work
and

conclusions

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 43 / 45

related work

Related work

Schneider-Kamp et al [SKGST07] presented an automated termination
analysis for logic programs:

logic programs are first translated to TRSs

logic variables are simulated by infinite terms

Main differences:

data generators (reuse of results relating narrowing and rewriting)

no transformational approach in [SKGST07]

Nishida et al [NSS03, NM06] adapted the dependency pair method for
proving the termination of narrowing:

direct approach (not based on using generators & rewriting)

allow extra variables in TRSs and do not consider initial terms

do not remove some (unnecessary) extra-variables (as we do)

Alpuente, Escobar, and Iborra [AEI08]

extend the use of dependency pairs to narrowing over arbitrary TRSs

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 44 / 45

related work

Related work

Schneider-Kamp et al [SKGST07] presented an automated termination
analysis for logic programs:

logic programs are first translated to TRSs

logic variables are simulated by infinite terms

Main differences:

data generators (reuse of results relating narrowing and rewriting)

no transformational approach in [SKGST07]

Nishida et al [NSS03, NM06] adapted the dependency pair method for
proving the termination of narrowing:

direct approach (not based on using generators & rewriting)

allow extra variables in TRSs and do not consider initial terms

do not remove some (unnecessary) extra-variables (as we do)

Alpuente, Escobar, and Iborra [AEI08]

extend the use of dependency pairs to narrowing over arbitrary TRSs

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 44 / 45

related work

Related work

Schneider-Kamp et al [SKGST07] presented an automated termination
analysis for logic programs:

logic programs are first translated to TRSs

logic variables are simulated by infinite terms

Main differences:

data generators (reuse of results relating narrowing and rewriting)

no transformational approach in [SKGST07]

Nishida et al [NSS03, NM06] adapted the dependency pair method for
proving the termination of narrowing:

direct approach (not based on using generators & rewriting)

allow extra variables in TRSs and do not consider initial terms

do not remove some (unnecessary) extra-variables (as we do)

Alpuente, Escobar, and Iborra [AEI08]

extend the use of dependency pairs to narrowing over arbitrary TRSs

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 44 / 45

conclusions

Conclusions

Conclusions

new techniques for proving the termination of narrowing in left-linear
constructor systems

good potential for reusing existing techniques and tools for rewriting

first tool for proving the termination of narrowing

Future work

extension to deal with extra-variables

improve accuracy

consider strategies (e.g., termination of lazy narrowing)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 45 / 45

conclusions

Conclusions

Conclusions

new techniques for proving the termination of narrowing in left-linear
constructor systems

good potential for reusing existing techniques and tools for rewriting

first tool for proving the termination of narrowing

Future work

extension to deal with extra-variables

improve accuracy

consider strategies (e.g., termination of lazy narrowing)

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 45 / 45

conclusions

M. Alpuente, S. Escobar, and J. Iborra.
Termination of narrowing using dependency pairs.
In Maria Garcia de la Banda and Enrico Pontelli, editors, Proc. of the
24th International Conference on Logic Programming (ICLP 2008),
pages 317–331. Springer LNCS 5366, 2008.

J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke.
Mechanizing and Improving Dependency Pairs.
Journal of Automated Reasoning, 37(3):155–203, 2006.

N.D. Jones, C.K. Gomard, and P. Sestoft.
Partial Evaluation and Automatic Program Generation.
Prentice-Hall, Englewood Cliffs, NJ, 1993.

N. Nishida and K. Miura.
Dependency Graph Method for Proving Termination of Narrowing.
In Proc. of WST’06, pages 12–16, 2006.

N. Nishida, M. Sakai, and T. Sakabe.

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 45 / 45

conclusions

Narrowing-Based Simulation of Term Rewriting Systems with Extra
Variables.
ENTCS, 86(3), 2003.

P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann.
Automated Termination Analysis for Logic Programs by Term
Rewriting.
In Proc. of LOPSTR’06, pages 177–193. Springer LNCS 4407, 2007.

Germán Vidal (TU Valencia, Spain) Termination of Narrowing FDI, U.C. Madrid 2009 45 / 45

	
	introduction
	narrowing

	termination of narrowing via termination of rewriting
	data generators
	main result

	automating the termination analysis
	abstract terms and argument filterings
	a direct approach to termination analysis
	a transformational approach

	the technique in practice
	the termination tool TNT
	inference of safe argument filterings
	some refinements

	related work
	conclusions

